Open Thesis

Sustainable Core Networks in 5G with Performance Guarantees

Stichworte:
5G, 5G Edge, UPF, Optimization, Heuristic

Beschreibung

With the advent of 5G cellular networks, more stringent types of traffic, pertaining to applications like augmented reality, virtual reality, and online gaming, are being served nowadays. However, this comes with an increased energy consumption on both the user’s and network side, challenging this way the sustainability of cellular networks. Furthermore, the in-network computing aspect exacerbates things even further in that direction. 

Hence, it is very important to provide end-to-end sustainability, i.e., minimize the energy consumption in the network while maintaining performance guarantees, such as the maximum latency each flow should experience. This can be done, for example, depending on the traffic load in the network, and in order to keep the energy usage at low levels, the operator can decide to shut off certain network components, like User Plane Functions (UPFs) or edge clouds, and reassign the tasks to other entities. 

In this thesis, the focus will be on the core network. The aforementioned decisions will come up as solutions to optimization problems. To that end, the student will formulate optimization problems and solve them either analytically or using an optimization solver (e.g., Gurobi). The other part would be conducting realistic simulations and showing the improvements with our approach. 

Voraussetzungen

- Basic understanding of 5G Core Networks and Mobile Edge Computing (MEC).

- Experience with mathematical formulation of optimization problems.

- Programming experience with Python and Gurobi.

Betreuer:

Endri Goshi, Fidan Mehmeti

Ongoing Thesis

Bachelorarbeiten

An SCTP Load Balancer for Kubernetes to aid RAN-Core Communication

Stichworte:
5G, SCTP, Kubernetes, RAN, 5G Core, gNB, AMF

Beschreibung

Cloud Native deployments of the 5G Core network are gaining increasing interest and many providers are exploring these options. One of the key technologies that will be used to deploy these Networks, is Kubernetes (k8s).

In 5G, NG Application Protocol (NGAP) is used for the gNB-AMF (RAN-Core) communication. NGAP uses SCTP as a Transport Layer protocol. In order to load balance traffic coming from the gNB towards a resilient cluster of AMF instances, a L4 load balancer needs to be deployed in the Kubernetes Cluster.

The goal of this project is do develop a SCTP Load Balancer to be used in a 5G Core Network to aid the communication between the RAN and Core.
The project will be developed using the language Go (https://golang.org/).

Voraussetzungen

- General knowledge about Mobile Networks (RAN & Core).
- Good knowledge of Cloud Orchestration tools like Kuberentes.
- Strong programming skills. Knowledge of Go (https://golang.org/) is a plus.

Kontakt

endri.goshi@tum.de

Betreuer:

Endri Goshi

Masterarbeiten

5G-RAN control plane modeling and Core network evaluation

Beschreibung

Next generation mobile networks are envisioned to cope with heterogeneous applications with diverse requirements. To this end, 5G is paving the way towards more scalable and higher performing deployments. This leads to a revised architecture, where the majority of the functionalities are implemented as network functions, which could be scaled up/down depending on the application requirements. 

3GPP has already released the 5G architecture overview, however there exists no actual open source deployment of RAN functionalities. This will be crucial towards the evaluation of the Core network both in terms of scalability and performance. In this thesis, the student shall understand the 5G standardization, especially the control plane communication between the RAN and 5G Core. Further, an initial RAN function compatible with the 5G standards shall be implemented and evaluation of control plane performance will be carried out. 

Voraussetzungen

  • Strong knowledge on programming languages Python, C++ or Java.
  • Knowledge about mobile networking is necessary.
  • Knowlegde about 4G/5G architecture is a plus.

Betreuer:

Endri Goshi, Arled Papa