Offene Arbeiten
Laufende Arbeiten
Interdisziplinäre Projekte
Extension of an Open-source Autonomous Driving Simulation for German Autobahn Scenarios
Beschreibung
This work can be done in German or English in a team of 2-4 members.
Self-driving cars need to be safe in the interaction with other road users such as motorists, cyclists, and pedestrians. But how can car manufacturers ensure that their self-driving cars are safe with us humans? The only realistic and economic way to test this is to use simulation.
cogniBIT is a Munich-based Startup founded by Alumni of TUM and LMU and provides realistic models of all kind of road users. These models are based on state-of-the art neurocognitive and sensorimotor research and reproduce human perception, cognition, and action with all its limitations.
In this project the objective is to extend the open-source simulator CARLA (www.carla.org) such that German Autobahn-like scenarios can be simulated.
Tasks:
• Design an Autobahn scenario using the road description format OpenDRIVE.
• Adapt the CARLA OpenDRIVE standalone mode (requires C++ knowledge).
• Design an environment for the scenario using the Unreal Engine 4 Editor.
• Perform a simulation-based experiment using the German Autobahn scenario and the cogniBIT driver model.
Voraussetzungen
• C++ knowledge
• experience with Python is helpful
• experience with the UE4 editor is helpful
• interest in autonomous driving and cognitive models
Betreuer:
Extension of an Open-source Autonomous Driving Simulation for German Autobahn Scenarios
Beschreibung
This work can be done in German or English in a team of 2-4 members.
Self-driving cars need to be safe in the interaction with other road users such as motorists, cyclists, and pedestrians. But how can car manufacturers ensure that their self-driving cars are safe with us humans? The only realistic and economic way to test this is to use simulation.
cogniBIT is a Munich-based Startup founded by Alumni of TUM and LMU and provides realistic models of all kind of road users. These models are based on state-of-the art neurocognitive and sensorimotor research and reproduce human perception, cognition, and action with all its limitations.
In this project the objective is to extend the open-source simulator CARLA (www.carla.org) such that German Autobahn-like scenarios can be simulated.
Tasks:
• Design an Autobahn scenario using the road description format OpenDRIVE.
• Adapt the CARLA OpenDRIVE standalone mode (requires C++ knowledge).
• Design an environment for the scenario using the Unreal Engine 4 Editor.
• Perform a simulation-based experiment using the German Autobahn scenario and the cogniBIT driver model.
Voraussetzungen
• C++ knowledge
• experience with Python is helpful
• experience with the UE4 editor is helpful
• interest in autonomous driving and cognitive models
Betreuer:
Forschungspraxis (Research Internships)
Comparison of Driver Situation Awareness with an Eye Tracking based Decision Anticipation Model
Situation Awareness, Autonomous Driving, Region of Interest Prediction, Eye Tracking
Beschreibung
This work can be done in German or English
The transmission of control to the human driver in autonomous driving requires the observation of the human driver. The vehicle has to guarantee that the human driver is aware of the current driving situation. One input source for observing the human driver is based on the driver's gaze.
The objective of this project is to compare two existing approaches for driver observation [1,2]. While [1] measures the driver situation awareness (SA), [2] anticipates the drivers decision. As part of a user study [2] published a gaze dataset. An interesting cross validation would be the comparison of the
SA score generated by [1] and the predicted decision correctness of [2].
Tasks
- Generate ROI predictions [3] from the dataset of [2]
- Estimate the driver SA with the model of [1]
- Compare [1] and [2]
- (Optional) Extend driving experiments
References
[1] Markus Hofbauer, Christopher Kuhn, Lukas Puettner, Goran Petrovic, and Eckehard Steinbach. Measuring driver situation awareness using region-of-interest prediction and eye tracking. In 22nd IEEE International Symposium on Multimedia (ISM), Naples, Italy, Dec 2020.
[2] Pierluigi Vito Amadori, Tobias Fischer, Ruohan Wang, and Yiannis Demiris. Decision Anticipation for Driving Assistance Systems. June 2020.
[3] Markus Hofbauer, Christopher Kuhn, Jiaming Meng, Goran Petrovic, and Eckehard Steinbach. Multi-view region of interest prediction for autonomous driving using semisupervised labeling. In IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, Sep 2020.
Voraussetzungen
- Experience with ROS and Python
- Basic knowledge of Linux
Betreuer:
Studentische Hilfskräfte
Studentische Hilfskraft Praktikum Software Engineering
Software Engineering, Unit Testing, TDD, C++
Beschreibung
We are looking for a teaching assistant student of our new Software Engineering Lab. In this course we explain basic principles of software engineering such as unit testing, test driven development and how to collaborate in teams [1].
You will act as a teaching assistant to supervise students during the lab session working on their practical homeworks. The tasks of the homeworks are generally C++ coding exercises where the students contribute to a common codebase. This means you should have a good experience in C++, unit testing, and git as this will be an essential part of the homeworks.
References
[1] Winters, Titus, Tom Manshreck, and Hyrum Wright, eds. Software Engineering at Google: Lessons Learned from Programming Over Time. O'Reilly Media, Incorporated, 2020
Voraussetzungen
- Very good knowledge in C++
- Experience with unit testing
- Good understanding of git and collaborative software development
Betreuer:
Studentische Hilfskraft Praktikum Software Engineering
Software Engineering, Unit Testing, TDD, C++
Beschreibung
We are looking for a teaching assistant student of our new Software Engineering Lab. In this course we explain basic principles of software engineering such as unit testing, test driven development and how to collaborate in teams [1].
You will act as a teaching assistant to supervise students during the lab session working on their practical homeworks. The tasks of the homeworks are generally C++ coding exercises where the students contribute to a common codebase. This means you should have a good experience in C++, unit testing, and git as this will be an essential part of the homeworks.
References
[1] Winters, Titus, Tom Manshreck, and Hyrum Wright, eds. Software Engineering at Google: Lessons Learned from Programming Over Time. O'Reilly Media, Incorporated, 2020
Voraussetzungen
- Very good knowledge in C++
- Experience with unit testing
- Good understanding of git and collaborative software development