
Florian Maurer, M.Sc.
Wissenschaftlicher Mitarbeiter
Technische Universität München
TUM School of Computation, Information and Technology
Lehrstuhl für Integrierte Systeme
Arcisstr. 21
80290 München
Tel.: +49.89.289.23870
Fax: +49.89.289.28323
Gebäude: N1 (Theresienstr. 90)
Raum: N2117
Email: flo.maurer(at)tum.de
PGP: 4BDA 3220 67D6 86CD C4A9 7CC5 0F74 8369 E8AF 2BFF
Lebenslauf
- Seit November 2018: Doktorand am LIS
- 2018: M.Sc. Elektro- und Informationstechnik, Technische Universität München
Master Thesis: "Hierarchical Control Structure for Autonomic MPSoCs" - 05/2018 - 09/2018: Masterarbeit an der UC Irvine, CA, USA
- 2016: B.Sc. Elektro- und Informationstechnik, Technische Universität München
Bachelor Thesis: "Design, Simulation and Optimization of a Variable Optical Attenuator Driver" - Praktikant / Werkstudent bei:
- DR. JOHANNES HEIDENHAIN GmbH
- Duschl Ingenieure GmbH & Co KG
- Elektrotechnik Pichler
- Tutor für:
- Praktikum Krypto-Implementierung
- Praktikum Elektrotechnik
- MATLAB in Stochastische Signale
Lehre
Project Laboratory IC Design (SS 2019 - SS 2020)
Digitaltechnik (WS 2020/21 - WS 2023/24)
System-on-Chip Solutions & Architecture (WS 2021/22 - WS 2023/24)
Summer School Workshop (WS 2022/23)
Studentische Arbeiten
Verfügbare Arbeiten
Aktuell ausgeführte Arbeiten
Betreute Arbeiten
- VHDL Implementation of Line Segment Detector
(Forschungspraxis, 2024) - Duckietown-Computer Vision Based Measurements for Performance Analysis
(Ingenieurpraxis, Hakan SUNGURLU, 2024) - Development of Obstacle Avoidance Algorithms in Duckietown’s Autonomous Driving Pipeline
(Bachelorarbeit, Elena Kuznetsova, 2024) - Duckietown - Development of Platooning Mode and Adaptive Speed Control in Autonomous Driving
(Bachelorarbeit, Hooman Khosravi, 2024) - Implementation and Evaluation of Safety Mechanisms for Learning Classifier Tables
(Forschungspraxis, Yiming Lu, 2024) - Enabling Task Offloading to FPGAs via DMA Transfers
(Forschungspraxis, Youqing Gao, 2024) - Duckiebot Task Offloading to FPGA - Using Xilinx PCIe DMA IP, Python and Docker
(Forschungspraxis, Daniel Biser, 2024) - Simulation-Based Tuning of a MISO PI Controller for Autonomous Vehicle Applications
(Bachelorarbeit, Hannes Vogel, 2023) - Implementing GPU-Accelerated Lane Detection Algorithm: GPU Performance Slower than CPU in Analysis
(Forschungspraxis, Jiang Shuai, 2023) - Revision of Learning Classifier Tables to Handle Temporarily Unachievable Goals
(Masterarbeit, Michael Meidinger, 2023) - Docker Maintanance for Duckietown
(Werkstudentin, Teodora Ljubevska, 2023) - Improved Line Segment Detection in Duckietown’s Autonomous Driving Pipeline
(Bachelorarbeit, Matthias Schlemmer, 2023) - Implementation of Learning Classifier Tables for Power Reduction in Autonomous Driving Applications
(Bachelorarbeit, Ethan Allan, 2023) - Extending Duckietown Robots Via Learning Classifier Tables: Optimization of Speed in Autonomous Driving
(Bachelorarbeit, Zara Weir, 2023) - Development of a Simulation Model for RL-based Task Scheduling in Simulink
(Bachelorarbeit, Diane Gerber, 2023) - Recognition of Unachievable Goals in Reinforcement Learning
(Forschungspraxis, Michael Meidinger, 2023) - Hardware in the Loop for Reinforcement Learning Investigation
(Bachelorarbeit, Youssef Sharafaldin, 2023) - Reward Function Design for Reinforcement Learning
(Bachelorarbeit, Lara Mehlsam, 2023) - Hardware Implementation of a Hybrid Reinforcement Learning Environment for Development and Demonstration
(Bachelorarbeit, Yiming Lu, 2022) - Developer-Friendly Simulation Environment for Reinforcement Learning-Based MPSoC Runtime Optimization
(Bachelorarbeit, Jakob Hölzl, 2022) - RTEMS on Leon3
(Forschungspraxis, Roberto Ruano Martinez, 2022) - Porting a Learning Classifier Table (LCT) for Processor Optimization from Hardware to Software and Evaluating its Usability
(Forschungspraxis, Moritz Thoma, 2022) - Analysis of Possible DVFS Periodicities in Self-Aware MPSoCs
(Masterarbeit, Thomas Hallermeier, 2022) - Development of a Self-Adaptive RL-Based Task Mapper for MPSoCs with Flexible Optimization Goals
(Masterarbeit, 2022) - Development of a User-Friendly Simulation Environment for RL-Based Optimization of MPSoC Runtime Parameters
(Bachelorarbeit, Eric Christfreund, 2022) - Development of a Multi-Step Reinforcement Learning Approach for Autonomous DVFS on MPSoCs
(Masterarbeit, Lorenz Völk, 2021) - Development of a Cooperative Multi-Agent RL Approach for Autonomous DVFS on MPSoCs
(Masterarbeit, Klajd Zyla, 2021) - Enabling Multi-Core Capabilities in a DVFS Simulation Environment
(Forschungspraxis, 2021) - Application Scheduling on Self-aware Embedded Systems
(Forschungspraxis, Daniel Shkurti, 2021) - Development of a Debugger for a Reinforcement Learning Paradigm on an MPSoC
(Forschungspraxis, Klajd Zyla, 2021) - Development of a SoC Trace Generator on an FPGA for a Trace-Based Simulation Environment
(Bachelorarbeit, Raphael Mayr, 2020) - Implementation of a Self-aware MPSoC Platform for Research on Cross-layer Resource Management
(Werkstudent, Klajd Zyla, 2020) - Design of a Trace-Based DVFS Simulation Environment
(Forschungspraxis, Øivind Bakke, 2020) - Design of a Hardware-Based Debugger for a Self-Aware SoC Paradigm
(Bachelorarbeit, Klajd Zyla, 2019) - Port of a Pedestrian Recognition Software on a VHDL MPSoC
(Werkstudent, Ali Younessi, 2019) - HW-SW Interface Design for a Self-aware SoC Paradigm based on Hardware Machine Learning (IPF)
(Forschungspraxis, Ozan Sahin, 2019)
Ehemalige Seminarthemen
2024 SS
- A Survey on Value- and Rule-Based Reinforcement Learning in Hardware
- Effiziente Belohnungszuweisung im ReinforcementLearning
2023 WS
- Challenges and Chances of Reinforcement Learning in Control Applications
- Typen und Einsatzgebiete von Caches in Praktischen Anwendungen
- A Survey on Types of Caching
- A Survey on Safety Guarantee Mechanisms for the eXtended Classifier System
- Cache Coherency Between Compute Nodes
2023 SS
- Reinforcement Learning in Control Problems
2022 WS
- Exploration the State-of-the-art System Resource Management and Future Direction for Multi-core Systems
2022 SS
- Tools for Software Optimization
- Survey on Model-Based Reinforcement Learning
2021 WS
- Adaptive Embedded Systems based on Learning Classifier Systems
- Evolution of P-state Transition Latencies in Modern x86 CPUs
2021 SS
- Explainable AI: A Collection of Interpretable Machine Learning Approaches and Black-Box Explanation Techniques
- Task and Communication Scheduling Mechanisms on NoC-based Platforms
2020 WS
- Learning Classifier Systems in Multistep Reinforcement Learning Problems
- Markov Decision Processes in the Context of Multi-step Learning
2020 SS
- A Survey on Common MPSoC Simulators
- Survey on Debugging Mechanisms for MPSoCs
- A Qualitative Comparison of Common Benchmark Suits, Using Predefined Hardware Focused Metrics
2019 WS
- Interplay of DVFS and DPM for energy minimization of multicore processors
- Advancements in Learning Classifier Systems
- Architectural Techniques for Runtime Power Optimization on MPSoCs
- A Survey on Machine Learning Techniques Used for Predicting Hard Drive Failures in High Performance Centers
2019 SS
- Comparison of Reinforcement Learning Based Multi Agent System Approaches
- Distributed Reinforcement Learning Approaches
- Power Optimization Methodes for MPSoCs
Publikationen
2024
- EPIC-Q : Equivalent-Policy Invariant Comparison enhanced transfer Q-learning for run-time SoC performance-power optimization. International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation 2024, 2024 mehr… BibTeX
- XCS with dynamic sized experience replay for memory constrained applications. Genetic and Evolutionary Computing Conference (GECCO), 2024 mehr… BibTeX Volltext ( DOI )
- Experiencing Self-Aware MPSoC Run-Time Optimization with Autonomous Bots. SelPhyS 2024, 2024 mehr… BibTeX
- QoS-Aware Dynamic Frequency Scaling for Mixed-Critical Systems based on Shielded Reinforcement Learning. 2024 IEEE Nordic Circuits and Systems Conference (NorCAS), IEEE, 2024, 1-6 mehr… BibTeX Volltext ( DOI )
2023
- LCT-TL: Learning Classifier Table (LCT) with Transfer Learning for run-time SoC performance-power optimization. 16th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC 2023), 2023 mehr… BibTeX
- LCT-DER: Learning Classifier Table with Dynamic-sized Experience Replay for run-time SoC performance-power optimization. The Genetic and Evolutionary Computation Conference (GECCO), 2023 mehr… BibTeX Volltext ( DOI )
- CoLeCTs: Cooperative Learning Classifier Tables for Resource Management in MPSoCs. 36th International Conference on Architecture of Computing Systems, ARCS 2023, 2023 mehr… BibTeX Volltext ( DOI )
- Machine Learning in Run-Time Control of Multicore Processor Systems. it - Information Technology 0 (0), 2023 mehr… BibTeX Volltext ( DOI )
- Information Processing Factory 2.0 - Self-awareness for Autonomous Collaborative Systems. DATE 2023, 2023 mehr… BibTeX Volltext ( DOI )
2022
- GAE-LCT: A Run-Time GA-Based Classifier Evolution Method for Hardware LCT Controlled SoC Performance-Power Optimization. Architecture of Computing Systems, 2022 mehr… BibTeX Volltext ( DOI )
2020
- The Self-Aware Information Processing Factory Paradigm for Mixed-Critical Multiprocessing. IEEE Transactions on Emerging Topics in Computing, 2020, 1-1 mehr… BibTeX Volltext ( DOI )
- Emergent Control of MPSoC Operation by a Hierarchical Supervisor / Reinforcement Learning Approach. DATE 2020, 2020 mehr… BibTeX Volltext ( DOI )
2019
- SOSA: Self-Optimizing Learning with Self-Adaptive Control for Hierarchical System-on-Chip Management. Proceedings of the 52Nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO '52), ACM, 2019 mehr… BibTeX Volltext ( DOI )
- The Information Processing Factory: Organization, Terminology, and Definitions. , 2019 mehr… BibTeX
- The Information Processing Factory: A Paradigm for Life Cycle Management of Dependable Systems. ESweek, 2019 mehr… BibTeX Volltext ( DOI )