Inverse Kinematics




Forwards kinematics

Homogeneous transformations:

oTTCP = T2 T, TTOP = [zg 71’]

Cartesian representation:
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Forward kinematics: “Given the joints position q,
calculates the Cartesian position x”




Inverse kinematics

= f(q)
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Inverse kinematics: “Given the Cartesian position x, calculates the
joints position q”

* Nonlinear problem
* Existence of the solution: = € W .S

* Multiple solutions: q; = f_l(a}) 1= 1,n,00



Multiple solutions
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Analyitical solution approach

Solving the nonlinear kinematics equations analytically is in general
a very difficult problem, but is feasible for particular kinematics

Advantages:
* Fast implementations
* Possibility to find all solutions

Drawbacks:
* Difficult or even impossible
* Only non redundant case

Methods: algebraic, geometric inspection, etc ..

Solvability conditions (sufficient conditions):
* Three consecutive joints with parallel axes or
* Three consecutive joints with incident axes



Complexity
Example 6DOF: Unimation PUMA 600
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Numerical approach

Advantages:
* Simple implementation
* Applicable to redundant robots

Drawbacks:

* Computationally heavy

* Numerical problems near singularity

* Convergence issues of the nonlinear solution

Concept:
Bring to zero the error: e = x4 — f(q)

Thus reduce solving the nonlinear algebraic equation to solving
iteratively its local linear approximation using the Jacobian

e = —JA(C])Q ordiscrete 8e =Ja(q)bq

/ 0f(q)

analytical Jacobian Ja = —F—



Inverse Jacobian approach

For a non-redundant non-singular robot it can be chosen:

g = J;lKe
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Closed loop (linear dynamics):

e+ Ke =0 K=K!'>0 e — 0




Inverse Jacobian approach

Monodimensional case For x4 =0
df(q) B B
Jalg) = —5— P = f"(q) e =xq— f(q) =—f(q)
q = ngKe = Agq = ngKeAt K = a/At]
Ag = lee
f(q) S (qx)
Ag = —a = Qk+1 = Qk —
f@) wra=1 T 1" (ar)
Newton's method for finding the roots of f(g) =0

The convergence is guaranteed only for small initial errors.

In general it can also diverge. A practical solution: o9 1
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Transposed Jacobian approach

It's chosen: ¢ = Ji Ke K=K!'>0
a;h \ 4 .
gy W IS 1,
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Closed loop (nonlinear dynamics):

e+ JaJiKe=0
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Transposed Jacobian approach

Gradient method for minimizing an error function:

1 1 Oe
H(q) = 5”6\]2 — §€T€ = VH = {8(]} = —Jie
er1 = g — aVH(q) = qr + afje
Transposed Jacobian algorithm:
j=JiKe = Aq= JiKeAt K = a/At]

Ag=aJie

Qi1 = q + adje
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with 4., being the maximal eigenvalue of JZJA , then the

max

algorithm is a contraction mapping and it will therefore converge to the

next local minimum.



Comparison

Convergence rate and computational complexity

J ™' much faster than J7© (quadratic vs linear convergence)

JT lighter implementation

Convergence guaranteed only for A7 — 0 without additional restrictions

on K

Behavior in the vicinity of singularity:

ngKe grows unbounded and the algorithm explodes.
Safety checks needed

J4 Ke goes to zero and the algorithm stops.



Pratical implementation

Interpolation of desired Cartesian positions:

Instead of solving inverse kinematics for each pose *.(%)
indipendently, divide the Cartesian trajectory in increments
ox,(¢,) and solve the inverse kinematics incrementally
based on the presented methods

ox, =J,0q,

Interpolation of Cartesian trajectory

x4 (t;), i=01,..n

A




Implementation issues
Convergence criterion |za — flqr)| < e
Initial guess q0 — Different solutions reached
Fixed sampling time — Instability for high gains K due
to the afore mentioned discretization effect and numerical noise

The stability could be improved using a damping term:
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Parallel with impedance control

Jacobian transposed based inverse kinematics:
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Impedance control: q
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