Interaction Control

Control Components for the Torque Controlled Light-weight Robot

Cartesian Impedance Control: vertical stiffness=500 N/m damping factor 0.001 horizontal stiffness=500 N/m damping factor 0.7

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Simplest Controller in Joint Space

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau$$

PD-Controller with gravity compensation:

$$\tau = k_P(q_d - q) - k_D \dot{q} + g(q)$$

closed loop system

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + k_D\dot{q} + k_P(q-q_d) = 0$$

- the mass matrix is position dependent
- the variation is assumed to be quasi-stationary
- constant stiffness is asumed

How should the damping matrix be chosen for a well damped behaviour?

Example: one-dimensional, linear case (constant mass)):

 $m\ddot{q} + d\dot{q} + kq = 0 \qquad d = 2\xi\sqrt{mk}, \quad 0 \le \xi \le 1$

two real poles

Generalization to matrices:

A-p.d., sym. $\exists A_1$ sym, p.d, such that $A_1 A_1 = A$ Square root of a p.d., symmetric matrix $K_{P1}K_{P1} = K_P$

$$M_1 M_1 = M$$
 $K_D = \xi \left(M_1 K_{P1} + K_{P1} M_1 \right)$

For the linearized system

$$\begin{aligned} M\ddot{e} + K_D \dot{e} + K_P e &= 0 \\ K_D &= \left(M_1 K_{P1} + K_{P1} M_1 \right) \end{aligned}$$

It follows

$$M_1 M_1 \ddot{e} + M_1 K_{P1} \dot{e} + K_{P1} M_1 \dot{e} + K_{P1} K_{P1} e = 0$$

Or, equivalently

Two first order differential equations and thus real eigenvalues

Remark: The quasi-static approximation is needed only for damping design. The stability analysis is still valid for the non-linear system.

Double Diagonalization Damping Design

(alternative)

For the linearized system

$$\begin{aligned} M\ddot{e} + K_D \dot{e} + K_P e &= 0 \\ K_D &= \left(M_1 K_{P1} + K_{P1} M_1 \right) \end{aligned}$$

Through an appropriate coordinate transformation, two p.d. symmetric matrices (K_P,M) can be simultaneously diagonalized.

$$\exists Q$$
 such that $K = Q^T Q, M = Q^T \Lambda Q$

such that Λ is diagonal.

With $\dot{W} = Q\dot{e}$ and $K_D = Q^T D Q$ the dynamics is decoupled

 $\Lambda \ddot{w} + D \dot{w} + w = 0$

by choosing component-wise

$$D_i = 2\xi \sqrt{\Lambda_i}$$

Cartesian Impedance Control

Cartesian Impedance Control

Analogy electrical - mechanical

$$U = L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q \qquad U \to f \qquad R \to D \quad \text{Damping}$$
$$I \to \dot{x} \qquad L \to M \quad \text{Mass}$$
$$f = M\ddot{x} + D\dot{x} + Kx \qquad Q \to x \qquad \frac{1}{C} \to K \quad \text{Ariffness}$$

Impedance: $Z(s) = \frac{f(s)}{x(s)} \leftarrow \text{Output}$

Impedance causality

Admittance:
$$Y(s) = \frac{x(s)}{f(s)} \leftarrow \text{Output}$$

Admittance causality

Principle of Impedance Control

•Inner loop: compliant

• outer loop: increases stiffness

Principle Admittance Control

- Inner loop: high stiffness
- outer loop: compliant
 - •Good behaviour for large and medium stiffness
 - •Good positioning accuracy
 - Limitations for small stiffness (large compliance)
 Stability problems in contact

Cartesian Impedance Control

For a non-redundant, non singular robot with torque interface a simple PD controller in Cartesian coordinates can do the job.

Cartesian PD-Controller with gravity compensation

$$F = K_P(x_d - x) - K_D \dot{x}$$

Transformation of the desired Cartesian Forces to desired joint torques

$$\tau = J^T(q)F + g(q) + \tau_N$$

Adding a null-space torque component τ_N for a redundant robot

$$\tau_N = (I - J^T J^{\#T}) \tau_0$$

with τ_0 being an arbitrary joint space torque

the pseudoinverse has the property

$$J^{\#T}J^T = I$$
 for example $J^{\#T} = (JJ^T)^{-1}J$

A quite general approach for generating robot controllers based on the passivity formalism

1. Define a task coordinate p, describing the control goal

$$p = h(q)$$

2. Define a p.d. (e.g. quadratical) potential as a function of *p*:

$$U(p) = \frac{1}{2} p^T K_p p$$

3. Differentiate the potential in order to obtain generalized forces dual to

$$F_p^T = -\frac{\partial U_p(p)}{\partial p} \quad \Rightarrow F_p = -K_p p$$

4. Apply the chain rule to get "elastic" joint torques

$$\tau^{T} = -\underbrace{\frac{\partial U_{p}(p)}{\partial p}}_{F_{p}^{T}}\underbrace{\frac{\partial p(q)}{\partial q}}_{J_{pq}} \quad \Rightarrow \quad \tau = J_{pq}^{T}F_{p}$$

5. Add a dissipative term

$$F_{\dot{p}} = -D_{p}\dot{p} \implies \tau_{\dot{p}} = J_{pq}^{T}F_{\dot{p}}$$

Thus, one obtains an PD controller in the coordinate p

$$F = F_p + F_{\dot{p}} = -K_p p - D_p \dot{p}$$

Usage of Potentials

Remarks:

- For $p = x x_d$ one obtains the Cartesian controller
- For the damping matrix one needs an appropriate damping design
- Further applications
 - collision avoidance, avoidance of joint limits
 - singularity avoidance
 - nullspace stiffness ...

Collision Avoidance

Control of Flexible Joint Robots

Torque Control with Gravity Compensation

Impedance control assumes an ideal torque source at joint level In the rigid robot model, joint torque is not a state

- a torque controller with a P-term is not causal!

Model of the Flexible Joint Robot

possible state vector:

$$x_1^T = \{\theta, \dot{\theta}, q, \dot{q}\}$$

used state vector:

$$x^T = \{\theta, \dot{\theta}, \tau, \dot{\tau}\}$$

$$M(q)\ddot{q} + c(q,\dot{q}) + g(q) = \tau + \tau_{ext}$$
$$B\ddot{\theta} + \tau = \tau_m$$
$$\tau = K(\theta - q)$$

Definition of Passivity

 $\dot{V}(t) = u^T(t)y(t) - D(t)$

feedback coupling

Regelungstechnische Methoden in der Robotik

i

Full state feedback for flexible joint robots

Vibration Damping

Vibration Damping ON

Vibration OFF

Robot reaches the dynamics and accuracy of an industrial arm (according to KUKA ISO-Tests)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Cartesian Impedance Controller and Position Controller

Generalization of approaches from rigid robots to the flexible case

- → Shaping the potential energy collocated feedback
 - → Asymptotic stabilization around x_d ($\tau_{ext} = 0$)
 - $m{ au}$ Implementation of the desired compliance relationship ($m{ au}_{ext}
 eq m{0}$)
 - \neg Feedback of θ , $\dot{\theta}$ (rigid robot impedance controller!)
- → Shaping of the kinetic energy noncollocated feedback
 - → Damping of vibrations => increased performance
 - \neg Feedback o $\boldsymbol{ au}, \dot{\boldsymbol{ au}}$ (torque controller)

=> Full state feedback

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft **Torque controller**

Motor dynamics:

$$B\ddot{\theta} + \tau = \tau_m$$

Torque controller:

$$\tau_m = BB_{\theta}^{-1}u - (I - BB_{\theta}^{-1})\tau$$

Modified actuator inertia

Physical interpretation of torque feedback

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Cartesian Impedance Control

Unified approach for torque, position and impedance control on Cartesian and joint level

$$\tau_F \rightarrow (1+K_T)^{-1} \tau_F \qquad B \rightarrow B_\theta = (1+K_T)^{-1} B$$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft