Grundlagen der digitalen, analogen und Quanten Computer (Vorlesung)
Vortragende/r (Mitwirkende/r) | |
---|---|
Nummer | 0000004969 |
Art | Vorlesung |
Umfang | 2 SWS |
Semester | Wintersemester 2022/23 |
Unterrichtssprache | Deutsch |
Stellung in Studienplänen | Siehe TUMonline |
Termine | Siehe TUMonline |
Termine
-
(Keine Termine gefunden)
Teilnahmekriterien
Lernziele
Nach dem erfolgreichen Abschluss des Moduls sind die Studenten mit den Grundlagen der digitalen, analogen und Quanten Computer vertraut. Sie kennen u.a. die Grenzen digitaler Computer und können für die behandelten Problemklassen entscheiden, welche Systeme nur auf einem analogen Computer implementiert werden können. Sie sind mit der neuen Theorie des Analog- und Quantencomputers vertraut und können für Basisprobleme entsprechende Implementierungen auf diesen neuen Rechnerplattformen entwickeln.
Beschreibung
In der Vorlesung werden die Grundlagen des Turing Computers als Basis aller digitalen Computer entwickelt. Es werden Turing berechenbare Funktionen vollständig charakterisiert. Darauf aufbauend wird die berechenbare Analysis als Basis für alle Problemstellungen, die mit Hilfe eines Turing Computers gelöst werden können, entwickelt. Für zentrale Systeme der Informationstechnik wie zum Beispiel Fourier Transformation, Hilbert Transformation und Differentialgleichungen wird unter Benutzung mathematischer Techniken gezeigt, dass diese im Allgemeinen nicht auf Turing Computer berechnet werden können. Im Anschluss werden die physikalischen und mathematischen Grundlagen von universellen analog Computern entwickelt. Für die Fourier Transformation, Hilbert Transformation und Differentialgleichungen werden Implementierungen auf einem universellen analog Computer entwickelt. Es wird weiterhin gezeigt, dass jeder Turing Computer auf einem analog Computer implementiert werden kann. Damit ist der universelle analog Computer sehr viel leistungsfähiger als der Turing Computer. Im Anschluss werden die physikalischen und mathematischen Grundlagen des Quanten Computers als Weiterentwicklung klassischer analog Computer entwickelt.
Inhaltliche Voraussetzungen
Analysis 1-3, Signaldarstellung
grundlegende Kenntnisse in Signal- und Systemtheorie
grundlegende Kenntnisse in Signal- und Systemtheorie
Lehr- und Lernmethoden
Die grundlegende Theorie der digitalen, analogen, und Quantencomputer wird während der Vorlesung durch einen Tafelvortrag hergeleitet und erklärt. Dabei wird insbesondere auf eine exakte mathematische Problemformulierung Wert gelegt bei der die Hauptaussagen ausführlich an der Tafel bewiesen werden.
In den Übungen werden vor allem konkrete Algorithmen betrachtet. Hier sollen die Studenten, durch das selbstständige und angeleitete Lösen von Übungsaufgaben, konkrete Implementierungen einzelner Algorithmen kennen lernen. Gleichzeitig werden durch den Übungsassistenten notwendige Hilfsresultate an der Tafel hergeleitet und erklärt.
In den Übungen werden vor allem konkrete Algorithmen betrachtet. Hier sollen die Studenten, durch das selbstständige und angeleitete Lösen von Übungsaufgaben, konkrete Implementierungen einzelner Algorithmen kennen lernen. Gleichzeitig werden durch den Übungsassistenten notwendige Hilfsresultate an der Tafel hergeleitet und erklärt.
Studien-, Prüfungsleistung
Die Modulprüfung wird in Form einer mündlichen Prüfung erbracht. In dieser soll durch das Beantworten von Fragen zu den Grundlagen der digitalen, analogen und Quanten Computer und durch Darlegung eines Lösungsansatzes für ein gegebenes Problem nachgewiesen werden, dass die Studierenden die Basisarchitekturen und Basisalgorithmen sicher einsetzen können. Während der Prüfung sind keine Hilfsmittel zugelassen.
Empfohlene Literatur
H. Boche, Vorlesungsskript "Mathematische Grundlagen der Digital-, Analog- und Quantencomputer"
H. Boche, Vorlesungsskript "Angewandte Funktionalanalysis"
Klaus Weihrauch, "Computable Analysis - An Introduction", Springer-Verlag Berlin/Heidelberg, 2000
M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information", Cambridge University Press, 2000.
Marian B Pour-El and J. Ian Richards, "An Introduction to Computable Analysis", Computability in Analysis and Physics, Springer-Verlag, 1989
H. Boche, Vorlesungsskript "Angewandte Funktionalanalysis"
Klaus Weihrauch, "Computable Analysis - An Introduction", Springer-Verlag Berlin/Heidelberg, 2000
M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information", Cambridge University Press, 2000.
Marian B Pour-El and J. Ian Richards, "An Introduction to Computable Analysis", Computability in Analysis and Physics, Springer-Verlag, 1989