
Programmierung und Regelung für

Mensch-Roboterinteraktion

Dynamics and control of a 3DOF planar manipulator

A. M. Giordano, D. Calzolari, Prof. Albu-Schäffer

May 20, 2019

Contents

1 Introduction 1

2 Theory 2
2.1 Kinematics and dynamics . 2
2.2 Joints control* . 3
2.3 Inverse kinematics control** . 4
2.4 Translational Cartesian Impedance control* . 6
2.5 Nullspace optimizations** . 7
2.6 Full Cartesian Impedance controller*** . 9
2.7 Collision detection** . 12

3 Simulation 14
3.1 Kinematics and dynamics** . 14
3.2 Joints control* . 14
3.3 Inverse kinematics control** . 15
3.4 Translational Cartesian Impedance control* . 16
3.5 Nullspace optimizations** . 16
3.6 Full Cartesian Impedance controller*** . 16
3.7 Collision detection** . 17

4 Contacts and references 17

A Matrix components 17

1 Introduction

A short introduction to the dynamics of a 3DOF planar manipulator is treated and its dynamics
model is derived. The control of the manipulator is then addressed starting from the general PD
joints position control up to the Cartesian impedance controller. Further control features, like
nullspace damping and singularity avoidance are considered. Finally, a collision estimator is built
up.

Throughout the text, the student is introduced to the various aspects of each application.
The student is asked to complete the theoretical section so as to prepare the background for the
implementation of the treated algorithms.

The difficulty of the problems presented in Section 2 varies widely. Simpler problems are marked
by a single star ’*’, while higher difficulties are indicated by two stars ’**’ or even three stars ’***’.
We highly suggest to start solving the one star problems first.

The solutions to these problems allows to use the control environment presented in Section 3
and to implement a complete Cartesian impedance controller and several impedance-based control
features in simulation. The successful completion of both parts gives a good overview of the control
concepts for robotic applications.

1

2 Theory

2.1 Kinematics and dynamics

Figure 1: Kinematic structure of the 3DOF planar manipulator

In order to demonstrate the basic concept of impedance control, the model of a planar manipu-
lator with three rotational degrees of freedom (DOF) will be addressed. The robot model consists
of three rigid bodies which are connected via hinge joints. The kinematic structure of the robot is
shown in Fig. 1. To describe the manipulator configuration, joint position variables q ∈ IRn (where
n = 3 is the number joint coordinates) are introduced. The relative position and orientation of
frame Ki+1 w.r.t. Ki is described by the homogeneous transformation

iTi+1 =

[
iRi+1

ipi+1

0 1

]
, (1)

where iRi+1 ∈ SO(3) and ipi+1 ∈ IR3 are the rotation matrix and position vector, respectively.
By choosing a specific representation for the rotation (e.g., Cardan angles, Euler angles, etc.),
Cartesian coordinates of the end-effector pose (i.e., position and orientation)

x = f(q) ∈ IRm (2)

can be derived from the homogeneous transformation between end effector and base frame. The
vector function f(q) gives a mapping between the n joint coordinates and the m Cartesian coordi-
nates, where n > m for redundant kinematic chains. For impedance control (and other Cartesian
control schemes), the relation

ẋ = J(q) q̇ (3)

is needed, which maps joint velocities to Cartesian velocities. Here, J(q) = ∂f(q)
∂q ∈ IRm×n is the

Jacobian matrix. Notice that the Jacobian is expressed w.r.t. a coordinate frame, which depends
on the choice of the reference frame for f(q). The components of f(q) and J(q) for the case of the
3DOF planar manipulator (see Fig.1) are listed in appendix A.

The dynamic model of the rigid body robot manipulator can be written:

M(q) q̈ + C(q, q̇) q̇ + g(q) = τ (4)

Here M(q) ∈ IRn×n is the mass matrix, C(q, q̇) ∈ IRn×n the Coriolis/centrifugal matrix, and
g(q) ∈ IR3 the vector of gravity forces/torques. For the case of the 3DOF planar manipulator, the
components of M, C, and g are listed in the appendix A.

From a control point of view, two important properties of the matrices in (4) have to be
remarked. The mass matrix is symmetric and positive definite, i.e.

M(q) = M(q)T , yT M(q)y > 0, ∀y,q 6= 0 ∈ IRn, (5)

2

where y ∈ IRn is arbitrary. This property is important for stability analyses. If C is derived via
Christoffel symbols, the matrix Ṁ(q, q̇)− 2C(q, q̇) is skew-symmetric, i.e.

yT
(
Ṁ(q, q̇)− 2C(q, q̇)

)
y = 0, ∀y,q, q̇ ∈ IRn, (6)

which guarantees passivity of the dynamic system (4).

2.2 Joints control*

The simplest way to control the configuration of a manipulator is to control directly the joints
positions. Given a vector of desired joints angles qd ∈ IRn, the error between the current and
desired manipulator configuration is:

q̃ = qd − q (7)

Problem* 2.2.1: Considering only the case of regulation (q̇d = 0), write the law of the PD
controller for reaching the desired joints position qd.

Problem* 2.2.2: Using the control law derived in Problem 2.2.1, write the equation of the dy-
namics of the controlled system.

Neglecting the centrifugal and Coriolis forces and assuming a quasi-stationary variation, the
controlled dynamics can be written:

M(q0)¨̃q + Kd
˙̃q + Kpq̃ = 0 (8)

Problem** 2.2.3: Considering a constant stiffness matrix Kp, derive a damping matrix Kd for
achieving a given damping factor ζ of the system (8).

3

2.3 Inverse kinematics control**

The robot tasks need to be specified most of the time in the operational space. A way is therefore
needed in order to command the robot to reach a desired EE position in the Cartesian space.

A possible scheme of Cartesian control is represented in Fig.2. In this approach, the desired
Cartesian position of the EE is inverted in order to obtain a desired joint position qd. The desired
position qd is then commanded to the robot by means of a joint controller, as developed in 2.2.

INV KIN
xd qd JOINT

CONTROLLER ROBOT

q, q̇

τ

Figure 2: Scheme of Cartesian control using inverse kinematics.

Inverting the kinematics of a robot requires the solution of the equation:

xd = f(qq) (9)

where xd = [x, y, φ]T is the desired EE position for the 3DOF planar robot, f(q) is the forward
kinematics function, and qd is the unknown joints position.

The problem of the inverse kinematics is complex and not always solvable in closed form. For
complicated robot structures a numerical procedure is therefore needed in order to find one of the
multiple solutions of (9).

Considering the monodimensional case of a continuos and regular function y = f(x), one
solution could be found by means of the Newton’s method. The function f(x) can be locally
approximated by its tangent. The intersecation of this tangent and the abscissa axis gives a better
approximation of the local solution xd (i.e. such that yd = f(xd)):

xk+1 = xk −
f(xk)

f ′(xk)
k = 0, 1, . . . , n (10)

Under certain hyphothesis, the iterative algorithm converges to the solution xd. The iterations can
be stopped when a convergence criterion has been satisfied:

|yd − f(x)| ≤ ε (11)

Problem** 2.3.1: Extend the Newton’s method in order to derive an algorithm for solving the
inverse kinematics problem.

Problem* 2.3.2: What happens in the vicinity of a singularity?

4

Another approach for solving (9) is the gradient method. The desired joints position is found
minimizing a cost function which indicates the distance of the calculated Cartesian position from
the desired Cartesian position:

H(q) =
1

2
‖xd − f(q)‖2 (12)

Problem** 2.3.3: Minimize equation (12) and derive the corresponding expression for the algo-
rithm for solving the inverse kinematics problem.

Problem* 2.3.4: What happens in the vicinity of a singularity?

Problem* 2.3.5: Compare the two methods in terms of computational effort, behavior on singu-
larity, convergence rate and application to redundant robots.

5

Problem* 2.3.6: Draw the equivalent loop scheme that implements the algorithm based on the
transposed Jacobian.

2.4 Translational Cartesian Impedance control*

An alternative way to control the TCP pose is by means of the operational space formulation, as
represented in Fig.3

xd CARTESIAN
CONTROLLER ROBOT

q, q̇

τF
JT

f(q)
x

Figure 3: Scheme of cartesian control using the transpose Jacobian

Problem* 2.4.1: The mapping from joint to Cartesian velocity space is given by (3). Derive the
mapping between Cartesian forces and joints torques.

The following steps will lead to the Cartesian impedance control law.

Problem* 2.4.2: Considering a translational error x̃ = x− xd and a constant, positive definite,
symmetric stiffness matrix Kt ∈ IR2, write the law of a spring force FK between the TCP of the
manipulator and the desired point.

6

Problem* 2.4.3: Calculate the planar Cartesian force FD resulting from a viscous damper with
the constant symmetric damping matrix Dt ∈ IR2.

Problem* 2.4.4: The Cartesian impedance control law for the translational case can now be set
up as the superposition of the solutions of the Problems 2.4.2 and 2.4.3. The transformation from
Cartesian forces to joint torques was derived in Problem 2.4.1. Write the complete control law
for the translational Cartesian impedance controller such that it can be commanded to the joint
actuators.

2.5 Nullspace optimizations**

In Problem 2.4.4 a control law was treated which determines the translational Cartesian forces,
i.e., the task space has m = 2 DOF. Since the considered manipulator has n = 3 joints, the
configuration (joint angles) could change, while the end-effector is in a fixed position. The resulting
motion is called a nullspace motion. In order to control the nullspace motion, a control law for
the r = n −m = 1 redundant DOF will be derived. The complete impedance controller can be
obtained summing up the TCP impedance torque τ i derived in Eq.(2.4.3) and a nullspace torque
τn.

τ = τ i + τn (13)

Problem** 2.5.1: Write a control law τn for the nullspace and demonstrate that doesn’t interfere
with the TCP torque.

Problem** 2.5.2: Write the expression of the pseudo-inverse J+ and demonstrate that JJ+ = I.

7

Hint 1: Use the simplest form of pseudo-inverse (Moore–Penrose)

Problem* 2.5.3: Define a damping nullspace torque τ 0

The nullspace additional degree of freedom can be also used for making some optimizations
on the configuration of the manipulator. A possible use-case is the avoidance of singularities by
means of additional nullspace torques that don’t interfere with the TCP motion.

Problem* 2.5.4: Using the mapping from Cartesian forces to joint torques τ = JTF, give a
qualitative interpretation of the joint torques which result from forces acting in singular directions
(how does the robot behave at a singularity?)

An index of manipulability is m(q) =
√

det(JJT) and for the considered 3DOF manipulator
it’s given by:

mkin(q) =

√
l21l

2
2 sin2 q2. (14)

As the determinant vanishes for singular J(q), this measure gives locally the distance to the
singularity. A possible approach is to define a force field which repels the manipulator from
singularities when the manipulability is too low.

Problem* 2.5.5: Define a quadratic potential function with a scalar coefficient ks controlling the
gain of the singularity avoidance. Use a piecewise definition to restrict the potential to the vicinity
of the singularity.

8

Problem** 2.5.6: Write a control torque that implements the singularity avoidance by means of
the potential defined in 2.5.5.

Problem* 2.5.7: Write the complete control law for the Cartesian impedance controller from
Problem 2.4.4 and the nullspace optimizations (nullspace damping and singularity avoidance).

2.6 Full Cartesian Impedance controller***

The translational Cartesian impedance controller from Section 2.4 allows only to set the position
of the TCP and not its orientation. Therefore, the controller should be generalized to also allow for
rotational stiffnesses. The general controller structure is maintained but extended for a rotational
component. Although our 3DOF planar model can be described by x ∈ IR3, in the following
Cartesian coordinates x ∈ IR6 are considered for generality.

The full controller can be designed splitting up x̃ into two components x̃t ∈ IR3 and x̃r ∈ IR3

describing respectively the end effector position and orientation.

Problem* 2.6.1: Write the Cartesian stiffness matrix Kx ∈ IR6, partitioned into the translational
stiffness Kt, a rotational stiffness Kr, and the coupling stiffnesses Kc.

The coupling stiffness Kc is omitted in the following, therefore Kc = 0. In contrast to the
vector difference as used in Section 2.4, the offset between the TCP frame and the desired frame
is expressed by a homogeneous transformation matrix.

9

Problem* 2.6.2: Write the transformation TCPTd from the TCP frame KTCP to the desired
frame Kd.

The translational part of TCPTd can be directly used for the translational impedance con-
troller. For the rotational stiffness, the situation is more complex. As there is no global minimal
representation of SO(3), the choice of orientation coordinates for the use in Cartesian controllers
is not straight forward. In the following, a solution based upon unit quaternions will be worked
out.

Unit quaternions are a generalization of complex numbers and can represent rotations in SO(3)
in a similar way as complex numbers represent planar rotations. The advantage of unit quaternions
is that they give a global parameterization and are therefore singularity free in SO(3). A unit
quaternion consists of a scalar component η and a vector component ε. The components can be
calculated by

η =
1

2

√
1 + r11 + r22 + r33

ε1 =
r32 − r23

4η

ε2 =
r13 − r31

4η

ε3 =
r21 − r12

4η

(15)

where

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 .
The rotational error and the Cartesian rotational elastic force can then be computed as:

x̃r := 2ε =⇒ Fr = −Krx̃r (16)

This choice of coordinates uses again only three parameters and is therefore also only a local
parametrization. Its advantage is that it has no discontinuity and the only drawback is an unstable
equilibrium point at n = ±π.

Problem** 2.6.3: Derive a Jacobian for mapping the rotational forces to joints torques consis-
tently with the quaternion representation used.

10

Problem** 2.6.4: Assume a unit axis pointing along one of the Cartesian axes. Why is the
choice of the quaternions for the spring torque convenient compared to a linear torque function?
Draw and compare qualitatively the plots of the joints torques for both cases.

As in the case of the PD joints controller, the damping matrix D shouldn’t be held constant
because the Cartesian mass matrix Mx(q) is not constant.

Problem* 2.6.5: Use (3) and the result from Problem 2.4.1 to transform the joint space dynamics
((4)) to Cartesian coordinates. Give an expression for the Cartesian mass matrix Mx(q). and
Coriolis matrix Cx(q)

Assuming that the gravity is compensated and neglecting velocity dependent terms, the equa-
tion of motion of the robot can be written as:

Mx(q)ẍ = F (17)

where Mx(q) ∈ IR6×6 is the Cartesian mass matrix and F ∈ IR6 is the generalized forces vector
acting on the mass. Precisely, F = Fc + Fext where Fc are the controller forces and Fext are the
external forces. In order to ensure a desired damping of the controller dynamics derived in Eq.(17),
the matrix D should be accordingly designed.

Problem** 2.6.6: Considering a constant stiffness matrix K, derive a damping matrix D for
achieving a given damping factor ζ of the complete system derived in Eq.(17).

Problem* 2.6.7: Write the expression of the damping torque of the full impedance controller.

11

Problem* 2.6.8: Write the Full Cartesian Impedance controller, consisting of the sum of the
translational and rotational stiffness, and damping derived in Problem 2.6.7. Define the impedances
in TCP coordinates. Make sure all matrices are relating to the correct frames.

2.7 Collision detection**

One of the features needed for allowing a safe human-robot interaction is the ability to detect
collisions. A possible way to detect a collision is to compare the commanded torques and the
effective torques deduced from the current state of the system.

Figure 4: Scheme of estimation of the external torques

This scheme has the disadvantage that the estimated torque is the sum of both the external
torques and the friction forces.

Problem* 2.7.1: Draw a scheme for estimating only the external torques.

The effective torque τ e can be deduced either from the measurements or from the desired
trajectory using the dynamic model of the manipulator:

τ e = M(qn)q̈n + C(qn, q̇n)qn + g(qn) from measurements (18a)

12

τ e = M(qd)q̈d + C(qd, q̇d)qd + g(qd) from desired trajectory (18b)

Problem* 2.7.2: Explain the disadvantages of both approaches

A better approach is to use the impulse instead than directly the torques. The impulse can be
estimated comparing the expected momentum caused by the commanded torques and the effective
momentum of the system (obtained from the measurement of the state of the system). The
generalized momentum of the manipulator is given by: p = M(q)q̇.

Problem** 2.7.3: Considering the manipulator dynamics in Eq.(4), derive the equation of the
variation of the momentum.

Problem** 2.7.4: Draw the scheme of a collision estimator based on the impulse.

Problem** 2.7.5: Derive the equation of the dynamics of the estimator.

13

Problem* 2.7.6: Which reaction strategies can be adopted in case of collision?

3 Simulation

This experimental section provides an introduction to the simulation environment of the 3DOF
planar manipulator and the controllers presented in the theory section. Therefore it is mandatory
to solve the theory section first.

The simulation should be implemented in Simulink. The library ”m3dof library.mdl” is given
to the students. It contains the implementations of the principal matrices needed for the imple-
mentation of the algorithms (forward kinematics, Jacobian, mass matrix, Coriolis and centrifugal
matrix, gravity vector). Together with these matrices is given also a visualization utility for the
3DOF planar manipulator, which facilitates the understanding of the system behavior.

3.1 Kinematics and dynamics**

Task 1: Implement the dynamics of the 3DOF manipulator described in Sec. 2.1 as a standalone
block. The inputs are the commanded torques τ and the outputs are the joints angles and velocities
q, q̇.

Hint: Add a dissipative term for simulating the friction at joints: τ f = −Kf q̇

The block will be used throughout the entire simulation as the base for applying the treated con-
trol algorithms. Therefore, a correct implementation of the dynamics is required before continuing
with the design of the controllers.

Task 2: Simulate the system from the initial position qi = [−60 ◦,−30 ◦, 20 ◦], plot the joint angles
and comment the results.

Task 3: Implement the calculation of the Cartesian pose and velocity by means of the forward
kinematics and the Jacobian matrices.

3.2 Joints control*

For the implementation of the control laws create a ”Controller” block which should include all the
control algorithms considered. The input of the block is the state of manipulator (joint positions
and velocities, forward kinematics, jacobians, dynamics matrices, etc...) and the outputs are
the commanded torques. The closed loop between the Dynamics block and the Controller block
constitutes a simulation of the behavior of the controlled manipulator, as showed in Fig. 5(a)

It’s highly suggested to implement all the following controllers as standalone subsystems and
to sum up their torques in a unique signal (see Fig. 5(b)), thanks to the superposition principle
for the impedances. The subsystems could be individually activated or deactived during the
simulation by means of the use of an ”Enable” input block which can be found in the ”Port
& Subsystems” Simulink standard library. In this way it’s possible to compare the effect of each
individual functionality of the controller.

The first step of the implementation is to correctly counterbalance the gravity torques which
act on the manipulator.

Task 4: Implement a gravity compensation using the gravity torques from the online model. Start
the simulation again and compare the robot behaviour.

14

(a) Scheme of simulation of the controlled manipu-
lator

(b) Controller split up in various activable subcontrollers.

The gravity compensation is easy to implement in theory but is very important in practice.
Keep the gravity compensation on throughout the tutorial.

Task 5: Implement the joints PD controller described in (2.2) with a costant damping. Tune the
stiffness and damping matrices Kp, Kd so as to achieve a fast and well damped response.

Task 6: Run the simulation again with the gravity compensation and the PD controller, what
happens if the gravity compensation is deactivated?

Task 7: Plot the joints angles and torques with respect to time for some representative cases of
Kp and Kd.

In order to achieve a desired damping factor ζ, the damping matrix Kd should be appropriately
designed.

Task 8: Implement the damping design with the method of the square root matrices.

Task 9: Plot and compare the temporal response of the joint angles for three different damping
factors ζ.

3.3 Inverse kinematics control**

A scheme for controlling the TCP position in the Cartesian space was given in 2.3 and requires the
implementation of an inverse kinematics algorithm. The methods derived in 2.3 can be applied
in case of small variations of the desired Cartesian position δxd (e.g. in case of an interpolated
trajectory). However, in this work we apply apply the methods directly to the resolution of a
desired position xd, having in mind that in the real implementation a particular attention on the
interpolator is needed.

Task 10: Create a separate Simulink model “invkin.mdl“ for implementing both inverse kinematics
algorithms in a loop fashion, as derived in 2.3.6 for the transposed Jacobian approach.

The convergence of the algorithms can be accelerated using the gain matrix K. However,
because of discrete time implementation issues, an upper limit of the gains K exists. Above this
limit the simulation becomes unstable because of the numerical noise. Find the correct trade-off
between convergence rate and stability.

Task 11: Using the model created in Task 10, calculate the joints position corresponding to the
TCP position xd = [0.93m, 0.19m, 35◦]T for two initial guesses q0 = [0 ◦,−15 ◦, 35 ◦]T and q0 =
[10 ◦, 0 ◦, 45 ◦]T . Make a plot of the error e = xd− f(q) at each iteration step for both methods and
both cases.

15

0

1

joints_desired

-C-

cartesian_desired

-C-
Joints PD control

robot_data

q_des

tau

Inverse kinematics

xd

robot_data
qd

robot_data

1

Figure 5: Scheme for commanding a cartesian position using inverse kinematics.

A control in the Cartesian space can now be implemented for the 3DOF simulation model
developed in the previous sections. At this purpose, an inverse kinematics block can be used
together with the joints controller developed in 3.2, as shown for example in Fig. 5.

Task 12: Develop a standalone inverse kinematics block and integrate it into the 3DOF simulation
model. Set the initial guess joints position to the current joints position. Make a plot of the joints
position and TCP position in function of time for some representative cases.

3.4 Translational Cartesian Impedance control*

A translational Cartesian controller can be implemented selecting only the translational part from
the Cartesian position vector x and applying stiffness and damping matrices Kp, Kd ∈ IR2.

Task 13: Implement the translational Cartesian controller derived in the problem 2.4.4 and tune
the stiffness and damping matrices. After trying various desired positions, command the position
[x, y] = [0, 1.5]. What happens in this case?

Task 14: Plot the position of the TCP with respect to time for some representative cases of Kp

and Kd.

3.5 Nullspace optimizations**

The translational Cartesian controller leaves 1DOF of the manipulator out of control. If the
simulation is appropriately realized, you should see the manipulator moving while the TCP remains
fixed in the desired position (nullspace motion). This nullspace motion can be further damped by
means of an appropriately designed nullspace controller.

Task 15: Implement a nullspace damping so as to not interfere with the TCP motion.

The additional degree of freedom could also be used for making some nullspace optimizations.
For example, it could be used for avoiding the singular configurations. For the general case of
singularity avoidance, the calculation of the joint torques is computationally intensive since the
first derivative (w.r.t. the joint angles) of the potential function is used. In the case of the 3DOF
manipulator it can be done manually, since mkin(q2) is just a function of the second joint angle.

Task 16: Write an Embedded Matlab Function to implement the results of Problem 2.5.

Task 17: Make some plots of the Cartesian error and the manipulability index in the proximity of
the singularities. Compare the results with the singularity avoidance switched ON and OFF.

3.6 Full Cartesian Impedance controller***

The additional DOF can be used to set up also the TCP orientation. The full Cartesian controller
can be developed using a more convenient quaternion representation.

Task 18: Calculate the rotational error matrix and implement an Embedded Matlab function for
transforming it into the quaternion representation.

16

Task 19: Implement the full Cartesian controller derived in Problem 2.6.8.

Task 20: Implement the damping design for the full Cartesian controller.

Task 21: Plot the position of the TCP with respect to time for three different damping factors.

3.7 Collision detection**

Task 22: Implement the external torque observer derived in Problem 2.7.4.

Task 23: Make some representative plots that the observer is correctly detecting the impacts.

Task 24: Add source of noise on the measurements of the joints angles and velocities q, q̇. Design
the gain Ki so as to obtain a fast response of the estimator and reject the noisy components of the
measurements.

Task 25: Plot the behavior of the observer for different cases of KI and comment the differences.

4 Contacts and references

For questions or suggestions about the tutorial, please contact alessandro.giordano@tum.de. Part
of this tutorial was taken by the material kindly furnished by F. Petit, D. Lakatos of DLR Institut
für Robotik und Mechatronik. I would like to thank also A. Dietrich for the help in the revision.

A Matrix components

In the following, symbolic expressions for the components of the matrices/vectors, describing the
kinematic and dynamic model are listed. Therefore a set of parameters is introduced:

l1 : Length of link 1

l2 : Length of link 2

l3 : Length of link 3

m1 : Mass of link 1

m2 : Mass of link 2

m3 : Mass of link 3

lc1 : Distance to the center of mass of link 1

lc2 : Distance to the center of mass of link 2

lc3 : Distance to the center of mass of link 3

I1 : Moment of inertia of link 1 w.r.t. K1

I2 : Moment of inertia of link 2 w.r.t. K2

I3 : Moment of inertia of link 3 w.r.t. K3

g0 : gravity constant

eg = (eg1, eg2, eg3)T : components of the unit vector, pointing in the opposite direction of gravity

The representation of the trigonometric functions are abbreviated, e.g., c1 = cos q1, s1 = sin q1,
c12 = cos(q1 + q2), s12 = sin(q1 + q2), etc. Hence the forward kinematic function can be written in
the compact form

f(q) =

 l1c1 + l2c12 + l3c123
l1s1 + l2s12 + l3s123

q1 + q2 + q3

 . (19)

17

The components of the end-effector Jacobian w.r.t. to K0 are

0J(q) =

 −l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

1 1 1

 . (20)

For the description of the mass/Coriolis matrix, the following shortcuts are introduced:

ζ1 = I1 +m2l
2
2

ζ2 = I2

ζ3 = m2l1lc2

ζ4 = I3 +m3

(
l21 + l22

)
ζ5 = m3l1lc3

ζ6 = m3l2lc3

ζ7 = m3l1l2

ζ8 = I3 +m3l
2
2

ζ9 = I3

(21)

Thus the components of the mass matrix can be written in the form

M(q) =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (22)

where
M11 = ζ1 + ζ2 + ζ4 + 2 (ζ3 + ζ7) cos q2 + 2ζ5 cos(q2 + q3) + 2ζ6 cos q3

M12 = M21 = ζ2 + ζ8 (ζ3 + ζ7) cos q2 + ζ5 cos(q2 + q3) + 2ζ6 cos q3

M13 = M31 = ζ9 + ζ5 cos(q2 + q3) + ζ6 cos q3

M22 = ζ2 + ζ8 + 2ζ6 cos q3

M23 = M32 = ζ9 + ζ6 cos q3

M33 = ζ9

The components of the Coriolis matrix are given by

C(q, q̇) =

 h5q̇3 + h6q̇2 h5 (q̇1 + q̇2) + h6q̇3 h6 (q̇1 + q̇2 + q̇3)
−h5q̇1 + h4q̇3 h4q̇3 h4 (q̇1 + q̇2 + q̇3)
−h6q̇1 − h4q̇2 −h4 (q̇1 + q̇2) 0

 , (23)

where
h1 = −ζ3 sin q2

h2 = −ζ7 sin q2

h3 = −ζ5 sin(q2 + q3)

h4 = −ζ8 sin q3

h5 = h1 + h2 + h3

h6 = h3 + h4

In order to describe the components of the gravity vector, the factorization

g(q) = g0

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 eg (24)

18

is performed, where

G11 = − (m1lc1 +m2l1 +m3l1) sin q1 − (m2lc2m3l2) sin(q1 + q2)
−m3lc3 sin(q1 + q2 + q3)

G12 = (m1lc1 +m2l1 +m3l1) cos q1 + (m2lc2m3l2) cos(q1 + q2)
+m3lc3 cos(q1 + q2 + q3)

G21 = − (m2lc2 +m3l2) sin(q1 + q2)−m3lc3 sin(q1 + q2 + q3)

G22 = (m2lc2 +m3l2) cos(q1 + q2) +m3lc3 cos(q1 + q2 + q3)

G31 = −m3lc3 sin(q1 + q2 + q3)

G32 = m3lc3 cos(q1 + q2 + q3)

G13 = G23 = G33 = 0.

19

	Introduction
	Theory
	Kinematics and dynamics
	Joints control*
	Inverse kinematics control**
	Translational Cartesian Impedance control*
	Nullspace optimizations**
	Full Cartesian Impedance controller***
	Collision detection**

	Simulation
	Kinematics and dynamics**
	Joints control*
	Inverse kinematics control**
	Translational Cartesian Impedance control*
	Nullspace optimizations**
	Full Cartesian Impedance controller***
	Collision detection**

	Contacts and references
	Matrix components

