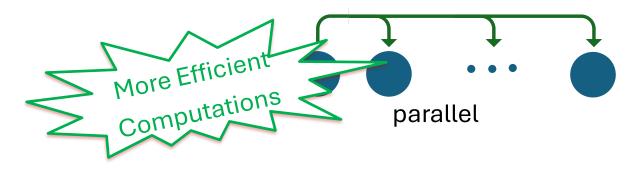
Operator Learning of Dynamical Systems for Control

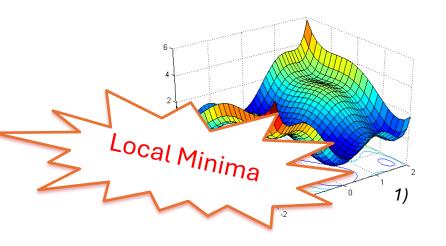
Max Beier,

joined work with

cand. PhDs @ ITR | Petar Bevanda, Nicolas Hoischen

Chair of Information-oriented Control Technical University of Munich


ITR Lab Tour
Juli 11 2025



Why Operator Models?

Training and Inference

Linear Models have the Properties we want!

How to get Operator Models?

Nonlinear State Space:

$$\dot{x} = f(x) + g(x)u,$$

 $y_t = h(x(t)), \quad x_0 = x(0),$

Rewrite Model

Linear Operator:

$$\dot{h} = \nabla \cdot f + u\nabla \cdot g = Ah + uBh$$

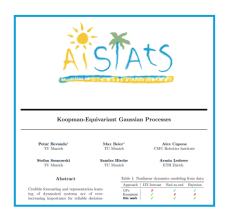
$$y_t = h(t)(x), \quad h(t) = T(t)h_0$$

$$x \in R^n$$

 $f, g \in C(R^n)$

Minimat

Nonlinear


 $h \in C(\mathbb{R}^n)$ $A, B: C(\mathbb{R}^n) \to C(\mathbb{R}^n)$

Dimension

Linear

If we can handle infinite dimensions, we get linear models!

What Research does ITR do?

Fundamental research on learning with operators of dynamical systems from data

Koopman Kernel Regression Abstract dany machine learning approaches for decision making, such as reinforce est, e.g., the state of an agent or the reward of a policy. Forecasts enomena are commonly described by highly nonlinear dynamic

Nonparametric Control Koopman Operators

Petar Bevanda, Bas Driessen, Lucian Cristian Iacob, Stefan Sosnowski, Roland Tóth and Sandra Hirche

or analytically deriving the lifted representation [19]. It has become established that control-affine systems can be written as bilinear lifted models under certain conditions, at least in continuous-time. The authors of [20] show that for both nd infinite-dimensional regression, enabling various empirical continuous- and discrete-time systems with inputs, an invariant Koopman form can be analytically derived, granted that the

Dynamics-informed sequence modelling

Optimal control via convex optimization

ol vvv:1-14, 2025

Control: An Infinitesimal Generator Approach

Nicolas Hoischen Tobias Wittmann Jan Brüdigam¹ Sandra Hirche Boris Houska

NICOLAS.HOISCHEN@TUM.DE T.WITTMANN@TUM.DE JAN.BRUEDIGAM@TUM.DE

HIRCHE@TUM.DE

Chair of Information-oriented Control, Technical University of Munich, Germany

School of Information Science and Technology, ShanghaiTech University

This paper presents a novel approach for ontimal control of nonlinear stochastic systems using in finitesimal generator learning within infinite-dimensional reproducing kernel Hilbert spaces. Our

Community Workshops

What's Next?

Probabilistic Perspective and Modelling

Dynamics Representation Learning

Developing Optimal Control Solvers

Fulfilling Safety Constraints

Learn Different Operators

Happy to Talk!

Max.Beier@tum.de
Nicolas.Hoischen@tum.de
Petar.Bevanda@tum.de

Always open for FP, MA

Thanks to:

