CO-MAN: Safe data-driven control for human-centric systems
The research project CO-MAN aims to develop a novel framework for user-adaptive data-driven control with performance guarantees in order to address the scientific challenges of high uncertainty and individual user requirements.
Motivation
It is important for advances in technology to support human activities and interactions in the areas of healthcare, mobility and infrastructure systems. For instance, making healthcare more human requires digital interfaces to allow for more human interactions with the system. This is the goal of human-centric systems in which the human is both an element of the control system and a design criterion. The EU-funded CO-MAN project will develop a framework for user-adaptive data-driven control with performance guarantees. The biggest challenge will be to merge probabilistic non-parametric modelling techniques from statistical learning theory with novel risk-aware control methodologies while including active user modelling. The game changer is the current push towards reliable machine learning with novel results on theoretical bounds for learning behaviour.
Das, Neha; Endo, Satoshi; Patel, Sabrina; Krewer, Carmen; Hirche, Sandra: Online detection of compensatory strategies in human movement with supervised classification: a pilot study. Frontiers in Neurorobotics 17, 2023 more…BibTeX
Full text (
DOI
)
Conference Papers / Poster
A. Lederer; A. Begzadi; N. Das; S. Hirche: Safe Learning-Based Control of Elastic Joint Robots via Control Barrier Functions. 2023, The 22nd World Congress of the International Federation of Automatic Control, 2023 more…BibTeX
Full text (mediaTUM)
H. Kavianirad; M. Forouhar; H. Sadeghian; S. Endo; S. Haddadin; S. Hirche: Model-Based Shared Control of a Hybrid FES-Exoskeleton: an Application in Participant-Specific Robotic Rehabilitation. 2023 International Conference on Rehabilitation Robotics, ICORR 2023, 2023 more…BibTeX
N. Das; J. Umlauft; A. Lederer; A. Capone; T. Beckers; S. Hirche: Deep Learning based Uncertainty Decomposition for Real-time Control. 2023, The 22nd World Congress of the International Federation of Automatic Control, 2023 more…BibTeX
Full text (mediaTUM)
2022
Journal Articles
A. Lederer; Z. Yang; J. Jiao; S. Hirche: Cooperative Control of Uncertain Multi-Agent Systems via Distributed Gaussian Processes. IEEE Transactions on Automatic Control, 2022 more…BibTeX
Full text (mediaTUM)
Jiao, Junjie; Capone, Alexandre; Hirche, Sandra: Backstepping tracking control using Gaussian processes with event-triggered online learning. IEEE Control Systems Letters, 2022, 3176 - 3181 more…BibTeX
Full text (mediaTUM)
T. Beckers; Leonardo J. Colombo; S. Hirche: SAFE TRAJECTORY TRACKING FOR UNDERACTUATED VEHICLES WITH PARTIALLY UNKNOWN DYNAMICS. AIMS Journal, 2022 more…BibTeX
Full text (mediaTUM)
A. Capone; A. Lederer; S. Hirche: Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications. Proceedings of the 39th International Conference on Machine Learning, 2022 more…BibTeX
Full text (mediaTUM)
A. J. Ordóñez-Conejo; A. Lederer; S. Hirche: Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes. Proceedings of the European Control Conference, 2022, 2234-2240 more…BibTeX
Full text (
DOI
)
Full text (mediaTUM)
A. Lederer; M. Zhang; S. Tesfazgi; S. Hirche: Networked Online Learning for Control of Safety-Critical Resource-Constrained Systems based on Gaussian Processes. Proceedings of the IEEE Conference on Control Technology and Applications, 2022 more…BibTeX
Full text (mediaTUM)
Conference Papers / Poster
G. Evangelisti; S. Hirche: Physically Consistent Learning of Conservative Lagrangian Systems with Gaussian Processes. 2022 IEEE 61st Conference on Decision and Control (CDC), IEEE, 2022 more…BibTeX
Full text (
DOI
)
Full text (mediaTUM)
H. Kavianirad; S. Endo; T. Keller; S. Hirche: EMG-Based Volitional Torque Estimation in Functional Electrical Stimulation Control. 2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2022 more…BibTeX
Full text (mediaTUM)
S. Curi; A. Lederer; S. Hirche; A. Krause: Safe Reinforcement Learning via Confidence-Based Filters. Proceedings of the IEEE Conference on Decision and Control, 2022 more…BibTeX
Full text (mediaTUM)
2021
Journal Articles
M. Omainska; J. Yamauchi; T. Beckers; T. Hatanaka; S. Hirche; M. Fujita: Gaussian process-based visual pursuit control with unknown target motion learning in three dimensions. SICE Journal of Control, Measurement, and System Integration 14 (1), 2021, 116-127 more…BibTeX
Full text (
DOI
)
T. Beckers; S. Hirche: Prediction with Approximated Gaussian Process Dynamical Models. IEEE Transactions on Automatic Control , 2021 more…BibTeX
Full text (
DOI
)
Conference Papers
A. Lederer; A. J. Ordóñez Conejo; K. Maier; W. Xiao; J. Umlauft; S. Hirche: Gaussian Process-Based Real-Time Learning for Safety Critical Applications. Proceedings of the 38th International Conference on Machine Learning (Proceedings of Machine Learning Research 139), 2021, 6055-6064 more…BibTeX
Full text (mediaTUM)
Conference Papers / Poster
Degue, Kwassi H.; Efimov, Denis; Le Ny, Jerome; Hirche, Sandra: Design of Interval Observers for Uncertain Linear Impulsive Systems. 2021 60th IEEE Conference on Decision and Control (CDC), IEEE, 2021 more…BibTeX
Full text (
DOI
)
Full text (mediaTUM)
K. H. Degue; D. Efimov; J. Le Ny; S. Hirche: Novel_Interval_Observer_Hybrid_Systems_Final_Version. 2021 60th IEEE Conference on Decision and Control, 2021 more…BibTeX
Full text (mediaTUM)
Yamauchi, Junya; Omainska, Marco; Beckers, Thomas; Hatanaka, Takeshi; Hirche, Sandra; Fujita, Masayuki: Cooperative Visual Pursuit Control with Learning of Position Dependent Target Motion via Gaussian Process. 2021 60th IEEE Conference on Decision and Control (CDC), IEEE, 2021 more…BibTeX
Full text (
DOI
)
2020
Journal Articles
A. Capone; A. Lederer; J. Umlauft; S. Hirche: Data Selection for Multi-Task Learning Under Dynamic Constraints. IEEE Control Systems Letters 5 (3), 2020, 959-964 more…BibTeX
Full text (
DOI
)
Full text (mediaTUM)
A. Lederer; A. Capone; J. Umlauft; S. Hirche: How Training Data Impacts Performance in Learning-based Control. IEEE Control Systems Letters 5 (3), 2020, 905-910 more…BibTeX
Full text (
DOI
)
Full text (mediaTUM)
Pfister, Franz M. J.; Um, Terry Taewoong; Pichler, Daniel C.; Goschenhofer, Jann; Abedinpour, Kian; Lang, Muriel; Endo, Satoshi; Ceballos-Baumann, Andres O.; Hirche, Sandra; Bischl, Bernd; Kulić, Dana; Fietzek, Urban M.: High-Resolution Motor State Detection in Parkinson's Disease Using Convolutional Neural Networks. Scientific Reports 10 (1), 2020, 5860 more…BibTeX
Full text (
DOI
)
Full text (mediaTUM)
Conference Papers
A. Capone; G.Noske; J. Umlauft; T. Beckers; A. Lederer; S. Hirche: Localized active learning of Gaussian process state space models. Learning for Dynamics & Control, 2020 more…BibTeX
Full text (mediaTUM)
J. Umlauft; T. Beckers; A. Capone; A. Lederer; S. Hirche: Smart Forgetting for Safe Online Learning with Gaussian Processes. Learning for Dynamics & Control, 2020 more…BibTeX
Full text (mediaTUM)