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Control Components for the Torque Controlled Light-weight 
Robot

Joint torque
sensor

Light-weight robot
with elastic joints

Movement
accuracy

active
vibration 
damping

Safe human-robot-environment
interaction

compliance
control

collision
reaction

self-collision
avoidance

robust task
execution





Regelungstechnische Methoden in der Robotik 

Simplest Controller in Joint Space

PD-Controller with gravity compensation:

)()( qgqkqqk DdP  

0)(),()(  dPD qqkqkqqqCqqM 

closed loop system

 )(),()( qgqqqCqqM 

Joint Position Control
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Damping Design

- the mass matrix is position dependent
- the variation is assumed to be quasi-stationary
- constant stiffness is asumed

How should the damping matrix be chosen for a well damped behaviour?

Generalization to matrices:

Square root of a  p.d., symmetric matrix

A-p.d., sym. 1A sym, p.d, such that AAA 11

PPP KKK 11

MMM 11  1111 MKKMK PPD  

Example: one-dimensional, linear case (constant mass)):

0 kqqdqm  10,2   mkd

two real poles
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Damping Design
For the linearized system 

0 eKeKeM PD 

 1111

1

MKKMK PPD 



011111111  eKKeMKeKMeMM PPPP 

It follows

Or, equivalently

011

11



wKwM
weKeM

P

P


 intermediate variable

Two first order differential equations and thus real eigenvalues

Remark: The quasi-static approximation is needed only for damping design.
The stability analysis is still valid for the non-linear system. 
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Double Diagonalization Damping Design

For the linearized system 

0 eKeKeM PD 

 1111

1

MKKMK PPD 



(alternative)

Through an appropriate coordinate transformation, two p.d. symmetric 
matrices (KP,M) can be simultaneously  diagonalized.

Q such that QQMQQK TT  ,

such that     is diagonal.
With              and                       the dynamics is decoupled eQw   DQQK T

D 

0 wwDw 
by choosing component-wise

iiD  2
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Cartesian Impedance Control
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Cartesian Impedance Control

f

x

xd ___
f xd
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Notion of Impedance
Known from electrical circuits:

I

CL R

dtI
C

ILRIU 
1

U

Impedance:
)(
)()(

sI
sUsZ 

Cs
LsR

sZ 1
1)(


z.B.

Admittance:
)(
)()(

sU
sIsY 

Cs
LsRsY 1)( z.B.

Output
Input

Output
Input
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Notion of Impedance
Analogy electrical - mechanical

fU 
xI 

K
C

ML
DR






1

Damping

Mass

Ariffness
xQKxxDxMf  

Q
C

QRQLU 1
 

Impedance:
)(
)()(

sx
sfsZ 

Admittance:
)(
)()(

sf
sxsY 

Output
Input

Output
Input

Impedance causality

Admittance causality
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Principle of Impedance Control

m RobotTorque
Control++ Impedance

Control

x


ddx

Cart. Controller Joint controller

Robot Controller

TJ

df

- -
+

f

extf

extf

•Inner loop: compliant
• outer loop: increases stiffness

DK,
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Principle Admittance Control
Cartesian Controller with Admittance Causality

•Good behaviour for large and medium stiffness
•Good positioning accuracy
•Limitations for small stiffness (large compliance)
•Stability problems in contact

• Inner loop: high stiffness
• outer loop: compliant

=>

m RobotPosition
Controller++ Admittance

Controller

extff 

q

dq
dx Cart. Controller Joint controller

Robot Controller

Inv.
Kin.

df
- -

+
x

extf

DK,
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Cartesian Impedance Control
For a non-redundant, non singular robot with torque interface a simple
PD controller in Cartesian coordinates can do the job.

Cartesian PD-Controller with gravity compensation 

xKxxKF DdP  )(

Adding a null-space torque component         for a redundant robot

)()( qgFqJT 

Transformation of the desired Cartesian Forces to desired joint torques

N

N

0
# )(  TT

N JJI 

with      being an arbitrary joint space torque0

the pseudoinverse has the property

IJJ TT # for example JJJJ TT 1# )( 
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Usage of of Potentials
A quite general approach for generating robot controllers based on the 
passivity formalism

1. Define a task coordinate p, describing the control goal
)(qhp 

pKppU p
T

2
1)( 

2. Define a p.d. (e.g. quadratical) potential as a function of p:

p3. Differentiate the potential in order to obtain generalized forces dual to 

pKF
p

pU
F pp

pT
p 






)(

4. Apply the chain rule to get „elastic“ joint torques

p
T
pq

JF

pT FJ
q
qp

p
pU

pq
T
p








 



)()(
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Usage of of Potentials
5. Add a dissipative term

p
T
pqppp FJpDF    

Thus, one obtains an PD controller in the coordinate p
pDpKFFF pppp  
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Usage of Potentials
Remarks:

• For                  one obtains the Cartesian controllerdxxp 

• Further applications 
- collision avoidance, avoidance of joint limits
- singularity avoidance
- nullspace stiffness  …

• For the damping matrix one needs an appropriate damping design
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Collision Avoidance
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Control of Flexible Joint Robots
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Torque Control with Gravity Compensation

Impedance control assumes an ideal torque source at joint level
In the rigid robot model, joint torque is not a state

- a torque controller with a P-term is not causal!



Model of the Flexible Joint Robot
possible state vector:

},,,{1 qqxT 

used state vector:

},,,{  Tx

)(

)(),()(

qK
B

qgqqcqqM

m

ext













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Definition of Passivity

u(t) y(t)

A system is passive, if

V(t)

D(t)

alternative (differential) formulation

with and        lower bounded

input power
dissipated power

energy variation

storage function
)(tu
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Interconnection of Passive Systems

V1(t), D1(t)

V2(t), D2(t)

+u u1=u-y2 y=y1y1

u2=y1y2

feedback coupling

V1(t), D1(t)

V2(t), D2(t)

u
u1=u

y=y1+y2

y1

y2
u2=u

parallel coupling
u yV, D



Full state feedback for flexible joint robots

rigid robot 
dynamics 

passive
environment

a

ext

q

m
B



controller
D

K



passive controlled actuators

d

d

•toque control
•position control
•impedance control

same structure used for 

4th order state feedback
controller:   ,,,



Vibration Damping

Robot reaches the dynamics and accuracy of an industrial arm
(according to KUKA ISO-Tests)

Vibration Damping ON Vibration OFF





Cartesian Impedance Controller and Position Controller

Shaping the potential energy  - collocated feedback
Asymptotic stabilization around xd ( )
Implementation of the desired compliance relationship (      )

Feedback of (rigid robot impedance controller!)

Shaping of the kinetic energy - noncollocated feedback
Damping of vibrations => increased performance
Feedback of               (torque controller)

Generalization of approaches from rigid robots to the flexible case

=> Full state feedback



Torque controller

Motor dynamics:

Torque controller:

New input

Modified actuator inertia

Physical interpretation of torque feedback

mB  

  )( 11   BBIuBBm

Closed loop system:

uB  



motor dynamics Robot
dynamics 

f

a

d

B
KT

torque
control

Impedance
control

xd


.

B

Passivity        Robustness in contact with the environment

Unified approach for torque, position and 
impedance control on Cartesian and joint level

Cartesian Impedance Control

FTF K  1)1(  BKBB T
1)1(  


