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Abstract

Constderation of dynamics is critical in the analysis, design, and control of robot sys-
tems. This article presents an extensive study of the dynamic properties of several
important classes of robotic structures and proposes a number of general dynamic strate-
gies for their coordination and control. This work is a synthesis of both previous and
new results developed within the task-oriented operational space formulation. Here we
introduce a unifying framework for the analysis and control of robotic systems beginning
with an analysis of inertial properties based on two models that independently describe
the mass and inertial characteristics associated with linear and angular motions. To vi-
sualize these properties, we propose a new geometric representation, termed the belted
ellipsoid, that displays the magnitudes of the mass/inertial properties directly rather
than their square roots. Our study of serial macro/mini structures is based on two
models of redundant mechanisms. The first is a description of the task-level dynamics
that results from projecting the system dynamics into operational space. The second
is a unique dynamically consistent relationship between end-effector forces and joint
torques. It divides control torques at the joint level into two dynamically decoupled
vectors: torques that correspond to forces al the end effector, and torques that affect
only internal motions. The analysis of inertial properties of macro/mini-manipulator
systems reveals another important characteristic: that of reduced effective inertia. We
show thatl the effective mass/inertia of a macro/mini-manipulator is bounded above
by the mass/inertia of the mini-manipulator alone. Because mini struclures have a
limited range of motion, we also propose a dextrous dynamic coordination strategy
to allow full use of the high mechanical bandwidth of the mini-structures in extended-
motion operations. Finally, a study of the dynamics of parallel, multi-arm structures
reveals an important additive property. The effective mass and inertia of a multi-arm
system at some operational point are shown to be given by the sum of the effective
masses and inertias assoctated with the object and each arm. Using this property, the
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multi-arm system can be treated as a single augmented object and controlled by the
total operational forces applied by the arms. Both the augmented object construct and
the dynamically consistent force/torque relationship are extended for the analysis and
control of multi-arm systems involving redundancy.

1 Introduction

Dealing with dynamics is essential for achieving higher performance in robotic ma-
nipulation. Robot dynamics has been traditionally viewed from the perspective of a
manipulator’s joint motions, and significant effort has been devoted to the development
of joint-space dynamic models and control methodologies. However, the limitations of
joint-space control techniques, especially in constrained motion tasks, have motivated
alternative approaches for dealing with task-level dynamics and control (Takase 1977;
Luh, Walker, and Paul 1980; Hogan 1984). The operational space formulation (Khatib
1980, 1987), which falls within this line of research, has been driven by the need to de-
velop mathematical models for the description, analysis, and control of robot dynamics
with respect to task behavior. In this framework, both motions and active forces are
addressed at the same level of end-effector control. The result is a unified approach for
dynamic control of end-effector motions and contact forces.

The dynamic performance of a manipulator is strongly dependent on the inertial
and acceleration characteristics that are perceived at its end effector. Incorporating
lightweight links (i.e., a mini-manipulator) at the end-of-arm can greatly improve these
characteristics and significantly increase the ability of the manipulator to perform fine
motions (Cai and Roth 1987; Sharon, Hogan, and Hardt 1988). The development of
fine-positioning devices has received increased attention in recent years. Micro elec-
tromagnetic devices with two and three degrees of freedom (Hollis 1985; Hammer et
al. 1992; Karidis et al. 1992) have shown high performance, excellent precision and
speed. Mini-devices have also been used to provide improved force control capabilities
(Reboulet and Robert 1986; Merlet 1988) and increased performance in the control of
flexible arms (Tilley et al. 1986).

Clearly, the higher accuracy and greater speed of a mini-manipulator are useful for
small motion operations during which the rest of the manipulator can be held motion-
less. In force control tasks, a mini-manipulator can be used to overcome manipulator
errors in the directions of force control by using end-effector force sensing to perform
small and fast adjustments. However, the high performance of a mini-manipulator is
only available within the mechanically limited range of its joint motions. An effective
coordination strategy between the macro and mini structures is therefore essential for
extending this performance to tasks covering a wide range of motions (Khatib 1990).
This article analyzes the inertial properties of macro/mini-manipulator systems and
present a general methodology for their coordination and control.



Another area in which dynamics plays a critical role is multi-arm robot systems. Multi-
arm control has generally been treated as a motion coordination problem. One of the
first schemes for the control of a two-arm system (Alford and Belyeu 1984) was orga-
nized in a master/slave fashion and used a motion coordination procedure to minimize
errors in the relative position of the two manipulators. In another study (Zheng and
Luh 1986), one manipulator was treated as a “leader” and the other as a “follower.”
Control of the follower was based on the constraint relationships between the two
manipulators. In contrast, the two manipulators were given a symmetric role in the
coordination proposed by Uchiyama and Dauchez (1988). The problem of controlling
both motion and force in multi-arm systems has been investigated by Hayati (1986). In
that proposed approach, the load is partitioned among the arms. Dynamic decoupling
and motion control are then achieved at the level of individual manipulator effectors.
In the force control subspace, the magnitude of forces is minimized. Tarn et al. (1987)
developed a closed-chain dynamic model for a two-manipulator system with respect to
a selected set of generalized joint coordinates. Nonlinear feedback and output decou-
pling techniques were then used to linearize and control the system in task coordinates.
Linearizing and output decoupling of two-arm systems has also been investigated by
Kumar et al. (1991). This article presents the augmented object model, which extends
the operational space approach to multi-arm robot systems.

Sections 2 and 3 review the basics of the operational space framework and discuss
its extension to redundant manipulators. The models for the description of inertial
properties and the belted-ellipsoid representation are presented in Section 4. Section 5
discusses reduced effective inertia and dextrous dynamic coordination for macro/mini-
manipulator system. The augmented object model and its extension to redundant multi-
arm robot systems are presented in Sections 6 and 7.

2 Operational Space Dynamics

The inertial properties of a manipulator are generally expressed with respect to its
motion in joint space. For an n-degree-of-freedom manipulator, the joint-space inertial
properties are described by the n x n configuration dependent matrix, A(q), associated
with the quadratic form of its kinetic energy, % 4’ A(q)q, where q and q are the vectors
of joint positions and joint velocities, respectively. The joint-space equations of motion
may be written

A(q)q+b(q,q) +g(q) =T, (1)

where b(q, q) is the vector of centrifugal and Coriolis joint forces and g(q) is the gravity
joint-force vector. T’ is the vector of generalized joint forces.

When the dynamic response or impact force at some point at the end effector or
manipulated object is of interest, the inertial properties involved are those evaluated



at that point, termed the operational point. Attaching a coordinate frame to the end
effector at the operational point and using the relationships between this frame and
the reference frame attached to the manipulator base provides a description, x, of the
configuration (i.e., position and orientation of the effector).

The number, m, of independent parameters needed to describe the position and ori-
entation of the end effector determines its number of degrees of freedom. When the
effector and manipulator have both the same degree of freedom (i.e., n = m), the oper-
ational coordinates, x, form a set of generalized coordinates for the mechanism (Khatib
1987) in a domain of the workspace that excludes the kinematic singularities. In this
case, the kinetic energy of the mechanism is a quadratic form of the generalized opera-
tional velocities, 1 XTA(x)x%, where A(x) is the m x m kinetic energy matrix associated
with the operational space.

This operational space kinetic energy matrix, A(x), provides a description of the inertial
properties of the manipulator at the operational point. The relationship between the
operational and joint-space matrices, A(x) and A(q), can be established by stating the
identity between the two quadratic forms of kinetic energy and by using the relationship
between joint velocities and effector velocities, which involves the Jacobian matrix,
J(q). This yields

A(x) = J (@) A(a)] (q). (2)

The matrix A(x), along with its partial derivatives with respect to the operational
coordinates (coefficients of centrifugal and Coriolis forces), and the gravity forces acting
at the operational point establish the equations of motion (Khatib 1980) for the effector
subjected to operational forces, F. These equations are

A(x)x + p(x,%) + p(x) = F, (3)

where p(x,x) and p(x) are, respectively, the centrifugal and Coriolis force vector and
the gravity force vector acting in operational space.

2.1 Basic Dynamic Model

By the nature of coordinates associated with spatial rotations, operational forces acting
along rotation coordinates are not homogeneous to moments, and vary with the type
of representation being used (e.g., Euler angles, direction cosines, Euler parameters,
quaternions). Although this characteristic does not raise any difficulty in free motion
operations, the homogeneity issue is important in tasks where both motions and active
forces are involved. This issue is also a concern in the analysis of inertial properties.
These properties are expected to be independent of the type of representation used for
the description of the end-effector orientation.



The homogeneity issue is addressed by using the relationships between operational
velocities and instantaneous angular velocities. The Jacobian matrix .J(q) associated
with a given selection, x, of operational coordinates can be expressed (Khatib 1987) as

J(q) = E(x).Jo(q), (4)

where the matrix Jo(q), termed the basic Jacobian, is defined independently of the
particular set of parameters used to describe the end-effector configuration, whereas
the matrix £(x) is dependent on those parameters. The basic Jacobian establishes the
relationships between generalized joint velocities q and end-effector linear and angular
velocities v and w.

92 m — Jo(Q)d (5)

Using the basic Jacobian matrix, the mass and inertial properties at the end effector
are described by

Ao(x) = J5 " (a)A(a) 1y '(q). (6)
The above matrix is related to the kinetic energy matrix associated with a set of
operational coordinates, x, by

A(x) = B~ (x)Ao(x) E7 (). (7)

Like angular velocities, moments are defined as instantaneous quantities. A generalized
operational force vector, F, associated with a set of operational coordinates, x, is
related to forces and moments by

F, £ [7] = ET(x) F, (8)

where F and M are the vectors of forces and moments. With respect to linear and
angular velocities, the end-effector equation of motion can be written as

Ao(x)? + po(x, 9) + po(x) = Fo, (9)

where Ag(X), po(X, ), and po(x) are defined similarly to A(x), p(x,%), and p(x) using
Jo(q) instead of J(q). With equation (9), the dynamics of the end effector is described
with respect to linear and angular velocities. Therefore, a task transformation of the

description of end-effector orientation is needed. Such a transformation involves the
inverse of F(x) and its derivatives (Khatib 1980).

2.2 Unified Motion and Force Control

Equation (9) is the basis for the development of the unified framework for motion and
force control. Compliant motion and part mating operations involve motion control in
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Figure 1: A constrained motion task

some directions and force control in orthogonal directions, as illustrated in Figure 1.
Such tasks are described by the generalized selection matriz Q and its complement Q)
associated with motion control and force control, respectively (Khatib 1987). Using
equation (9), the end-effector/sensor equations of motion can be written as

Ao(X)ig + IMQ(X, 19) + pO(X) + Fcontact = FO- (10)

The vector Feontact Tepresents the contact forces acting at the end effector. The uni-
fied approach for end-effector dynamic decoupling, motion, and active force control is
achieved by selecting the control structure

FO = Fmotion + Factive—force7 (11)

where
Fmotion = ]\O(X)QF;otion —I_ ﬁO(X7 19) —I_ ﬁO(X)7 (12)
Factive—force - AO(X)Qcmtive—force + Fsensor7 (13)

and KO(X), fio(x,%), and po(x) represent the estimates of Ag(x), po(x,%), and po(x).
The vectors F* and Fx represent the inputs to the decoupled system. The

motion active—force
generalized joint forces I' required to produce the operational forces Fy are

T = J] (q)Fo. (14)

With perfect estimates of the dynamic parameters and perfect sensing of contact forces
(i.e., Feensor = Feontact), the closed loop system is described by the following two de-
coupled sub-systems:

Qig = QF*motion? (15)
ﬁig = ﬁ]"?thive—force‘ (16)

The unified motion and force control system is shown in Figure 2.
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Figure 2: Unified motion and force control structure.
3 Redundancy in Manipulation

A manipulator is said to be redundant when the number, n, of its degrees of freedom is
greater than the number, m, of its end-effector degrees of freedom. In this definition,
redundancy is a characteristic of the manipulator. The extent of the manipulator
redundancy is given by (n — m), which defines the manipulator degree of redundancy.

In manipulation there is also task redundancy. This type of redundancy is associated
with tasks that involve a subset of the parameters needed to describe the configuration
of the end effector. This redundancy concerns all types of manipulators. For instance,
positioning the end effector of a non-redundant manipulator results in a redundancy
with respect to the task of controlling the end-effector position.

A manipulator is said to be redundant with respect to a task if the number, mraq, of
independent parameters needed to describe the task configuration is smaller than the
number n of the manipulator degrees of freedom.

3.1 Dynamics of Redundant Manipulators

A set of operational coordinates describing only the end-effector position and orien-
tation is obviously insufficient to completely specify the configuration of a redundant
manipulator. Therefore, the dynamic behavior of the entire system cannot be de-
scribed by a dynamic model using operational coordinates. Nevertheless, the dynamic
behavior of the end effector itself can still be described, and its equations of motion in
operational space can still be established. In fact, the structure of the effector dynamic
model has been shown (Khatib 1980, 1987) to be identical to that obtained in the case
of non-redundant manipulators (equation (3)). In the redundant case, however, the



matrix A should be interpreted as a “pseudo kinetic energy matriz.” As shown below,
this matrix is related to the joint-space kinetic energy matrix by

A (q) = J(q)A™ (q) ] (q). (17)

The above relationship provides a general expression for the matrix A that applies to
both redundant and non-redundant manipulators. Although equation (3) provides a
description of the whole system dynamics for non-redundant manipulators, the equa-
tion associated with a redundant manipulator only describes the dynamic behavior of
its end effector. In that case, the equation can be thought of as a “projection” of the
system’s dynamics into the operational space. The remainder of the dynamics will af-
fect joint motions in the null space of the redundant system. This analysis is discussed
below.

The operational space equations of motion describe the dynamic response of a manipu-
lator to the application of an operational force F at the end effector. For non-redundant
manipulators, the relationship between operational forces, F, and joint torques, T, is

T =.J"(q)F. (18)

However, this relationship becomes incomplete for redundant manipulators that are in
motion. Analysis of the kinematic aspect of redundancy shows that, at a given config-
uration, there is an infinity of elementary displacements of the redundant mechanism
that could take place without altering the configuration of the effector. Those displace-
ments correspond to motion in the null space associated with a generalized inverse of
the Jacobian matrix.

There is also a null space associated with some inverse of the transpose of the Jacobian
matrix. When the redundant manipulator is not at static equilibrium, there is an
infinity of joint torque vectors that could be applied without affecting the resulting
forces at the end effector. These are the joint torques acting within the null space.
With the addition of null space joint torques, the relationship between end-effector
forces and manipulator joint torques takes the following general form:

= JN@F + |1 - J (@) (a)] To, (19)

where 'y is an arbitrary generalized joint torque vector, which will be projected in the
null space of JT#, and JT* is a generalized inverse of JT. Clearly, equation (19) is
dependent on .J T#, and there is an infinity of generalized inverses for JT, namely, {.J T#
| JT = JTJT#JTY. Below, it is shown that only one of these generalized inverses is

consistent with the system dynamics.

We start by applying to the manipulator system (1), a joint torque vector in the
general form (19). To establish the relationship between operational acceleration and
operational force, we premultiply equation (1) by the matrix .J(q)A~'(q) and use the



relationship between joint acceleration and operational accelerations (X — J(q)q =
J(q)q). The resulting equation can be written as

%+ (J(@) A (@b(a,4) ~ J(a)a) + J(a)A™ (@)g(q) =
(J(@A (@) (@) F + J(@)A™ @) [T =T (@) (@] T (20)
This equation expresses the relationship between x and F. the matrix (J(q)A_l(q) JT(q)) ,
which premultiplies F, is homogeneous to the inverse of a kinetic energy matrix. This

matrix, which exists everywhere outside kinematic singularities, is the pseudo kinetic
energy matriz of equation (17)

-1

AMa) = (J(@) A (q))"(q))

Equation (20) shows that the acceleration at the operational point is affected by Ty
unless the term involving Ty is zero. That is, for joint torques associated with the null
space in equation (19) not to produce any operational acceleration, it is necessary that

J@)A™ (@) [1 = T (a)J*" (q)| To = 0. (21)

A generalized inverse of .J(q) satisfying the above constraint is said to be dynamically

consistent (Khatib 1990).

THEOREM 1. DyNAMIC CONSISTENCY. A generalized inverse that is consistent with
the dynamic constraint of equation (21), J(q), is unique and is given by

J(q) = A" (q)J" (q)A(q). (22)

The proof is based on a straightforward analysis of equation (21). This equation can
be rewritten as

[J(@)A (@) = (J(@)A™ (@) (@) T* (q)| To =0,

which, using the definition of A, yields
Aa)J(a)A7 (@) = T* (q).

Notice that J(q) of equation (22) is actually the generalized inverse of the Jacobian
matrix corresponding to the solution of éx = .J(q)dq that minimizes the manipulator’s
instantaneous kinetic energy.



3.1.1 Equations of Motion of Redundant Manipulators

The end-effector equations of motion for a redundant manipulator can be obtained by
using the dynamically consistent generalized inverse in equation (20) and premultiply-
ing this equation by the matrix A(q). The resulting equations are of the same form as
equation (3) established for non-redundant manipulators. In the case of redundancy,
however, the inertial properties vary not only with the end-effector configuration, but
also with the manipulator posture.

Aa)x + p(q,é) + p(q) = F, (23)

where
nla,q) = 7T (a)b(a,d) — Alq)J(q)q, (24)
pla) = 7 (q)g(q). (25)

Equation (23) provides a description of the dynamic behavior of the end effector in
operational space. This equation is simply the projection of the joint-space equations

of motion (1), by the dynamically consistent generalized inverse J (q),

T (@) {A(@d+b(q, @) +ga) =T} = A(@%+pu(q,q)+p(q) =F. (26)

The above property also applies to non-redundant manipulators, where the matrix
—T T
J~(q) reduces to J 7" (q).

3.1.2 Dynamically Consistent Force/Torque Relationship

The dynamically consistent relationship between joint torques and operational forces
for redundant manipulator systems is

=T

I =J"@F + |1 - J"(@)7 (@) To. (27)

This relationship provides a decomposition of joint torques into two dynamically de-
coupled control vectors: joint torques corresponding to forces acting at the end effector

(JTF); and joint torques that only affect internal motions, ([I — JT(q)jT(q)]FO).

Using this decomposition, the end effector can be controlled by operational forces,
whereas internal motions can be independently controlled by joint torques that are
guaranteed not to alter the end effector’s dynamic behavior. This relationship is the
basis for implementing the dextrous dynamic coordination strategy for macro/mini-
manipulators to be discussed in Section 5.3.
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4 Inertial Properties

The analysis of the end-effector inertial properties relies on study of the matrix

Ao(a) = (@A™ (@) (@),

where Jo(q) is the basic Jacobian associated with the end-effector linear and angular
velocities. Using this matrix, Asada (1983) proposed the generalized inertia ellipsoid as
a geometric representation for the inertial properties of a manipulator. An alternative
to the ellipsoid of inertia is the ellipsoid of gyration suggested by Hogan (1984). This
ellipsoid is based on analysis of the matrix, Aj'(q), whose existence is always guaran-
teed. The eigenvalues and eigenvectors of the matrix Ag(q) were used in combination
with the hyper-parallelepiped of acceleration in the design of manipulators aimed at
achieving the smallest, most isotropic, and most uniform inertial characteristics; and
the largest, most isotropic, and most uniform bounds on the magnitude of end-effector

acceleration (Khatib and Burdick 1985, Khatib and Agrawal 1989).

The eigenvalues associated with the matrix Ag(q) or its inverse Ay (q) provide a useful
characterization of the bounds on the magnitude of the inertial properties. However,
these eigenvalues correspond to eigenvectors in a six-dimensional space that combines
translational and rotational motions and are difficult to interpret.

4.1 Inertial Properties and Task Redundancy

When analyzing the inertial properties of manipulators, two distinct types of tasks
are examined: end-effector translational tasks and end-effector rotational tasks. Given
the redundancy of the manipulator with respect to each of these tasks, the dynamic
behavior at the end-effector can be described by a system of equations similar to (23).

First, let us consider the task of positioning the end effector. The Jacobian in this case
is the matrix, .J,(q), associated with the linear velocity at the operational point. The
pseudo kinetic energy matrix is:

AN (@) = Ju(a)A7 (@), (a). (28)

The matrix A;'(q) provides a description of the end-effector translational response
to a force. Consider, for instance, the task of positioning the end effector along the
y-axis, as illustrated in Figure 3-A. The Jacobian associated with this task reduces to
the row matrix J,,(q). The pseudo kinetic energy matrix in this case is a scalar, m,,
representing the mass perceived at the end effector in response to the application of a
force f, along the y axis:

— = JL,,(@)A7(q) /] (q).

my
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Figure 3: Effective mass (A) and effective inertia (B).

With yg representing the unit vector along the y-axis, the matrix J,,(q) can be written
as

va(q) = ygjv(q)a

and

1
_—.YOA Yo-
m

Y

For rotational tasks, the Jacobian involved is the matrix .J,(q) associated with the
angular velocity measured about the different axes of the operational frame. The
pseudo kinetic energy matrix is:

AZNa) = L(a@)A™(a) 1 (). (29)

The matrix AJ'(q) provides a description of the end-effector rotational response to
a moment. Consider now the task of rotating the end effector about the z axis, as
illustrated in Figure 3-B. The Jacobian associated with this task is the row matrix

Ju.(q) = 2§ Ju(q).

Zo 1s the unit vector along the z-axis. The pseudo kinetic energy matrix in this case
is a scalar, [I,, representing the inertia perceived at the end effector in response to a

12



moment I', applied about the z-axis:

1
7 = ZOTAJI(CI)ZO-

z

4.2 Effective Mass/Inertia

The above analysis can be easily extended for translational and rotational motions
along or about an arbitrary direction. If u is the unit vector describing this direction,
the inertial properties can be analyzed by considering the two matrices .J,,(q) and
Ju.(q). These matrices are given by

Ju (q) = uTJU(q) and J,, (q) = uTJw(q).

The effective mass, mu(A,), perceived at the operational point along a direction u is
given by
o u’AJ (q)u. (30)
mu(Au) v
Starting from rest, the inverse of magnitude of the effective mass is equal to the
component of the linear acceleration along the direction u that results in response
to a unit force applied along u.

The effective inertia, In(Ay), perceived at the operational point about a direction u
is given by
1
La(Ay)
Starting from rest, the inverse of magnitude of the effective inertia is equal to
the component of the angular acceleration about the direction u that results in
response to a unit moment applied about u.

=u'A7 (q)u. (31)

4.3 Structure of Aj'

We have seen that the end-effector translational response to a force and its rotational
response to a moment can be characterized by the matrices A;'(q) and AJ'(q), re-
spectively. These two matrices have been established separately by considering pure
translational motion tasks and pure rotational motion tasks.

Consider again the matrix (Jo(q)A_l(q) Jg(q)) expressed in terms of the matrix A~*(q)

and the basic Jacobian Jo(q). The basic Jacobian matrix can be written as

Jo(a) = [ﬂg;] : (32)

13



Figure 4: Effective mass/inertia (ellipsoid representation).

where .J,(q) and .J,(q) are the two block matrices associated with the end-effector linear
and angular velocities, respectively. Using this decomposition, the matrix Ag'(q) can

S [AM (@) Avu(q)
Ao'la) = lew(q) A;l(q)]’

where A,(q) is the matrix given in equation (28) and A,(q) is the matrix given in

be written in the form

(33)

equation (29). The matrix A,,(q) is given by

Aow(a) = Ju(a)A™ ' (q) /2 ().

The matrix A,(q), which describes the end-effector translational response to a force,
is homogeneous to a mass matrix, while A,(q), which describes the end-effector rota-
tional response to a moment, is homogeneous to an inertia matrix. The matrix A, (q)
provides a description of the coupling between translational and rotational motions.

4.4 Belted Ellipsoid

As illustrated in Figure 4, one possible representation of the mass/inertial properties
associated with the two matrices A;'(q) and A'(q) is to use the two ellipsoids:

vIAY (q)v=1 and vTA'(q)v=1.

However, ellipsoid representations only provide a description of the square roots of
effective mass (inertia) in (about) a direction.

14



Figure 5: Construction of belted ellipsoids from ellipsoids.

We propose a geometric representation that characterizes the actual magnitude of these
properties. This representation is based on what we have termed the belted ellipsoid.
A belted ellipsoid is obtained by a polar transformation of an ellipsoid. A point on
the ellipsoid surface is transformed to a point located along the same polar line at a
distance equal to the square of the initial point distance. This construction is illustrated
in Figure 5.

A point on the ellipsoid represented by a vector v is transformed into a point on the
belted ellipsoid represented by a vector w. The vector w is collinear to v and is of a
magnitude equal to vI'v. That is,

w = ||v]v.

The equation of a belted ellipsoid, therefore, can be obtained from the equation of an
ellipsoid by replacing the vector v by the vector \/V——V

Ty

The equations for the two belted ellipsoids corresponding to the two matrices AJ'(q)
and AJ'(q) are

TA—l TA—l
vA@Y g YA @V (34)
vTlv vTlv
For instance, the ellipsoid
22 g2 2
atpta=!
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Figure 6: Examples of belted ellipsoids.

becomes
22 2 2

Yy z
=1
a2 /1’2—|—y2—|—22+62 /1;2_|_y2_|_22+62 /$2+y2_|_22

Two examples of belted ellipsoids are shown in Figure 6.

Figure 7: Effective mass of a redundant manipulator.

For a redundant manipulator, the inertial properties perceived at a given position
and orientation of the end effector vary with the manipulator configuration. This is
illustrated for the effective mass in Figure 7 using belted ellipsoids.

5 Macro/Mini-Manipulator Systems

Pursuing the investigation of inertial characteristics, we now consider the case of sys-
tems resulting from the serial combination of two manipulators. The manipulator con-
nected to the ground will be referred to as the macro-manipulator. 1t has ny; degrees

16



of freedom, and its configuration is described by the system of nj; generalized joint
coordinates qps. The second manipulator, referred to as the mini-manipulator, has n,,
degrees of freedom and its configuration is described by the generalized coordinates q,,.
The resulting structure is an n-degree-of-freedom manipulator with n = nyr + n,,. Its

T
configuration is described by the system of generalized joint coordinates q = [qﬂ qﬁ] .
If m represents the number of effector degrees of freedom of the combined structure,
nys and n,, are assumed to obey

ny > 1 and Ny = M. (35)

This assumption says that the mini-manipulator must have the full freedom to move
in the operational space. The macro-manipulator must have at least one degree of
freedom.

5.1 Kinematics of Macro/Mini Structures

The configuration of the macro-manipulator is described with respect to a reference
frame Ry and the configuration of the mini-manipulator structure is described with
respect to a frame Rys attached to the last link of the macro-manipulator, as illustrated
in Figure 8. The coordinate frame associated with the operational point is denoted by
Re. Let Sy(qar) be the transformation matrix describing the rotation between the
frames Ry and Ry.

Let pas be the vector connecting the origins of frames Ry and Ry, and p,, the vector
connecting those of Ry and Rg. The position of the operational point, with respect
to Ro, is described by the vector

P = PmM + Pn.

If vy and wys represent the linear and angular velocities at the origin of frame Ry
attached to the last link of the macro-manipulator, the linear velocity at the operational
point is

V=VyM+ Vy+ Wy XPm
where v, represents the linear velocity at the operational point resulting from the
motion of the mini-manipulator. The angular velocity at the end effector is

W =wp + wpy,.

Thus, the linear and angular velocities at the operational point expressed with respect
to the reference frame Ry are

P Pl ot B e | Al R
“I(Ro) 0 I WM 1 (Rrg) 0 Sullemlr,,
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Figure 8: Kinematics of a macro-/mini-manipulator system

where P, (o) is the cross-product operator associated with the position vector p,, () and
expressed in Ro. If Jaro)(qnr) and Jy,(0)(qm ) are the basic Jacobian matrices associated
with two individual manipulators, the basic Jacobian matrix associated with the serial
combination can be expressed as

Jo = [VJM(O) Jm(O) ]7 (37)

where

|1 —f’mm)]
v_[o no ] (38)

5.2 Dynamics of Macro/Mini Structures

The kinetic energy matrix, A(q), of the combined system can be decomposed in block
matrices corresponding to the dimensions of the two manipulators’ individual kinetic
energy matrices
A A
Alq) = [ ] 39
(CI) A?Q A22 ( )
LEMMA 1. The n,, Xn,, joint-space kinetic energy matriz, A,,, of the mini-manipulator
considered alone is identical to the matriz Agy of (39).
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Proof. The kinetic energy of the combined macro/mini-manipulator is

) 1. )
T(q,q) = §qTA g.

The kinetic energy associated with the mini-manipulator considered alone is

1. .
T, = §qanmqm.

T, must be identical to T'(q, q)|¢,,=o,

Lo &)

. A A 0 1
e =0 a4 42)[ 2]

. T .
U= 24T Avsipn 40
A?Q AQQ G 9 q,, 4229 ( )

which implies the identity between A,, and Ayy. O

The operational space pseudo kinetic energy matriz Ay associated with the linear and
angular velocities is defined by (JoA=1JI)~1.

LEMMA 2. The operational space pseudo kinetic energy matrix Ay associated with
the macro/mini-manipulator and the operalional space kinetic energy matrix Ap, (o
associated with the mini-manipulator are related by

Agl = A;l(o) + KC? (41)

where
Ac = (Vo) = Iy Azs An1) (Ann — AL A Ast) ™ (Vo) — o) Azs Azi)T. (42)

Proof. The proof is based on a special matrix decomposition of the kinetic energy
matrix A. A is a symmetric positive definite matrix. The sub-matrix Ay, is nonsingular.
Therefore, the matrix A can be decomposed (Golub and Van Loan 1983) as

I AT A4 o I 0
A — 214422 :| 11 [ :| 4
b [ 0 An|lAZAn 1] (43)

where

A = (A — AleAz}lAzl)_l- (44)

The matrix Ag! is

1 01[Ax 0 ][] — A5 An
[V o) Jm(O)][_A2—21A21 ]H 0 Ay ]Lo I

JL VT
ue )
m(0)

Substituting A,, for Ay in the above expression yields equations (41) and (42). O
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Figure 9: Inertial properties of a macro/mini-manipulator.

The inertial properties of the macro/mini-manipulator are represented by the m x m
matrix, Ag. The magnitude of these properties in a direction represented by a unit
vector w in the m-dimensional space can be described by the scalar

1

J\V(AO> = m7

which represents the effective inertial properties in the direction w.

THEOREM 2. REDUCED INERTIAL PROPERTIES. The operational space pseudo kinetic
energy matrices Ag (combined mechanism), and A,y (mini-manipulator) salisfy

ow(Ao) < ow(Amo)), (46)

in any direction w.

The magnitudes of the inertial properties of the macro/mini-manipulator system shown
in Figure 9, at any configuration and in any direction, are smaller than or equal to the
magnitudes of the inertial properties associated with the mini-manipulator.

Proof. The proof of this theorem involves the following two steps:

1. Relationship. Equation (41) yields,

wlAy'w = WTA;LI(O)W + wlAcw.
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This relation can be written as

1 1 N
— a,
O-W(/\O) JW(Am(O))
where
a=wlAow. (47)

Completion of the proof requires to show that o > 0, that is to show that Ag is a
non-negative definite matrix.

2. Non-negative Definition of Ac. Examination of equation (45) shows Ay = (A1 —
AglAQ_QIAgl)_l to be the upper diagonal block matrix in the inverse of A. (A —
AT A3} Ay1)7! s thus a positive definite matrix, which can be written as BBT. Using
this form in the expression of A¢ in equation (42) shows that the matrix A¢ itself can be
written as C'CT. This implies that Ag is a non-negative definite matrix. Substituting
this result in equation (47) completes the proof of the theorem. O

The reduced effective inertia result obtained for the matrix Ay also applies to the
matrices A, and A,. The matrix A, can be obtained from Ag by replacing the Jacobian
Jo by the matrix

J,=[1 0].Jo. (48)

Using equations (48), the decomposition of equation (41) takes the form

ATV = A + Ao, (49)
where ;
Ko = (1 0)e (). (50)

This shows that, like A¢, Kc(u) is a non-negative definite matrix. The same procedure
can be applied to A, using
J,=[0 1].Jp. (51)

COROLLARY 1. REDUCED EFFECTIVE INERTIA. The effective mass (inertia) in
(about) any direction u of a macro/mini-manipulator system is smaller than or equal
to the effective mass (inertia) associated with the mini-manipulator in (about) that
direction:

my(Ay) < my(Appy) and L(AL) < L(Amw)); (52)
as defined in Section 4.2.

Example. A Three-Degree-of-Freedom Manipulator. Let us consider the three-degree-
of-freedom manipulator shown in Figure 10. This manipulator is redundant with re-
spect to the task of positioning the end effector. In this example, the mini-manipulator
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ms + My

Figure 10: A 3 DOF manipulator with a 2 DOF mini-manipulator.

portion involves two degrees of freedom, n,, = 2, and the macro-manipulator portion
has only one degree of freedom, ny; = 1.

With respect to frame R4, the Jacobian associated with the end-effector position takes
the simple form
—q3 1 0]
Jo1y = .
o [ ¢ 0 1
The joint-space kinetic energy matrix is

I+ magi + ma(qs + q3)  —mags  maqe
Alq) = —msqs my + ma 0
ms3q2 0 ms3

where [; is the inertia of link 1 about joint axis 1 and where my and ms are the
masses of link 2 and link 3. For simplicity we have assumed that the center of mass of
link 2 is located at joint axis 3 and the center of mass of link 3 is located at the end
effector. The kinetic energy matrix, A, (o), associated with the two-degree-of-freedom

mo —|— ms 0

ms

mini-manipulator is

In frame R, the kinetic energy matrix, Ag(), associated with the three-degree-of-
freedom macro/mini-manipulator is

X 0

0 ms
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where ; )
1t magy

L+ ma(e +q3)
The inertial properties of the macro/mini-manipulator and the mini-manipulator are
illustrated in Figure 10. The belted ellipsoids shown in this figure correspond to the
eigenvalues and eigenvectors associated with the matrices Ag(1) and A, ).

n

With respect to frame Rg, the kinetic energy matrix, Ag is
Ao = Q/\0(1)QT§

where )
cos(q1) —sin(q1)
sin(g1)  cos(q1)

A more general statement of Theorem 2 is that the inertial properties of a redundant
manipulator are bounded above by the inertial properties of the structure formed by the
smallest distal set of degrees of freedom that span the operational space. The equality
of the inertial properties in Theorem 2 is obtained for mechanisms that involve only
prismatic joints (Khatib 1990).

5.3 Dextrous Dynamic Coordination

The dynamic performance of a macro/mini-manipulator system can be made compa-
rable to (and, in some cases, better than) that of the lightweight mini-manipulator.
The basic idea behind the approach for the coordination of macro and mini structures
is to treat them together as a single redundant system. High dynamic performance for
the end-effector task (motion and contact forces) can be achieved with an operational
space control system based on equation (23). Minimizing the instantaneous kinetic
energy, such a controller will attempt to carry out the entire task using essentially the
fast dynamic response of the mini structure. However, given the mechanical limits on
the mini structure’s joint motions, this would rapidly lead to joint saturation of the
mini-manipulator degrees of freedom.

The dextrous dynamic coordination we propose is based on combining the operational
space control with a minimization of deviation from the midrange joint positions of the
mini-manipulator. This minimization must be implemented with joint torque control
vectors selected from the dynamically consistent null space of equation (27). This will
eliminate any effect of the additional control torques on the end-effector task.

Let g; and ¢, be the upper and lower bounds on the i*" joint position ¢;. We construct
the potential function

— 2
- 7+,
VDextrous(q) = kd Z (% - _Z) ) (53)

i:nM—i—l 2
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where k4 is a constant gain. The gradient of this function

FDextrous - _VVDextrous; (54)

provides the required attraction (Khatib 1986) to the mid-range joint positions of the
mini-manipulator. The interference of these additional torques with the end-effector
dynamics is avoided by projecting them into the null space of J7(q). This is

=T

i = L= J7(@)7" (@)] Tbextrous: (55)

In addition, joint limit avoidance can be achieved using an “artificial potential field”
function (Khatib 1986). It is essential that the range of motion of the joints associ-
ated with the mini-manipulator accommodate the relatively slower dynamic response
of the arm. A sufficient margin of motion is required to achieve dextrous dynamic
coordination.

This approach has been implemented for the coordination and control of a free-flying
robotic systems (Russakow and Khatib 1992). In the context of this system, several
other internal motion behaviors have been proposed for the coordination of the free-
flying base, treated as a macro structure, and the manipulator, considered as the
relatively lightweight mini structure.

6 Multi-Effector/Object System

We now consider the problem of object manipulation in a parallel system of N manip-
ulators. The effectors are assumed to be rigidly connected to the manipulated object.
The number of degrees of freedom of the parallel system will be denoted by n;.

First, we will consider the case of a system of N non-redundant manipulators that all
have the same number of degrees of freedom, n. The end effectors are also assumed to
have the same number of degrees of freedom, m (m = n). Under these assumptions,
the number of degrees of freedom of the parallel system in the planar case (n = m = 3)
is ns = 3. In the spatial case (n = m = 6), this number is n, = 6.

6.1 Augmented Object Model

To analyze the dynamics of this multi-effector system, we start by selecting the oper-
ational point as a fixed point on the manipulated object. Because of the rigid grasp
assumption, this point is also fixed with respect to the end effectors. The number of
operational coordinates, m, is equal to the number of degrees of freedom, n;, of the sys-
tem. Therefore, these coordinates form a set of generalized coordinates for the system
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in any domain of the workspace that excludes kinematic singularities. Thus, the ki-
netic energy of the system is a quadratic form of the generalized operational velocities,
2 %xTAg(x)%. The m x m kinetic energy matrix Ag(x) describes the combined inertial
properties of the object and the N manipulators at the operational point. Ag(x) can
be viewed as the kinetic energy matrix of an augmented object representing the total

mass/inertia at the operational point.

Now let Az(x) be the kinetic energy matrix associated with the object itself. We will
analyze the effect of this load on the inertial properties of a single manipulator and
generalize this result to the N-manipulator system to find Ag(x).

6.1.1 Effect of a Load

The kinetic energy matrix A(x) associated with the operational coordinates x describes
the inertial properties of the manipulator as perceived at the operational point. When
the end effector carries a load (see Figure 11) the system’s inertial properties are
modified. The addition of a load results in an increase in the total kinetic energy. If
we let m . be the mass of the load and Z, ) be the load inertia matrix evaluated with
respect to its center of mass p¢, the additional kinetic energy resulting from the load
is

1
T = (mevive + @' Trew) (56)

where ve and we are the linear and angular velocities measured at the center of mass
with respect to the fixed reference frame. The kinetic energy matrix associated with
these velocities is

I 0
Aoy = [mﬁ ] ;

0 I

where I and 0 are the identity and zero matrices of appropriate dimensions.

(57)

To compute the kinetic energy matrix with respect to the operational point, we define
r as the vector connecting the operational point to the object’s center of mass pe. The
linear and angular velocities, v and w, at the operational point are related to the linear
and angular velocities at the center of mass by

vl [I t][ve
MEIERIN 5
where T is the cross-product operator associated with vector r. Using the inverse of

this relationship, the kinetic energy matrix associated with the load and expressed with
respect to the velocities at the operational point can be written as

Aoy = [ mel —mgr ] (59)

—mng IL‘ + mEfo
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Figure 11: Center-of-mass/operational-point velocities.

The generalized operational velocities x are related to the linear and angular velocities
by a matrix F(x). Expressed in terms of operational velocities, the kinetic energy
resulting from the load is

1
T: = 5).(TA£(X)).(, (60)
where
Ac(x) = E_T(X)AE(O)E_I(X). (61)

LEMMA 3. The operational space kinetic energy matriz of the effector and load system
is the matrix

Acftectort10ad(X) = Acfrector(X) + Az(X). (62)
This is a straightforward implication of evaluation of the total kinetic energy of the
system with respect to the operational coordinates.

To extend this result to an N-manipulator system, let A;(x) be the kinetic energy
matrix associated with the ™" unconnected end effector expressed with respect to the
operational point.

THEOREM 3. AUGMENTED OBJECT. The kinetic energy matriz of the augmented

object is
N

Ag(x) = Ac(x) + 3 Ai(x). (63)

=1

This results from the evaluation of the total kinetic energy of the N effectors and object
system expressed with respect to the operational velocities,

N
T = %)’(TAE(x))'c s %XTAi(x))'c
=1
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Figure 12: A multi-arm robot system.

The use of the additive property of the augmented object’s kinetic energy matrix of
Theorem 3 allows us to obtain the system equations of motion from the equations
of motion of the individual manipulators. As illustrated in Figure 12, the dynamic
behavior of a multi-effector/object system is described by the augmented object model

Ag(X)X + pa(x,X) + pa(x) = Fg. (64)

The vector, pg(x,%), of centrifugal and Coriolis forces also has the additive property

He (Xv X) = N»C(Xv X) + Z /“(Xv 5()7 (65)

=1

where p1.(x,x) and p;(x, %) are the vectors of centrifugal and Coriolis forces associated
with the object and the :*! effector, respectively. Similarly, the gravity vector is

Pa(X) = pe(x) + ;Pi(x% (66)

where pz(x) and p;(x) are the gravity vectors associated with the object and the 7*!
effector. The generalized operational forces Fg are the resultants of the forces produced
by each of the N effectors at the operational point.

N
=1

The effector’s operational forces F; are generated by the corresponding manipulator
actuators. The generalized joint torque vector I'; corresponding to F; is given by

T, =.J (q) F;
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where q; is the vector of joint coordinates associated with the it manipulator and
JT(q;) is the Jacobian matrix of the ' manipulator computed with respect to the
operational point. The dynamic decoupling and motion control of the augmented
object in operational space is achieved by selecting a control structure similar to that
of a single manipulator (Khatib 1987),

Fg = K@(X)F* + fig (X, X) + Pa(X); (68)

where K@(X), fie(x,X), and pg(x) represent the estimates of Ag(x), pg(x,%), and
Pa(x). With a perfect nonlinear dynamic decoupling, the augmented object (64) under
the command (68) becomes equivalent to a unit mass, unit inertia object, I,,, moving
in the m-dimensional space,

1% = F*, (69)

Here F* is the input to the decoupled system. The control structure for constrained
motion and active force control operations is similar to that of a single manipulator.

The control structure (68) provides the net force Fg to be applied to the augmented
object at the operational point for a given control input, F*. Because of the actuator
redundancy of multi-effector systems, there is an infinity of joint-torque vectors that
correspond to this force.

In tasks involving large and heavy objects, a useful criterion for force distribution is
minimization of total actuator activities (Khatib 1988). In contrast, dextrous manip-
ulation requires accurate control of internal forces. This problem has received wide
attention and algorithms for internal force minimization (Nakamura 1988) and grasp
stability (Kumar and Waldron 1988) have been developed. Addressing the problem
of internal force in manipulation, we have proposed a physical model, the virtual link-
age (Williams and Khatib 1993), for the description and control of internal forces and
moments in multi-grasp tasks. This approach has been used in the manipulation of
objects with three PUMA 560 manipulators.

7 Redundancy in Multi-arm Systems

When redundant structures are involved in multi-arm manipulation, the number of
degrees of freedom of the entire system might increase. When this happens, the con-
figuration of the whole system cannot be uniquely described by the set of parameters
that specify only the object position and orientation. Therefore, the dynamic behavior
of the entire system cannot be described by a dynamic model in operational coordi-
nates. As in the single redundant manipulator case, however, the dynamic behavior
of the augmented object itself can still be described, and its equations of motion in
operational space can still be established.
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Figure 13: Redundancy in multi-arm systems.

The number of degrees of redundancy of the multi-arm system can be defined by ny,—m,
where m is the number of degrees of freedom of the augmented object. Obviously, the
freedom of the object is restricted by the freedom of the effectors. If m; is the number
of degrees of freedom for the i*h effector before connection to the object, the number,
m, of degrees of freedom the connected object has will satisfy

m < mzm{mz} (70)

The inequality in (70) reflects the fact that additional constraints can be introduced
by the connection of effectors.

When the multi-manipulator system is redundant, (i.e., ny > m), this implies that one
or more manipulators must be redundant. In this case, the redundancy of the system
can either be localized in one manipulator or distributed between several manipulators.
If n; represents the number of degrees of freedom for the ¢*" manipulator, the number
of degrees of redundancy of the i*® manipulator is given by n; — m. Only one of the
two manipulators in Figure 13-A is redundant (one degree of redundancy), and both
manipulators in Figure 13-B are redundant (one degree of redundancy each).

7.1 Augmented Object in a Redundant System

To establish the augmented object dynamic model for redundant manipulators, we first
determine the number of degrees of freedom of the object, m (m < min;{m,}). The
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dynamic behavior of the augmented object is then obtained by summing the dynamic
properties of the individual manipulators in this m-dimensional operational space. The
dynamics of each manipulator will be “projected” into the m-dimensional operational
space following the same procedure described for a single redundant manipulator. At
this point, the dynamic behavior of each of the effectors will be described by an equation
of the form (3). The dynamic behavior of the augmented object system will be given
by an equation similar to equation (64), which was established for the non-redundant
multi-arm system. In this case, however, the inertial properties of the augmented
object are dependent on the full configuration of the system, which is described by

T
a=(af a ... ay) .

In this equation, q; is the vector of generalized joint coordinates for the :*" manipulator.
The pseudo kinetic energy matrix of the redundant multi-arm system is

Ag(q) = Ac(x) + Z_: Ai(q;). (71)

Dynamic decoupling and control of the multi-effector/object system can be achieved
by selecting the same control structure (68) used in the non-redundant case. However,
as in the case of a single redundant manipulator, dynamics in the null spaces associated
with the redundant manipulators must be calculated and controlled. This requires the
identification of dynamically consistent relationships between joint torque vectors and
end-effector operational forces.

7.2 Dynamic Consistency in Multi-arm Systems

In the case of a single redundant manipulator, we have seen that the general relationship
between joint torques and end-effector forces is based on the use of a dynamically
consistent generalized inverse of the Jacobian transpose. For a single manipulator, this
inverse is given (see equation (22)) by

J(q) = A" (q)J"(q)A(q).

The extension of this relationship to redundant multi-arm systems is complicated by
the fact that the dynamically consistent generalized inverse is dependent on the joint-
space kinetic energy matrix A(q). The joint-space kinetic energy matrix of a redundant
manipulator in a multi-arm system is not simply the matrix associated with the un-
connected manipulator considered alone. Connection of the manipulator to an object
results in increased loading on the effector of this manipulator. This load, which is due
to the object and all the other manipulators connected to it, affects the kinetic energy
matrix of this manipulator.

To analyze this, we will first examine how the joint-space kinetic energy matrix in the
case of a single manipulator is affected by the addition of a simple load.
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Figure 14: Reflected load.

7.2.1 Effect of a Load on a Single Manipulator

The addition of a load to the effector of a single manipulator will result in an increase in
the kinetic energy of the system. Let Ajaa(x) be the kinetic energy matrix associated
with the load and expressed with respect to the operational point.

LEMMA 4. The joint-space kinetic enerqy matriz of a manipulator with load is the

matriz

Aurms103d(@) = Auem(@) + [/ (@) Arona(x)J (q)] - (72)

This result is derived by expressing the total kinetic energy of the combined arm/load

system in joint space:
L. S . 1. .
T =5 [a"Al@a+ %" howa(x)%] = 54" [A(q) + T (@) Aoma(x) (@] 4. (73)
7.2.2 Reflected Load
The pseudo kinetic energy matrix Ag(q) describes the inertial characteristics of the

N-effector/object system as reflected at the operational point. Viewed from a given
manipulator, the object and the other effectors can be seen as a load attached to
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its effector. The additional load perceived by the " manipulator is Ag(q) — A:i(q),
as illustrated in Figure 14. Following Lemma 4, the kinetic energy matrix of the
manipulator resulting from this additional load is

Ay(q) = Ai(q) + 1 (a0) [As(q) — Ai(a)] Ji(q;).- (74)

THEOREM 4. DYNAMIC CONSISTENCY IN A MULTI-ARM SYSTEM. The generalized
inverse associated with the 1™ manipulator and consistent with the dynamic behavior
of the mulli-effector/object system is

Jil@) = A7 (@) T (@) [Ji(a) AT (@) 7 (a)] (75)

Finally, the joint torque end-effector force relationship for the i*" manipulator is
T; = (q)Fs + [ L~ I (@) I (a)] T, (76)

where T';, is an arbitrary joint-torque vector. Asymptotic stabilization (Khatib 1987),
dextrous dynamic coordination, link collision avoidance (Khatib 1986), and control of

manipulator postures can all be integrated in the vector I';,, which causes no acceler-

i)
ation at the operational point.

8 Summary and Discussion

This article has presented a study of dynamics and control for robotic systems involving
redundant series and parallel kinematic structures. A distinctive characteristic of this
study is its focus on mathematical models and control strategies that relate to the
behavior of the object being manipulated.

The analysis of inertial properties perceived at the manipulated object has resulted in
two models: an effective mass that describes the dynamic response to a contact force
or for a translational motion, and an effective inertia that describes the response to a
moment or for a rotational motion. To visualize the effective mass and inertia, we have
proposed a new geometric representation, the belted ellipsoid, that provides a display
of the actual magnitudes of these properties.

Macro/mini-manipulators are redundant series structures. The description of the dy-
namic behavior of the manipulated object in a redundant structure has been obtained
by a projection of the system’s dynamics into the operational space. Control of the
remainder of the dynamics, which affects joint motions in the null space, is achieved
by formulating a dynamically consistent relationship between joint torques and end-
effector forces. With this relationship, joint torques are decomposed into two dynami-
cally decoupled control vectors: joint torques corresponding to forces acting at the end
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effector and joint torques that only affect internal motions. Using this decomposition,
the end effector can be independently controlled by operational forces, whereas internal
motions can be controlled by joint torques that are guaranteed not to alter the end
effector’s dynamic behavior. In addition to their impact on the control of redundant
manipulators, these models have been the basis for the development of an effective
strategy for dealing with kinematic singularities. With this strategy, a manipulator
at a singular configuration is treated as a redundant system in the subspace orthog-
onal to the singular direction. This strategy has been implemented for a PUMA 560
manipulator in operations involving multiple singularities.

Our analysis of inertial properties for macro/mini-manipulator systems has shown that
for all directions and configurations, the effective mass/inertia of a macro/mini-mani-
pulator is smaller than or equal to the inertia associated with the mini-manipulator
structure, considered alone. To allow the mini-structure’s high bandwidth to be fully
utilized in wide range operations, we have proposed a dextrous dynamic coordina-
tion strategy that uses the system’s internal motions to minimize deviation from the
midrange joint positions of the mini-manipulator. Effective implementation of this
strategy relies on preventing any effects of the internal motion from influencing the
primary end-effector task. This is achieved by using the dynamically consistent rela-
tionship between joint torques and end-effector forces.

The dextrous dynamic coordination can be quite simply extended to the coordination of
holonomic mobile manipulator platforms. A mobile manipulator system can be viewed
as the mechanism resulting from the serial combination of two sub-systems: a macro
structure with coarse, slow, dynamic responses (the mobile base), and a relatively fast
and accurate mini device (the manipulator). The results obtained for fixed-base redun-
dant manipulation systems directly extend to holonomic mobile manipulator systems.
This approach has been implemented for the coordination and control of a free-flying
robotic system (Russakow and Khatib 1992).

Analyzing the inertial properties of multi-arm robot systems, we have presented an
important additive property of parallel structures. It has been shown that the inertial
properties perceived at the manipulated object are given by the sum of the inertial
properties associated with each individual manipulator and the inertial properties of
the unconstrained object, all expressed with respect to the same operational point.
Centrifugal, Coriolis, and gravity forces have also been shown to possess this additive
property. Combining the dynamics of the individual manipulators and object, we
have proposed the augmented object as a model of the dynamics at the operational
point for the multi-arm robot system. This approach has been implemented for object
manipulation involving two and three PUMA 560 manipulators (Williams and Khatib
1993). In these implementations, the description and control of internal forces and
moments have been based on the virtual linkage model.

The augmented object model and the dynamically consistent force/torque relationship
have been extended for multi-arm systems involving redundancy. We are currently
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Figure 15: Robotics in Construction: Drywall

using these models in conjunction with the dextrous dynamic coordination strategy for
cooperative operations between multiple vehicle/arm systems in construction tasks, as
illustrated in Figure 15.

By providing object-level models of robot dynamics, the operational space framework
overcomes many of the deficiencies associated with joint-space formulations. It is im-
portant to emphasize the fact that the performance of operational space implemen-
tations relies on the robot’s ability to achieve effective control of joint torques. This
capability is, in fact, a key requirement for any dynamic control implementation —
including joint-space implementations.
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