- Operator Models for Continuous-Time Offline Reinforcement Learning. TUM Lehrstuhl für Informationstechnische Regelung (Prof. Hirche), 2025, mehr…
- Sequence Modeling with Spectral Mean Flows. The Thirty-Ninth Annual Conference on Neural Information Processing Systems, 2025 mehr…
- Koopman-Equivariant Gaussian Processes. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research 258), 2025, 3151--3159 mehr…
- Koopman Kernel Regression. Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (NeurIPS Proceedings), 2023 mehr…
- Towards Data-driven LQR with Koopmanizing Flows. IFAC-PapersOnLine, 20226th IFAC Conference on Intelligent Control and Automation Sciences ICONS 2022: Cluj-Napoca, Romania, 13–15 July 2022, 13-18 mehr…
- Diffeomorphically Learning Stable Koopman Operators. IEEE Control Systems Letters (L-CSS) 6, 2022, 3427 - 3432 mehr…
Max Beier
- Tel.: +49 89 289 25779
- Sprechstunde: nach Vereinbarung
- Raum: 0305.04.509
- max.beier@tum.de
Kurzbiographie
| Seit 05/2024 | Assoziierter Doktorand |
| Seit 11/2023 | Wissenschaftlicher Mitarbeiter Lehrstuhl für Informationstechnische Regelung Technische Universität München |
| 10/2020-07/2023 | Master of Science - Robotics, Cognition, Intelligence Technische Universität München Vertiefung: Maschinelles Lernen für Dynamische Systeme und Regelungstechnik |
| 10/2017-09/2020 | Bachelor of Engineering - Maschinenbau, Fahrzeugtechnik Duale Hochschule Baden-Württemberg Stuttgart Robert Bosch GmbH |
Forschungsinteressen
- Prinzipiertes maschinelles Lernen
- Dynamische Systeme und Operatortheorie
- Lernbasierte Regelung
In meiner Forschung beschäftige ich mich mit Methoden zur lernbasierten Modellbildung dynamischer Systeme. Dabei interessieren mich vor allem geometrische Methoden und Operatortheorie. Ziel ist es aus Daten ein Modell zu erstellen welches das automatische Reglerdesign vereinfacht. Hier gibt es einen kurze Motivation und einige Schlagworte über die Forschung des ITR.
Laut meiner Publikationen beschäftige ich mich besonders häufg mit den Themen rechts.
Kontakt
Ich freue mich immer über die Zusammenarbeit mit hochmotivierten Studierenden. Falls Sie Interesse an einer Studienarbeit im Bereich meiner Forschung haben melden Sie sich gerne per Mail. Falls gerade keine Arbeit ausgeschrieben ist, geben Sie bei einer Anfrage bitte an an welchen Themen Sie interessiert sind. Bitte fügen Sie außerdem Ihren Lebenslauf, einen aktuellen Transcript of Records und den gewünschten Starttermin bei.
Aktuell Ausgeschriebene Arbeiten
Uncertainty Quantification in Dynamics Operator Models
Type: Guided Research / Master's Thesis
Prerequisites:
- Knowledge in machine learning/ statistics or dynamical systems
- Good coding skills in Python and a deep learning framework (preferably JAX)
Description:
Recently, operator models for dynamical systems have gained attention in the control community. Methods like Dynamic Mode Decomposition and its extensions are easy to use and, due to the linearity of the operator models, lead to favorable computational properties in downstream algorithms. Yet a fundamental issue of current approaches and theory is the lack of readily usable uncertainty quantification of predictions. This limits the application when distributional predictions are needed and prohibits the use of popular optimization techniques.
During the the course of this project you will investigate ways to understand and extend the state-of-the-art by deriving means to uncertainty quantification and implementing them in Python.
References:
Gaussian Processes and Reproducing Kernels: Connections and Equivalences
Learning dynamical systems via Koopman operator regression in reproducing kernel Hilbert spaces
Neural conditional probability for uncertainty quantification
Active Learning in Dynamical Systems
Type: Guided Research / Hiwi / Master's Thesis
Prerequisites:
- Knowledge in machine learning/ statistics or dynamical systems
- Good coding skills in Python and a linear algebra and numerics framework (preferably JAX)
Description:
Within the ALeSCo consortium an intersectional project is P6: Benchmarks for Active Learning in Systems and Control. Within this project we are developing a benchmark for active learning algorithms in dynamical systems. There are multiple subtasks that can be tackled in the course of a research project or thesis. These include deriving principled assessment metrics, designing and implementing a benchmark architecture and environments, as well as implementing and evaluating experimental and state-of-the-art active learning algorithms.
References:
Active learning in robotics: A review of control principles
Representation Learning for Dynamical Systems
Type: Guided Research / Hiwi / Master's Thesis
Prerequisites:
- Knowledge in machine learning or dynamical systems
- Good coding skills in Python and a linear algebra and numerics framework (preferably JAX)
Description:
Linear operator learning methods offer a valuable tool for various tasks in systems and control, such as forecasting and optimal control problems. Learning linear operators leads to convex optimization problems for solving optimal control. Consequently, improving the representation spaces of linear operators is expected to contribute to the development of modern optimal control pipelines. Recent advances in learning representations for dynamical systems demonstrated that tailored representations can drastically improve predictive performance. Yet, it is still an open question how to learn representations for controlled models. The goal of this thesis is to get familiar with operator models for dynamical systems and extend them to systems with an additional exogenous inputs.
References:
Learning dynamical systems via Koopman operator regression in reproducing kernel Hilbert spaces
Operator SVD with Neural Networks via Nested Low-Rank Approximation