Simulation of Optical Communication Systems Laboratory

Lecturer (assistant)
TypePractical course
Duration4 SWS
TermWintersemester 2023/24
Language of instructionEnglish
Position within curriculaSee TUMonline
DatesSee TUMonline

Admission information


At the end of the module students are able to model, simulate and optimize the function of optical components as well as complete single-channel or WDM systems, and to interpret the results correctly.


This lab course, Simulation of Optical Communication Systems (SOCS), offers an introduction into modelling, simulation and physical optimization of optical communication systems. The course employs a commercial photonic system design software (Optiwave Photonic Design Tools) that is used world-wide. In the first sessions, the transmitter and receiver components, i. e., laser, external modulator and photo detector are described and analyzed in simulations. The following sessions are dedicated to model and understand systems using Intensity Modulation and Direct Detection, and coherent systems with advanced QAM-modulation. Final sessions treat linear and nonlinear fiber effects and the degradation of signal quality they cause, optical amplifiers, and the optimization of the link design of optical communication systems.


Differential / Integral calculus, Vector analysis, signal representation in time and frequency domain, statistical methods of communications engineering, electromagnetic field theory. Lectures that generally cover the required topics: Advanced mathematics Communications engineering Statistical signal theory Signal representation Electromagnetic field theory / High frequency engineering For a successful completion of the Laboratory it is ESSENTIAL to take the following module additionally: Lecture: Optical communications systems (EI5075) If the previous module has not been followed before or is not planned to be followed in parallel with SOCS, the student is encouraged to contact one of the teaching assistants prior to the enrollment.

Teaching and learning methods

The students are provided with a comprehensive lab manual and are expected to study the chapters prior to the lab sessions. The manual comprises an introduction into the general handling of the photonic system design software, and introductions to the respective lab courses. During the lab courses the students create and run their own simulations according to instructions given in the manual. They are supported by well experienced tutors.


In an oral exam (30 min) students prove that the are able to model, simulate and optimize optical components as well as complete single-channel or WDM systems by discussing their approach during the lab course with the examiner.