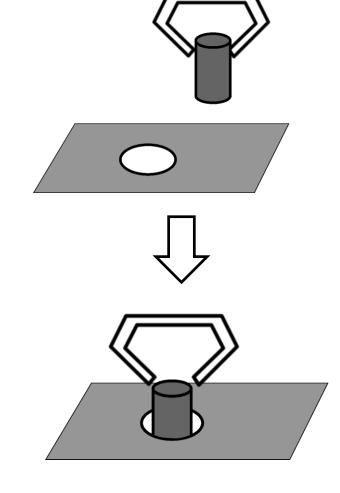

Platform requirements

Prize: The overall prize of the system should ideally not exceed 30.000 € including VAT Availability: The system should be commercially available at least in the US, Europe, Japan and China

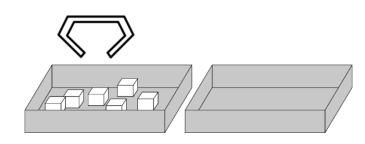
A.1 Robot manipulator

- Minimum requirements: ٠
 - At least 6 DoF
 - Joint velocity interface
 - Payload 1 kg
 - Control API
 - Position and velocity measurements
- Ideal requirements:
 - 7 DoF
 - Joint torque interface
 - Control rate 1 kHz
 - At least 3 kg at 0.5 m/s .
 - Position, velocity, torque, external torque and external wrench measurements



Benchmark tasks – General notes

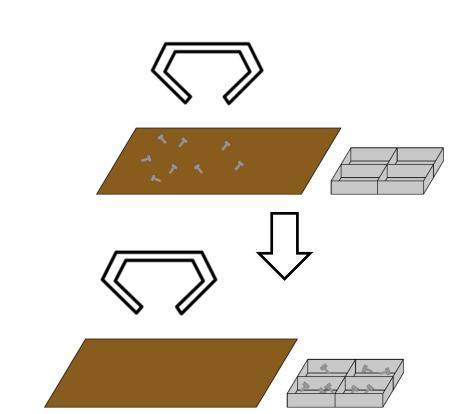
- In the following, we give a broad description of the tasks targeted by this workshop. Please note that the final specification of the benchmarking tasks will be completed after the proposal submission is closed.
- All parts can be placed such that they are reachable by the robot
- If necessary, any parts may be modified such that stable grasping is possible.


Industrial benchmark tasks – Shaft insertion

Short description: A gear shaft has to be inserted into a corresponding bearing.	 Experimental setup: Shaft: Diameter: 5 - 100 mm Height: 50 - 100 mm Tolerances: < 0.1 mm Hole: Corresponds to shaft geometry Is fixed in environment
 Prior knowledge: Without visual perception: Hole pose is known with small errors With visual perception: Only the general area of the hole is known 	 Initial state: Shaft is already grasped by robot End effector with peg is in vicinity of hole
 Performance measures (Examples): Execution time Average external forces 	Goal state:Shaft is completely inserted into hole

Industrial benchmark tasks – Box Stacking

Short description: Several small boxes are lying randomly in a larger box and have to be put into another large box in an ordered fashion.	 Experimental setup: Boxes: Rectangular geometry: one side is max. 50 mm Storages: Initial storage is large enough to hold all small boxes Target storage has dimensions such that all boxes fit into it
 Prior knowledge: Location of initial storage box is known 	 Initial state: All boxes are in an initial storage box Robot has not grasped anything Target storage box is empty
 Performance measures (Examples): Execution time 	 Goal state: All boxes have been sorted from the initial storage to the target storage



Industrial benchmark tasks – Sorting screws

Short description: A number of screws of different types is lying on a board and have to be sorted into a cabinet.	 Experimental setup: Types of screws (defined by ISO, max. M6 x 100): Hex screws (ISO 4014) Countersunk screws (ISO 10642) Cylinder head screws (ISO 4762) Raised couontersunk screws (ISO 2010) Maximal length of screws is 40 mm Cabinet: Every type of screw has its own compartment of about 50 mm x 100 mm width and length Board: Initial board for screws, has an area of about 400 mm x 400 mm
 Prior knowledge: Location of board is known Location of cabinet is known Locations of screw type compartments are known 	 Initial state: All screws are lying randomly on the board Robot has not grasped anything Cabinet is empty
 Performance measures (Examples): Execution time Sorting success rate 	 Goal state: All screws are in their respective compartments

Industrial benchmark tasks – Gear assembly

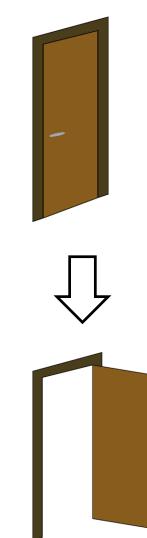
Short description: Multiple gears and shafts are lying on a board and have to be assembled.	 Experimental setup: Several gears and shafts (According to ISO) Dimensions: Gears have a maximum diameter of 100 mm Shafts have a maximum diameter of 50 mm All single part weights are beneath 1 kg Partial assembly: The initial partial assembly is fixed in the environment.
 Prior knowledge: Location of board is known Location of assembly is known 	 Initial state: All gears and shafts are on the board Robot has not grasped anything Initial part is fixed to environment
 Performance measures (Examples): Execution time Minimal external forces 	Goal state:Assembly is completed

Industrial benchmark tasks – Cabeling

Short description: Several cables have to be picked up and inserted into a standard computer.	Experimental setup: Computer: Mid-Tower case, ATX form factor, fixed to a table Cables: HDMI, USB (A/C), AUX, Display-port
 Prior knowledge: General location of cables is known Location of computer is known 	 Initial state: The cables are lying in random shape on the table Robot has not grasped anything
 Performance measures (Examples): Execution time 	Goal state:All cables have been correctly inserted



Household benchmark tasks – Key insertion


Short description: A key has to be inserted into a corresponding lock.	 Experimental setup: Key: Diameter: approximately 3 mm Height: 20 – 30 mm Tolerances: < 0.5 mm Examples: Abus E30, Abus DX6 Lock: Corresponds to key geometry Is fixed in environment
 Prior knowledge: Without visual perception: Lock pose is known with small errors With visual perception: Only the general area of the lock pose is known 	 Initial state: Key is already grasped by robot End effector with key is in vicinity of hole
 Performance measures (Examples): Execution time Average external forces 	Goal state:Key is completely inserted into lock

Household benchmark tasks – Open door

Short description: A door is fixed in front of the robot and has to be opened at least 90 degrees.	 Experimental setup: Door: Height is max. 1000 mm Width is max. 500 mm Handle is fixed to door Handle has to be pushed down to open the door Door is fixed to environment
 Prior knowledge: General location of door handle is known 	Initial state:Door is closed
 Performance measures (Examples): Execution time Average external forces 	Goal state:Door is open 90 degrees

Household benchmark tasks – Book Stacking

Short description: Several books are lying randomly on a board and have to be put into a book shelf. The order does not matter.	 Experimental setup: Books: Geometry: Height: max. 300 mm Depth: max 250 mm Thickness: max 30 mm Weight: max 500 g Board: Has an area of about 500 mm x 500 mm Book shelf: Book shelf has dimensions such that all books fit into it Book shelf is fixed in the environment
 Prior knowledge: General location of books is known Location of book shelf is known 	 Initial state: The books are lying randomly on the board Robot has not grasped anything Book shelf is empty
 Performance measures (Examples): Execution time 	Goal state:All books have been put into the book shelf

Household benchmark tasks – Folding clothes

Short description: Either pants or shirts are lying in random shape on a table. The task is to fold it.	Experimental setup: Pants: Normal fit, long-sleeved Shirts: Normal fit, long-sleeved, L
Prior knowledge:Location of cloth is known	 Initial state: The clothes are lying in random shape on the table Robot has not grasped anything
 Performance measures (Examples): Execution time 	Goal state:Clothes have been folded as desired

