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Why ?

Training and Inference
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Linear Models have the
Properties we want!

1) https://stats.stackexchange.com/questions/279292/non-convex-loss-function 2) https://poulami98bakshi.medium.com



How ?

Nonlinear State Space: Rewrite Linear Operator:
x=fx)+ gy, Model h=V-f+uV-g=Ah+uBh
ye = h(x(t)),  xo = x(0), Ve = h(t)(x), h(t) =T()ho
x € R" h € C(R")
f,g € C(R™) A B:C(R™) - C(R™)

If we can handle infinite
dimensions, we get
linear models!



What .

Koopman Kernel Regression
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Abstract

Abstraet—This paper presents a novel Knopman (composition)  set of input values and describing o switched model [18] .
operator representation framework for control systems in repro-  or analytically deriving the lified representation [19]. It has
du c lished that control-affine systems
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Control: An Infinitesimal Generator Approach
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System _representations inspired by the are compatible with linear techniques for prediction, anlysis
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What’s Next?

Probabilistic Perspective and Modelling Happy to Talk!

Max.Beier@tum.de
Nicolas.Hoischen@tum.de

Developing Optimal Control Solvers Petar.Bevanda@tum.de
Always open for FP, MA

Dynamics Representation Learning

Fulfilling Safety Constraints

Learn Different Operators
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