M.Sc. Francesca Diedolo
Technische Universität München
Lehrstuhl für Nachrichtentechnik (Prof. Kramer)
Postadresse
Theresienstr. 90
80333 München
- Tel.: +49 (89) 289 - 23492
- Raum: 0104.04.403
- francesca.diedolo@tum.de
Biografie
- Seit Februar 2021 wissenschaftliche Mitarbeiterin am Lehrstuhl für Nachrichtentechnik der TUM
- M.Sc. in Communications Engineering an der TUM, 2018-2020
- B.Sc. in Elektro- und Informationstechnik an der Università degli Studi di Padova, 2015-2018
Lehre
Machine Learning for Communications(WS 21/22, WS 22/23, WS 23/24)
Abschlussarbeiten
Angebotene Abschlussarbeiten
Laufende Abschlussarbeiten
Context Tree Weighting Method
Beschreibung
In this seminar, students will explore the Context Tree Weighting (CTW) method [1], a universal lossless technique for sequential data compression and prediction. CTW efficiently balances multiple context models using a weighted averaging approach. It is particularly appreciated for its strong theoretical guarantees, such as redundancy bounds in universal coding, while also demonstrating excellent practical performance in real-world scenarios.
Students will first read and understand the fundamentals of CTW, including its theoretical basis and algorithmic implementation. After grasping the core method, they can choose to delve into either extensions of CTW [2], or its applications, e.g. text/image compression [3, 4] or sequence prediction in various domains.
[1] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=382012
[2] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=661523
[3] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=838152
[4] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=488318
Voraussetzungen
Probability Theory, Information Theory, Source Coding
Betreuer:
Publikationen
2024
- Neural Network-Based Successive Interference Cancellation for Non-Linear Bandlimited Channels. IEEE Trans. Commun., 2024 mehr… BibTeX Volltext ( DOI )
- Neural network equalizers and successive interference cancellation for bandlimited channels with a nonlinearity. IEEE Intl. Symp. Inf. Theory, 2024 mehr… BibTeX
2022
- Nonlinear Equalization for Optical Communications Based on Entropy-Regularized Mean Square Error. European Conference on Optical Communication (ECOC), 2022 mehr… BibTeX
- Nonlinear Component Equalization: A Comparison of Deep Neural Networks and Volterra Series. European Conference on Optical Communication (ECOC), 2022 mehr… BibTeX
2021
- Label Extension for 32QAM: The Extra Bit for a Better FEC Performance-Complexity Tradeoff. 2020 European Conference on Optical Communications (ECOC), IEEE, 2021 mehr… BibTeX Volltext ( DOI )