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Chapter 1

Spatial Descriptions

1.1 Rigid Body Configuration

A manipulator is a mechanical system formed by the connection of a
set of rigid bodies, links, through joints. Joints provide each pair of
connected links with some freedom of relative motion. The description
of the spatial location of a rigid body is therefore the basis for the
spatial description of a manipulator.

The configuration of a rigid body is a description of its position and
orientation. The position of a rigid body is determined by a descrip-
tion of the position of an arbitrary point attached to the rigid body.
The orientation of a rigid body is determined by the description of its
rotations about this point.

Position of a Point

Let us consider a point P of an Euclidean affine space E, where an
arbitrary point O has been selected as the origin. The position of P is

1



2 CHAPTER 1. SPATIAL DESCRIPTIONS

given by the vector p = ~OP . With respect to O, the positions of points:
P1, P2,..., Pn are described by the vectors: p1 = ~OP1, p2 = ~OP2,...,
pn = ~OPn.

For points of the 3-dimensional space, positions are described by vectors
p ∈ R3. Let {x,y, z} be an orthonormal basis of R3. The components
of a vector p with respect to this basis are identical to the coordinates
of P given with respect to the coordinate frame R(O,x,y, z).
Taking the components of the vector p with respect to another or-
thonormal basis {x′,y′, z′} correspond to a representation of P in a
coordinate frame having the same origin, O, and using the unit vectors
x′, y′, z′, i.e. R′(O,x′,y′, z′), as shown in Figure 2.1. The relationship
between these two representations is given by the base transformation
or the coordinate transformation between the two frames of same origin.

x
O

y

z

p

P

x′

y′

z′

Figure 1.1: Position of a Point

With respect to a different origin, O′, the vector describing the position
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of point P is p′ = ~O′P. Although p′ and p describe the position of the
same point, these two vectors are different.

Rotation Transformation

Rotation transformations are transformations that operate on the unit
vectors of coordinate frames, while conserving the frame origins. These
transformations are equivalent to transformations between orthonormal
bases. A rotation transformation is defined by the relationships between
the unit vectors of two coordinate frames. The rotation transformation
between R(O,x,y, z) and R′(O,x′,y′, z′), of identical origin O (see
Figure 2.2), is described by a 3 × 3 orthonormal rotation matrix S.
The columns of S are the components of the three unit vectors x′, y′,
and z′ expressed in the coordinate frame R.

x

y

z

RR′

O

x′

y′

z′

Figure 1.2: Rotation Transformation.

S = (x′
(R) y′

(R) z′(R) ). (1.1)

Since S is an orthonormal matrix, its inverse is equal to its transpose,

S−1 = ST . (1.2)
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The rows of S define, therefore, the components of the three unit vectors
x, y, and z expressed with respect to the coordinate frame R′,

S =




xT(R′)

yT(R′)

zT(R′)


 . (1.3)

Compound Rotations

The rotation matrix associated with a transformation resulting from a
set of consecutive rotation transformations is given by the product of
the corresponding rotation matrices.

Rigid Body Orientation

The orientation of a rigid body with respect to some reference frame R
is described by the rotation transformation between R and a coordinate
frame R′ attached to the rigid body.

Translational Transformation

Translational transformations define the relationships between origins
of coordinate frames. The translational transformation of a coordinate
frame R(O,x,y, z) into R′(O′,x,y, z) (see Figure 2.3), is described by
a 3 × 1 column matrix d. d defines the coordinates of the origin O′ of
R′ in the coordinate frame R.

Coordinate Transformation

Coordinate transformations define the relationships between coordi-
nate frames. A coordinate frame R(O,x,y, z) can be transformed into
any arbitrary coordinate frame R′(O′,x′,y′, z′) by a rotation transfor-
mation and a translation transformation, as shown in Figure 2.4. If
p′ = (x′ y′ z′)T is the column matrix representing the coordinates in R′
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x

y

z

R

R′

O

O′

d
x′

y′

z′

Figure 1.3: Rotation Transformation.

of some point P, then the coordinates p = (x y z)T in R of the point
P are given by the relationship

p = Sp′ + d. (1.4)

Homogeneous Transformation

The homogeneous transformation provides a compact matrix represen-
tation of coordinate transformation. A coordinate transformation be-
tween R and R′ that involves a rotation transformation S and a trans-
lation transformation d is represented by the 4 × 4 matrix,

T =
(
S d
0 1

)
. (1.5)

Unlike S, the matrix T is not orthonormal. Its inverse is given by

T−1 =
(
ST −STd
0 1

)
. (1.6)
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x

y

z

O

O′

R

R′

d

x′

y′

z′

Figure 1.4: Coordinate Transformation.

With homogeneous transformations, the relationship (1.4) becomes,

(
p
1

)
= T

(
p′

1

)
. (1.7)

Compound Transformations

In consecutive transformations, the matrices associated with homoge-
neous transformations operate similarly to rotation matrices. The ma-
trix associated with a transformation resulting from a set of consecutive
transformations is given by the product of the corresponding homoge-
neous transformation matrices.

Rigid Body Position and Orientation

The position and orientation of a rigid body with respect to a coordinate
frame R(O,x,y, z) is defined by the coordinate transformation between
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R and an arbitrary coordinate frame R′(O′,x′,y′, z′) fixed with respect
to the rigid body, as shown in Figure 2.5. The position of the rigid body
is described by the translational components of this transformation,
while the orientation of the rigid body is described by the rotational
components.

x

y

z

O

O′

R

R′

d

x′

y′

z′

Figure 1.5: Rigid Body Position and Orientation.
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1.2 Manipulator Kinematics

A manipulator is treated as a holonomic system with a structure of an
open kinematic chain of n+1 rigid bodies, i.e., links, articulated through
n revolute and/or prismatic joints having one degree of freedom.

link 0

joint 1

link 1

joint 2

link n

joint n

Figure 1.6: An Open Kinematic Chain.

The kinematic relationship between a pair of adjacent links in the chain
is described by the coordinate transformation between two coordinate
frames attached to the two links. Links are numbered from 0, the
base, to n, the end-effector, while joints are numbered from 1 to n (see
Figure 2.6).

A coordinate frame Ri(Oi,xi,yi, zi) is attached to link i. The position
and orientation of the link i with respect to link i−1 is described by the
transformation between a coordinate frame Ri−1(Oi−1,xi−1,yi−1, zi−1)
attached to the link i− 1 and Ri.

The z−axis, zi, of a coordinate frame Ri are selected along the axis of
joint i.
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Parameters of Denavit-Hartenberg

The kinematic relationship between a pair of adjacent links i− 1 and i
connected through a one-degree-of-freedom joint i can be completely de-
termined by a set of four parameters (αi, ai, θi, ρi), called parameters of
Denavit-Hartenberg. These parameters define the homogeneous trans-
formation between the two coordinate frames attached to the two links.
With the convention shown in Figure 2.7, the Denavit-Hartenberg pa-
rameters are defined as

αi : the angle between the z-axes of Ri and Ri+1, measured1 about xi;

ai : the length of the common normal to the z−axes of Ri and Ri+1,
measured along xi;

θi : the angle between the x-axes of Ri−1 and Ri measured about zi.

ρi : the distance between the x-axes of Ri−1 and Ri measured along
zi.

T(i−1)i =




cos θi − sin θi 0 a(i−1)

sin θi cosα(i−1) cos θi cosα(i−1) − sinα(i−1) −ρi sinα(i−1)

sin θi sinα(i−1) cos θi sinα(i−1) cosα(i−1) ρi cosα(i−1)

0 0 0 1


 .

(1.8)

Generalized Coordinates

Configuration Parameters of a Mechanism: Any set of param-
eters that allow to completely specify, in a frame of reference R0, the
positions and orientations of all links of the mechanism, i.e. its config-
uration.

1in the right-hand sense
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zi

zi+1

xi+1

xi
ai

αi

θi+1

ρi+1

Figure 1.7: Denavit-Hartenberg Parameters

Generalized Coordinates: A set of independent configuration pa-
rameters forms a system of generalized coordinates for the mechanism.
The number of these independent parameters is defined as the number
of degrees of freedom.

Joint Coordinates: With revolute and/or prismatic joints, a chain
of n + 1 articulated links possess n degree-of-freedom, and a set {q1,
q2, . . ., qn} of n joint coordinates can be selected as a generalized coor-
dinate system for the manipulator. Let us define the binary parameter

εi =

{
0 for a revolute joint θi;
1 for a prismatic joint ρi.

(1.9)

The ith generalized coordinate can then be written as

qi = ε̄iθi + εiρi; (1.10)

with
ε̄i = 1 − εi. (1.11)

The configuration of the manipulator can then be described by the
vector q of components q1, q2, . . . , qn in the manipulator joint space.
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Operational Coordinates

The end-effector configuration is described by the relationships between
the reference frame R0 and a coordinate frame attached to the end-
effector. Although the coordinate frame Rn could be used for establish-
ing these relationships, it is often more convenient to select a different
coordinate frame whose origin is not located at the axis of joint n.

Rn+1

On+1

RO

OO

Figure 1.8: End-Effector Position and Orientation

Let O(n+1) be the selected origin for the additional frame. The config-
uration of the end-effector can be defined by the relationships between
R0 and the coordinate frame R(n+1), as illustrated in Figure 2.8.

End-Effector Configuration Parameters: Any set of parameters
that allow to completely specify, in a frame of reference R0, the posi-
tions and orientations of the end-effector, i.e. the configuration of the
end-effector.

Various sets of parameters, x1, x2, . . . , xm can be used for the descrip-
tion of the end-effector configuration. The number m of parameters
varies from one representation to another.
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Task Configuration Parameters: A task that involves the posi-
tion and/or the orientation of the end-effector can be specified by a
subset mk of the m end-effector configuration parameters. These mκ

parameters are called the task configuration parameters

Operational Coordinates: An operational coordinate system is a
set x1, x2, . . . , xm0

of m0 independent end-effector configuration pa-
rameters.

The configuration of the end-effector can then be described by the vec-
tor x of components x1, x2, . . . , xm0

in operational space.

End-Effector Degrees of Freedom: The number m0, which is in-
dependent of the selected set of end-effector configuration parameters,
represents a characteristic which is intrinsic to the mechanical struc-
ture of the manipulator and its end-effector. m0 can be viewed as the
number of degrees of freedom of the end-effector.

Redundancy and Task Redundancy

A manipulator is said to be redundant when the number of its degrees
of freedom is greater than the number of its end-effector degrees of
freedom. A given configuration of the end-effector of a redundant ma-
nipulator can be obtained with an infinite number of different configu-
rations of the redundant mechanism, two such configurations are shown
in Figure 2.9. n −m0 represents the number of degrees of redundancy
of a manipulator.

Redundancy can also be defined with respect to a task κ. Let mκ(0) be
the number of independent parameters required to specify the config-
uration of the task. n − mκ(0) is defined as the number of degrees of
redundancy of the manipulator with respect to the task κ.
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Figure 1.9: A Redundant Manipulator

1.3 Manipulator Geometric Model

The manipulator geometric model is the system of m equations de-
scribing the end-effector configuration parameters as a function of the
manipulator joint coordinates.

At a given configuration q of the manipulator, the end-effector position
and orientation are determined by the matrix T0(n+1)(q) defining the
homogeneous transformation between the coordinate frames R0 and
R(n+1). These are the coordinate frames associated with the manipu-
lator’s fixed base and its end-effector, respectively.

T0(n+1)(q) = T01(q1)T12(q2) . . . T(n−1)n(qn)Tn(n+1); (1.12)

where Tn(n+1) is a constant matrix. The homogeneous transformation
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matrix T0(n+1)(q) is

T0(n+1)(q) =
(
S0(n+1)(q) d0(n+1)(q)

0 1

)
. (1.13)

S0(n+1)(q) contains the description of the end-effector orientation, while
d0(n+1) determines the end-effector position. Let x be the m×1 column
matrix of end-effector configuration parameters, and q the n×1 column
matrix of joint coordinates. The manipulator geometric model associ-
ated with the end-effector configuration parameters x can be obtained
from (1.13) and written in the form

x = G(q). (1.14)

G is the m× 1 column matrix of m functions G1, G2, . . . , Gm. Let xp
be the column matrix of coordinates defining the position of O(n+1) in
R0, and xr the column matrix of coordinates defining the orientation of
R(n+1) in R0. The end-effector configuration can then be represented
as

x(q) =
(

xp(q)
xr(q)

)
. (1.15)

Position Representations

The end-effector position, xp(q), is obtained from d0(n+1)(q) which de-
fines the coordinates of the point O(n+1) in the frame of reference R0.
Among the various possible selections of position coordinates (see Fig-
ure 2.10) are,

Cartesian coordinates: xTp = (x y z)T ;

cylindrical coordinates: xTp = (ρ θ z)T ;

spherical coordinates: xTp = (r θ φ)T .
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x

x

yy

z

z

O0

On+1R0
r

ρ
θ

φ

Figure 1.10: Position Representations

Orientation Representations

At a given configuration q of the manipulator the end-effector ori-
entation can be uniquely determined by the transformation matrix
S0(n+1)(q) describing the orientation of the coordinate frame R(n+1)

with respect to the frame of reference R0.

Several different representations can be used to describe the orientation
of the end-effector. One of the most straightforward representations of
the end-effector orientation is based on the direct use of the elements
of S0(n+1)(q).

Direction Cosines

The end-effector rotation matrix S0(n+1)(q) can be written as

S0(n+1)(q) = ( s1(q) s2(q) s3(q) ) . (1.16)
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The direction cosines representation of the end-effector orientation is
given by the 9 × 1 column matrix

xr(q) =




s1(q)
s2(q)
s3(q)


 . (1.17)

This is a redundant representation of the orientation of the end-effector.

Euler Angles

Minimal representations of the orientation can be obtained with an-
gular parameters. A set of three independent angular parameters is
sufficient to describe the orientation of a rigid body with respect to a
reference frame. Among the various angular representations of rigid
body rotation are the Euler angles ψ, θ, and φ. The rotation of R(n+1)

with respect to R0 can be viewed as the result of three consecutive
rotations represented by the matrices:

Sψ =



cψ −sψ 0
sψ cψ 0
0 0 1


 ; Sθ =




1 0 0
0 cθ −sθ
0 sθ cθ


 ; Sφ =



cφ −sφ 0
sφ cφ 0
0 0 1


 .

The total rotation of the end-effector is

S0(n+1)(q) = Sψ Sθ Sφ; (1.18)

which yields

S0(n+1)(q) =



cψcφ− sψcθsφ −cψsφ− sψcθcφ sψsθ
sψcφ+ cψcθsφ −sψsφ+ cψcθcφ −cψsθ

sθsφ sθcφ cθ


 ; (1.19)

where s and c represent the sin and cos functions respectively. The
Euler angles representation of the orientation is

xr(q) =



ψ(q)
θ(q)
φ(q)


 . (1.20)
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With sij denoting the elements of the rotation matrix S0(n+1)(q), and
the assumption s33 6= ±1, the components of xr(q) can be obtained
from (1.19) as,

ψ(q) = sgn(s13) arccos(−s23/
√

1 − s2
33);

θ(q) = arccos(s33); (1.21)

φ(q) = sgn(s31) arccos(−s32/
√

1 − s2
33).

As for all minimal representations of the orientation, the Euler angles
representation can be singular. The singularity of this representation
arises at s33 = ±1 or when (θ = kπ, k: integer). For these configura-
tions, only the difference or the sum of the angles ψ and φ is defined.

Euler Parameters

Rotations Rotations in the three dimensional space can be defined
as the product of two plane symmetries operating on the points of this
space.

Let us consider the two symmetries about the planes U and V. Let u
and v be two unit vectors normal to these planes. Let w be a unit
vector along the line of intersection of the two planes such that u, v,
and w is a right-handed frame.

The transformation resulting from the consecutive application of sym-
metries with respect to planes U and V is equivalent to a rotation about
w by an angle θ which is twice the angle between the vectors u and v,
as shown in Figure 2.12.

This rotation is defined by

u · v = cos θ/2;
u × v = w sin θ/2.

(1.22)

Let w1, w2, and w3 be the components of the unit vector w in a frame
of reference R. The rotation by θ about w is defined by the set of four



18 CHAPTER 1. SPATIAL DESCRIPTIONS

w

vu θ/2

Figure 1.11: Rotations as Two-Plane-Symmetries

parameters
λ0 = cos θ/2;
λ1 = w1 sin θ/2;
λ2 = w2 sin θ/2;
λ3 = w3 sin θ/2.

(1.23)

λ0, λ1, λ2, and λ3 are the Euler parameters (Olinde-Rodrigues Param-
eters). These parameters satisfy the normality condition

λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1. (1.24)

A rotation between two coordinate frames R(O,x,y, z) and R′(O,x′,y′, z′)
can be described by a rotation of an angle θ about a vector w passing
through the origin O. The 3×3 orthonormal rotation matrix S0(n+1)(q)
associated with this rotation transformation is

S0(n+1)(q) =




2(λ0
2 + λ1

2) − 1 2(λ1λ2 − λ0λ3) 2(λ1λ3 + λ0λ2)
2(λ1λ2 + λ0λ3) 2(λ0

2 + λ2
2) − 1 2(λ2λ3 − λ0λ1)

2(λ1λ3 − λ0λ2) 2(λ2λ3 + λ0λ1) 2(λ0
2 + λ3

2) − 1


 .

(1.25)
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Solving Euler Parameters from the above equation is complicated by
the sign determination problem. This problem results from the fact
that equation (1.25) only provides the signs of the products: (λ0λ1),
(λ0λ2), (λ0λ3), (λ1λ2), (λ1λ3), (λ2λ3). Assuming that θ ∈ [0, π], i.e.
λ0 ≥ 0, Euler parameters can be computed as

λ0 = 1
2

√
s11 + s22 + s33 + 1;

λ1 = 1
2
sgn(s32 − s23)

√
s11 − s22 − s33 + 1;

λ2 = 1
2
sgn(s13 − s31)

√−s11 + s22 − s33 + 1;
λ3 = 1

2
sgn(s21 − s12)

√−s11 − s22 + s33 + 1;

(1.26)

where sgn is the sign function. Another algorithm for the computation
of Euler parameters is based on the following observation:

Lemma 1. For all rotations, at least one of the Euler parameters has
a magnitude larger than 1/2.

This is a straightforward result from the normality condition (1.24).
With Lemma 1, it can be assumed that, between two steps of compu-
tation, the sign of the largest Euler parameter is maintained constant.
This assumption is valid as long as the computation servo-rate is not
slower than half of the rotation rate of change (for a servo-rate of 50Hz,
the magnitude of angular velocity must not exceed 100 rad/sec!).

Lemma 1 is the basis for the following algorithm for the evaluation of
the Euler parameters. Starting from a known configuration, the values
at an instant ti of λ(ti) are given by the expressions in one of the four
columns in Table 2.1 corresponding to the parameter with the largest
absolute value at instant t(i−1),

with

∆0 = 2sgn
(
λ0(t(i−1))

)√
s11 + s22 + s33 + 1;

∆1 = 2sgn
(
λ1(t(i−1))

)√
s11 − s22 − s33 + 1;

∆2 = 2sgn
(
λ2(t(i−1))

)√−s11 + s22 − s33 + 1;

∆3 = 2sgn
(
λ3(t(i−1))

)√−s11 − s22 + s33 + 1.

(1.27)
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Table 1.1: Euler Parameters Determination

|λ0((t(i−1))| |λ1(t(i−1))| |λ2(t(i−1))| |λ3(t(i−1))|
λ0(ti) ∆0/4 (s32 − s23)/∆1 (s13 − s31)/∆2 (s21 − s12)/∆3

λ1(ti) (s32 − s23)/∆0 ∆1/4 (s21 + s12)/∆2 (s13 + s31)/∆3

λ2(ti) (s13 − s31)/∆0 (s21 + s12)/∆1 ∆2/4 (s32 + s23)/∆3

λ3(ti) (s21 − s12)/∆0 (s13 + s31)/∆1 (s32 + s23)/∆2 ∆3/4

Euler Angles and Euler Parameters

The relationships between Euler angles and Euler parameters are

λ0 = cos(θ/2) · cos((ψ + φ)/2);
λ1 = sin(θ/2) · cos((ψ − φ)/2);
λ2 = sin(θ/2) · sin((ψ − φ)/2);
λ3 = cos(θ/2) · sin((ψ + φ)/2).

(1.28)

We have seen that the Euler angles representation is singular when
(θ = kπ). For these configurations, only the sum (when k is even) or
the difference (when k is odd) of the angles ψ and φ is defined. However,
relations (1.28) only use the sum and the difference of these angles, and
the singularity of the representation is therefore eliminated with Euler
parameters.



Chapter 2

Manipulator Kinematics

2.1 Kinematic Model

The kinematic model of a manipulator is the system of m equations
which describes the time-derivatives of end-effector configuration pa-
rameters as a function of the manipulator joint velocities. This model
results from the differentiation of the manipulator geometric model,
x = G(q). At a given configuration q, the time derivatives of the
end-effector configuration parameters, ẋ, can be expressed as linear
functions of the joint velocities, q̇. The kinematic model is

ẋ = J(q) q̇; (2.1)

where J(q) is the m× n Jacobian matrix whose elements are

Jij(q) =
∂

∂qj
Gi(q). (2.2)

The Jacobian matrix can be interpreted as the matrix relating the dif-
ferential dq of joint coordinates to the differential dx of end-effector

21
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configuration parameters. The manipulator kinematic relationships can
be then defined by the manipulator differential model

dx = J(q) dq; (2.3)

A third interpretation of the Jacobian matrix is obtained by replacing
the differentials dq and dx by the elementary displacements of joint
coordinates and end-effector configuration parameters. The resulting
relationship is called the manipulator variational model

δx = J(q) δq. (2.4)

2.1.1 Basic Jacobian

v

ω

RO

Figure 2.1: End-Effector Velocities

Different representations of the end-effector position and orientation
result in different kinematic models (and different Jacobian matrices).
However, the kinematic properties of a manipulator are expected to
be independent of the type of representation used for the description
of the end-effector configuration. These properties are described by a
basic kinematic model that is defined independently from the selected
end-effector representation. This model relies on the end-effector linear
and angular velocities.
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Let v and ω be the vectors of the linear and instantaneous angular
velocities at the operational point (xp), as illustrated in Figure 3.1.
The basic kinematic model describes these velocities in terms of the
generalized joint velocities q̇.

The velocity of a link i with respect to link i-1 depends on the type
of joint i. For a prismatic joint, the velocity is described by a linear
velocity vector vi. For a revolute joint, the velocity is described by an
angular velocity vector ωi. These vectors are related to q̇i by

vi = εi zi q̇i;

ωi = ε̄i zi q̇i. (2.5)

ωi ωi

ωi × pi(n+1)

vjpi(n+1)

vj

x0

y0

z0

Figure 2.2: Contribution of joint velocities to end-effector velocities

The contribution of a joint to the end-effector velocities depends on the
type of that joint (see Figure 3.2). A prismatic joint contributes, vi,
to the end-effector linear velocity. A revolute joint contributes, ωi to
the end-effector angular velocity and (ωi×pi(n+1)) to its linear velocity.



24 CHAPTER 2. MANIPULATOR KINEMATICS

The vector pi(n+1) is the vector connecting the origins of frames Ri and
R(n+1). This yields

v =
n∑

i=1

(εizi + ε̄izi × pi(n+1))q̇i; (2.6)

ωn =
n∑

i=1

ε̄iziq̇i. (2.7)

The basic kinematic model is

ϑ
4
=
[
v
ω

]
= JO(q)q̇. (2.8)

In this model, the matrix JO(q), termed the basic Jacobian, is defined
independently of the particular set of parameters used to describe the
end-effector configuration. The general expression of the basic Jacobian
matrix is

JO(q) =




(ε1z1 + ε̄1z1 × p1(n+1)) · · · (εnzn + ε̄nzn × pn(n+1))

ε̄1z1 · · · ε̄nzn


 .

(2.9)
The above form provides a vector representation of the Jacobian matrix.
The expression of this matrix in a given frame is obtained by evaluating
all vectors in that frame. The expressions of equations (2.6 and 2.7) in
the coordinate frame R0 are

v =
n∑

i=1

S0i (εizi + ε̄iẑi pi(n+1)(Ri)
) q̇i; (2.10)

ω =
n∑

i=1

S0i ε̄izi q̇i; (2.11)

where ẑi represents the 3 × 3 operator of cross product by zi and ex-
pressed in Ri. This is

z
4
=



z1
z2
z3


 = zi =




0
0
1


 ; (2.12)
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and

ẑ
4
=




0 −z3 z2
z3 0 −z1

−z2 z1 0


 = ẑi =




0 −1 0
1 0 0
0 0 0


 . (2.13)

In frame R0, the m0 × n basic Jacobian matrix is given by

J0(q) =



S01(ε1z + ε̄1ẑp1(n+1)(R1)

) · · · S0n(εnz + ε̄nẑpn(n+1)(Rn)
)

ε̄1S01z · · · ε̄nS0nz


 .

(2.14)
Let δx0 be the m0-column matrix formed by the elementary displace-
ment δp and the elementary rotation δΦ. The basic variational model
is defined as

δx0
4
=
(
δp
δΦ

)
= J0(q) δq. (2.15)

The basic Jacobian matrix, which is defined independently of the se-
lected representation, characterizes the mobility of the end-effector at
a given configuration.

End-Effector Mobility The mobility of the end-effector at a config-
uration q is defined as the rank of the matrix J0(q).

For some configurations, called singular configurations, the end-effector
mobility locally decreases. A singular configuration is a configuration
q at which the end-effector locally loses the ability to move along or
rotate about some direction of the Cartesian space with any specified
velocity.

2.1.2 Jacobian Matrix

The Jacobian matrix associated with a given representation, x, of the
end-effector configuration can be obtained from the basic Jacobian ma-
trix J0(q) by

J(q) = E(x)JO(q); (2.16)
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The matrix E(x) is only dependent of the type of coordinates selected
to represent the position and orientation of the effector. E(x) is an
m×m0 of the form

E(x) =
(
Ep(xp) 0

0 Er(xr)

)
. (2.17)

2.1.3 Position Representations

Cartesian Coordinates

The matrix Ep(x) associated with xp = (x y z)T is identity matrix of
order 3.

Cylindrical Coordinates

The matrix Ep(x) associated with xp = (ρ θ z)T can be obtained from
the differentiation of the relationships expressing the identity

(x y z)T = (ρ cos θ ρ sin θ z)T ;

with respect to ρ, θ, and z. This is

Ep(x) =




cos θ sin θ 0
−sin θ/ρ cos θ/ρ 0

0 0 1


 . (2.18)

Spherical Coordinates

The matrix Ep(x) associated with xp = (ρ θ φ)T can be obtained from
the differentiation of the relationships expressing the identity

(x y z)T = (ρ cos θ sinφ ρ sin θ sin φ ρ cosφ)T ;

with respect to ρ, θ, and φ. This is

Ep(x) =




cos θ sinφ sin θ sinφ cosφ
−sin θ/(ρ sinφ) cos θ/(ρ sinφ) 0

cos θ cosφ/ρ sin θ cosφ/ρ −sin φ/ρ


 . (2.19)
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2.1.4 Rotation Representations

Direction Cosines

With the direction cosines representation, the end-effector orientation
is described by the 9 × 1 column matrix

xr = (sT1 sT2 sT3 )T ;

where s1, s, and s3 are the components, in R0, of the three unit vectors
x(n+1), y(n+1), and z(n+1), associated with the coordinate frame R(n+1).

Given the end-effector instantaneous angular velocity vector, ω, the
time derivatives of the three unit vectors x(n+1), y(n+1), and z(n+1), are

dx(n+1)

dt
= ω × x(n+1); (2.20)

dy(n+1)

dt
= ω × y(n+1); (2.21)

dz(n+1)

dt
= ω × z(n+1). (2.22)

The components, in R0, of the time derivatives of of x(n+1), y(n+1), and
z(n+1), are

ṡ1 = −ŝ1ω; (2.23)

ṡ2 = −ŝ2ω; (2.24)

ṡ3 = −ŝ3ω. (2.25)

The matrix Er(x) associated with xr = (sT1 sT2 sT3 )T is the 9× 3 matrix

Er(x) =



−ŝ1

−ŝ2

−ŝ3


 . (2.26)

Euler Angles

The matrix Er(x) associated with xr = (ψ θ φ)T is

Er(x) =



−sinψ cos θ/sin θ cosψ cos θ/sin θ 1

cosψ sinψ 0
sinψ/sin θ −cosψ/sin θ 0


 . (2.27)
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Euler Parameters

The relationship between the angular velocity vector ω and the time
derivative λ̇ of Euler parameters λ = (λ0 λ1 λ2 λ3)

T is

λ̇ =
1

2
λ̌ω; (2.28)

where

λ̌ =




−λ1 −λ2 −λ3

λ0 λ3 −λ2

−λ3 λ0 λ1

λ2 −λ1 λ0


 . (2.29)

The matrix Er(x) associated with Euler parameters is

Er(x) =
1

2
λ̌ =

1

2




−λ1 −λ2 −λ3

λ0 λ3 −λ2

−λ3 λ0 λ1

λ2 −λ1 λ0


 . (2.30)
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2.2 Inverse Kinematic Model

Given a set of velocities or elementary displacements at the manipulator
joints, the Jacobian matrix provides a basic tool to uniquely determine
the velocities or elementary displacements at the end-effector. Often,
however, we are concerned with finding the inverse of the above rela-
tionship: the end-effector motion is specified and the problem is to find
the corresponding velocities or elementary displacements at the joints.

Given the m× n matrix J(q) and the m elementary displacements δx,
the problem is to solve the system of m equations with the n unknowns,
δq, for all configuration q,

δx = J(q) δq. (2.31)

N (J)

δq

R(J)
0
δx

J
Rn

Rm

Figure 2.3: The Mapping Associated with the Jacobian Matrix

The matrix J(q) operates between the two vector spaces Rn and Rm,
as illustrated in Figure 3.3. A vector δq ∈ Rn is mapped by J into a
vector δx ∈ R(J). R(J) is the range space or the column space of J .
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The null space of J , N (J), is the subspace of Rn such that all vectors
δq ∈ R(J) verify

J(q) δq = 0. (2.32)

Let J1, J2, . . . , Jn be the columns of the Jacobian matrix, i.e.

J = (J1 J2 . . . Jn).

The system of equations 2.31 can be written as

δx = J1 δq1 + J2 δq2 + . . .+ Jn δqn. (2.33)

In this form δx is expressed as a linear combination of the columns of
the Jacobian matrix.

Definition - Theorem 1 The system (2.31) is said to be consistent
and possesses at least one solution if and only if,

rank J = rank (J |δx); (2.34)

where (J |δx) is the m× (n+1) matrix obtained by augmenting J with
the column matrix δx.

Theorem 1 states the necessary and sufficient condition for the existence
of at least one solution for the system (2.31). This condition requires
the vector δx to be in the subspace spanned by the columns of J .

Since the Jacobian is a configuration dependent matrix, the existence of
a solution will depend on the manipulator configuration. The Jacobian
matrix also depends on the type of representation used to describe the
position and orientation of the end-effector.

2.2.1 Reduction to the Basic Kinematic Model

Using the basic Jacobian matrix J0(q), we are going first to reduce the
dimension, m, of the initial problem of equation (2.31) to m0 (m0 ≤ m).
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We have seen that a Jacobian matrix J(q) associated with a represen-
tation x of the end-effector configuration is expressed as the product of
matrices E(x)J0(q). The system (2.31) becomes

δx = E(x) δx0; (2.35)

δx0 = J0(q) δq. (2.36)

E(x) is an m×m0 matrix with m ≥ m0.

Left Inverse The system (2.35) possesses a unique solution δx0 for
every δx, if and only if, rank E = m0, i.e. the columns of E are linearly
independent. In this case there exists an m0 ×m left inverse, E+, such
that E+E = Im0

, the identity matrix of order m0.

δx0 = E+(x) δx. (2.37)

The case rank E < m0 corresponds to configurations where the repre-
sentation is singular. The formula for a left inverse of E, is

E+ = (ETE)−1ET . (2.38)

Using equation (2.17), left inverses of E(x) can be written in the form

E+(x) =
(
E+
p (xp) 0
0 E+

r (xr)

)
. (2.39)

For m = m0, E
+ is simply the inverse matrix E−1.

2.2.2 Position Representations

Cartesian Coordinates

The matrix E+
p (xp) is simply the inverse of the matrix Ep(xp) associated

with xp = (x y z)T . This is the identity matrix of order 3.
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Cylindrical Coordinates

The inverse of the matrix Ep(xp) associated with xp = (ρ θ z)T is

E−1
p (xp) =




cos θ −ρ sin θ 0
− sin θ ρ cos θ 0

0 0 1


 . (2.40)

Spherical Coordinates

The inverse of Ep(xp) associated with xp = (ρ θ φ)T is

E−1
p (xp) =




cos θ sinφ ρ sin θ sin φ ρ cos θ cos φ
− sin θ sin φ ρ cos θ sinφ ρ sin θ cosφ

cosφ 0 −ρ sin φ


 . (2.41)

2.2.3 Rotation Representations

Direction Cosines

The matrix Er(xr) associated with the direction cosines representation
xr = (sT1 sT2 sT3 )T is the 9 × 3 matrix

Er(x) =



−ŝ1

−ŝ2

−ŝ3


 ;

of rank 3. To find a left inverse of E, one could use (ET
r Er)

−1ET
r .

Observing

ET
r (xr)Er(xr) = ( ŝT1 ŝ1 + ŝT2 ŝ2 + ŝT3 ŝ3 ) = 2 I3;

yields

E+
r (xr) =

1

2
ET
r (xr) =

1

2
(−ŝT1 − ŝT2 − ŝT3 ) . (2.42)
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Euler Angles

The inverse of Er(xr) associated with xr = (ψ θ φ)T is

E−1
r (xr) =




0 cosψ sinψ sin θ
0 sinψ − cosψ sin θ
1 0 cos θ


 . (2.43)

Euler Parameters

The matrix Er(xr) associated with the Euler parameters representation
is a 4 × 3 matrix of rank 3. A left inverse E+

r (xr) can be obtained by
[ET

r (xr)Er(xr)]
−1ET

r (xr). Observing

λ̌T λ̌ = I3; (2.44)

yields

E+
r (xr) = 4ET

r = 2



−λ1 λ0 −λ3 λ2

−λ2 λ3 λ0 −λ1

−λ3 −λ2 λ1 λ0


 . (2.45)

2.2.4 Inverse of the Basic Kinematic Model

The initial problem is now reduced to the problem of solving the basic
kinematic model (2.36)

δx0 = J0(q) δq.

This is a system of m0 equations with n unknowns, where m0 ≤ n.

Right Inverse The system (2.36) possesses at least one solution δq
for every δx0, if and only if, rank J0 = m0, i.e. the columns of J0 span
Rm0 . In this case there exists an n ×m0 right inverse, J+

0 , such that
J0J

+
0 = Im0

, the identity matrix of order m0. A right (left) inverse is a
special case of a generalized inverse.
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General Solution Let J#
0 (q) be a generalized inverse of the basic

Jacobian matrix. The general solution of the system (2.36) is

δq = J#
0 (q) δx0 + [In − J#

0 (q) J0(q)] δq0; (2.46)

where In is the identity matrix of order n, and the elementary joint
displacement δq0 is arbitrary.

The n × n matrix [In − J#
0 (q) J0(q)] operates on vectors δq0 ∈ Rn to

produce vectors δqn ∈ N (J)

δqn = [In − J#
0 (q) J0(q)] δq0.

The mapping by J0 of these vectors is the zero-vector of Rm0 ,

J0 δqn = [J0 − J0 J
#
0 (q) J0(q)] δq0 = 0.

Example 4 Let us consider the problem of solving the kinematic
model of the three-degree-of-freedom manipulator shown in Figure 3.4.
This manipulator is redundant with respect to the task of positioning
its end-effector. The Jacobian matrix associated with this task is

J(q) =
(−l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

)
.

For simplicity, we will assume that the configuration of the manipulator
lies in the subspace defined by {q1 = q2 = 0} and that l1 = l2 = l3 = 1.
In this subspace, the Jacobian is

J =
( −s3 −s3 −s3

2 + c3 1 + c3 c3

)
.

This 2 × 3 matrix is of rank 2. The pseudo-inverse, J+ is the 3 × 2
matrix JT (JJT )−1. The matrix (JJT ) is

JJT =
(

3ss3 −3(1 + c3)s3
−3(1 + c3)s3 3cc3 + 6c3 + 5

)
;



2.2. INVERSE KINEMATIC MODEL 35

q1 q2 q3l1 l2

l3

Figure 2.4: A Three-Degree-Of-Freedom Manipulator

and

(JJT )−1 =
1

6ss3

(
3cc3 + 6c3 + 5 3(1 + c3)s3

3(1 + c3)s3 3ss3

)
;

which yields

J+ =
1

6s3




(1 + 3c3) 3s3
−2 0

−(5 + 3c3) −3s3


 .

The general solution in this subspace is

δq = J+ δx + [I3 − J+J ] δq0;

where the 3 × 3 matrix [I3 − J+J ] associated with the null space is

[I3 − J+J ] =




1 −2 1
−2 4 −2
1 −2 1


 .

This matrix is of rank 1.
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Chapter 3

Joint Space Framework

Robot control has been traditionally viewed from the perspective of a
manipulator’s joint motions, and significant effort has been devoted to
the development of joint space dynamic models and control method-
ologies. However, the limitations of joint space control techniques,
especially in constrained motion tasks, have motivated alternative ap-
proaches for dealing with task-level dynamics and control. The discus-
sion here focuses on the joint space framework.

3.1 Joint Space Control

By its very nature, joint space control calls for transformations whereby
joint space descriptions are obtained from the robot task specifications.
Typically, a joint space control system is organized following the general
structure shown in Figure 3.1. At the highest level, tasks are specified
in terms of end-effector or manipulated object’s motion, compliances,
and contact forces and moments. Tasks are then transformed at the
intermediate level into descriptions in terms of joint positions, veloci-

37
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ties, accelerations, compliances, and joint torques. This provides the
needed input to the control level, which acts at the robot joints.

Joint Task  Specification

ControlSensing

JointJoint

Robot & Environment

Joint Motion
Commands

Task  Specification

Figure 3.1: Joint Space Control Structure

3.1.1 Motion Coordination

An important kinematic issue associated with motion control of robot
mechanisms, is the inverse kinematic problem or more generally the task
transformation problem. This problem is raised by the discrepancy
between the space where robot tasks are specified and the space in
which the control is taking place.

Tasks are specified with respect to the robot’s end-effector or manipu-
lated object, while motions are typically controlled through the action
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of servo-controllers that effect the positions and velocities of the robot’s
joints. Finding the set of joint trajectories, inputs to the joint servo-
controllers, that would produce the specified task is the central issue in
the task transformation problem.

Obviously, the need for solutions of the inverse kinematic problem is not
limited to the motion control problem. The inverse kinematic is needed
in workspace analysis, design, simulations, and planning of robot mo-
tions. By its computational complexity, however, the inverse kinematic
problem becomes more critical in real-time control implementations.
This is, for instance, the case of tasks when the robot is called to ac-
commodate motion that cannot be completely pre-planned or to make
corrections generated by external sensory devices.

The computation complexity of the inverse kinematic problem has led
to solutions based on the inverse of the linearized kinematic model.
This model expresses the relationship between the vector δq associated
with the variations of joint positions and the vector δx associated with
the corresponding variations of the positions and orientations of the
end-effector,

δx = J(q)δq; (3.1)

where J(q) is the Jacobian matrix. For an n-degree-of-freedom manip-
ulator with an end-effector operating in an m-dimensional space, J(q)
is an m× n matrix.

Using the linearized kinematic model (3.1), Whitney (1972) proposed
the resolved motion-rate control approach for the coordination of manip-
ulator joint motions. The resolved motion-rate control uses the inverse
of the linear relationship of equation (3.1). For a non-redundant ma-
nipulator for which a non-redundant representation of the position and
orientation of the end-effector is used, i.e. n = m = m0, the solution is
simply

δq = J−1(q)δx. (3.2)

For a given trajectory of the end-effector, motion control is achieved
by continuously controlling the manipulator from the current position
q to the position q + δq.



40 CHAPTER 3. JOINT SPACE FRAMEWORK

3.1.2 Redundant Manipulators

Motion redundancy is an important characteristic for extending robot
applications to complex tasks and workspaces. Manipulators with six
degrees of freedom can generally realize an arbitrary position and ori-
entation of the end-effector. However, this cannot be achieved if certain
joint movements are precluded by obstacles. The workspace of a six-
degree-of-freedom arm has to be carefully structured and motions care-
fully planned to satisfy obstacle constraints. By appropriate addition
of motion redundancy, the dexterity of a manipulator can be greatly
improved.

The joint space task transformation problem is exacerbated for mech-
anisms with redundancy or at kinematic singularities. The typical ap-
proach involves the use of pseudo- or generalized inverses to solve an
under-constrained or degenerate system of linear equations, while op-
timizing some given criterion.

The position and orientation of the end-effector of a redundant mech-
anism can be obtained with an infinite number of postures of its links.
Generalized inverses and pseudo-inverses (Whitney 1972, Liegois 1977,
Fournier 1980, Hanafusa et al. 1981) have been used to solve the kine-
matic equation (3.1). Using a generalized inverse J#(q) of the Jacobian
matrix, the general solution of the system (3.1) is

δq = J#(q)δx + [I − J#(q)J(q)]δq0; (3.3)

where I is the identity matrix of appropriate dimensions and δq0 de-
notes an arbitrary vector. The matrix [I − J#(q)J(q)] defines the null
space associated with J#(q), and vectors of the form [I−J#(q)J(q)]δq0

correspond to zero-variation of the position and orientation of the end-
effector. The additional freedom of motion associated with null space is
generally used to minimize some criteria, such as the avoidance of joint
limits (Liegois, 1977; Fournier, 1980), obstacles (Hanafusa, Yoshikawa,
and Nakamura, 1981; Kircanski and Vukobratovic, 1984; Espiau and
Boulic, 1985) and kinematic singularities (Luh and Gu, 1985), the min-
imization of actuator joint forces (Hollerbach and Suh, 1985), or ob-
taining isotropic velocity characteristics (Ghosal and Roth, 1987).
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3.1.3 PID Control Schemes

Current industrial robots relies almost exclusively on the concept of
joint position control. In these robots, PID controllers are used to
independently control a manipulator’s joints. Since the inertia seen
at each joint varies with the robot configuration, the PID gains are
selected for some average configuration in the workspace. The dynamic
interaction between joints is ignored, and the disturbance rejection of
the dynamic forces relies on the use of large gains and high servo rates.

The implementation of PID control is quite simple, and the perfor-
mance of PID controllers has been sufficient for many industrial tasks.
However, the performance of PID controllers decreases when dynamic
effects become significant. The undesirable effects increase with the
range of motion, speed, and acceleration at which the robot is operat-
ing.
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3.2 Joint Space Dynamic Model

A manipulator is treated as a holonomic system with a structure of an
open kinematic chain of n+1 rigid bodies, i.e. links, connected through
n revolute and/or prismatic joints having one degree of freedom.

With revolute and/or prismatic joints, a chain of n+ 1 links possess n
degree-of-freedom. The set {q1, q2, . . . , qn} of n joint coordinates form
a system of generalized coordinates for the manipulator. The configu-
ration of the manipulator is described by the vector q of components
q1, q2, . . . , qn in the manipulator joint space.

Using the Lagrangian formalism, the equations of motion in joint space
of an n-degree-of-freedom manipulator are

d

dt
(
∂L

∂q̇
) − ∂L

∂q
= Γ; (3.4)

where Γ is the generalized force vector and where L(q, q̇) is the La-
grangian given by

L(q, q̇) = T (q, q̇) − U(q);

where T and U are the total kinetic energy and potential energy of the
manipulator, respectively.

3.2.1 Kinetic Energy

The kinetic energy of this holonomic system is a quadratic form of the
generalized velocities

T (q, q̇) =
1

2
q̇TA(q)q̇; (3.5)

where A(q) designates the n × n symmetric matrix of the quadratic
form, i.e. the kinetic energy matrix. The kinetic energy of the ith link
is

Ti =
1

2
(mi vTCi

vCi
+ ωTi ICi

ωi); (3.6)
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where vCi
and ωi represent, respectively, the linear velocity vector and

the angular velocity vector at the center of mass, Ci of link i. mi is the
mass of link i andICi

is the ith link’s inertia matrix evaluated at the
center of mass Ci. The kinetic energy of the manipulator is

T =
n∑

i=1

Ti.

Velocities at Center-of-Mass The manipulator kinematics yields

vCi
= Jvi q̇; (3.7)

and
ωi = Jωi q̇. (3.8)

Jacobian Matrix Jvi

The Jacobian matrix Jvi can be directly obtained by differentiating
the position vector pCi

, which locates the center-of-mass of link i with
respect to the manipulator base, as shown in Figure 3.2

Jvi(q) =
[
∂pCi

∂q1

∂pCi

∂q2
· · · ∂pCi

∂qi
0 0 · · · 0

]
. (3.9)

The matrix Jvi(q) can also be obtained from the general form

Jvi(q) = [ (ε1z1 + ε̄1z1 × p1Ci
) · · · (εizi + ε̄izi × piCi

) 0 · · · 0 ] ;
(3.10)

where pjCi
is the vector connecting joint j to Ci, as shown in Figure

3.3. zi is the unit vector along joint axis i.

Jacobian Matrix Jωi

The matrix Jωi(q) is given by

Jωi(q) = ( ε̄1z1 ε̄2z2 · · · ε̄izi 0 0 · · · 0 ) . (3.11)
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pCi

Link i

x0

y0

z0

Figure 3.2: Position of Center of Mass

Kinetic Energy Matrix The kinetic energy matrix A(q) of the ma-
nipulator is

A(q) =
n∑

i=1

(mi J
T
vi Jvi + JTωi ICi

Jωi). (3.12)

The equations of motion (3.4) can be written in the form

A(q)q̈ + b(q, q̇) + g(q) = Γ; (3.13)

where b(q, q̇) represents the vector of centrifugal and Coriolis forces.
This vector is

b(q, q̇) = Ȧ(q)q̇ − 1

2




q̇TAq1q̇
q̇TAq2q̇

.

.

.
q̇TAqnq̇




; (3.14)
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p1Ci

p2Ci

pjCi

piCi

Link i

Link j

x0

y0

z0

Figure 3.3: Position Vectors: p1Ci
,.., pjCi

,.., and piCi

where

Aqi =
∂A

∂qi
.

Centrifugal and Coriolis Forces Using the Christoffel symbols,
the vector b(q, q̇) can be obtained from the partial derivatives of A(q)
and the generalized velocities, q̇. The Christoffel symbols are

bi,jk =
1

2
(aijk + aikj − ajki); (3.15)

where aijk is the partial derivative with respect to qk of the {ij} element
of the matrix A(q)

aijk =
∂aij
∂qk

.

Using the Christoffel symbols, the centrifugal and Coriolis force vector
can be written as

b(q, q̇) = B(q)[q̇q̇] + C(q)[q̇2]; (3.16)
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where B(q) is the n × n(n − 1)/2 matrix associated with the Coriolis
forces given by

B(q) =




2b1,12 . . . 2b1,1n 2b1,23 . . . 2b1,2n . . . 2b1,(n−1)n

2b2,12 . . . 2b2,1n 2b2,23 . . . 2b2,2n . . . 2b2,(n−1)n

. . . . . . .

. . . . . . .

. . . . . . .
2bn,12 . . . 2bn,1n 2bn,23 . . . 2bn,2n . . . 2bn,(n−1)n




;

(3.17)
and where C(q) is the n × n matrix associated with the centrifugal
forces given by

C(q) =




b1,11 b1,22 . . . b1,nn
b2,11 b2,22 . . . b2,nn
. . . .
. . . .
. . . .

bn,11 bn,22 . . . bn,nn




. (3.18)

[q̇q̇] and [q̇2] are the symbolic notations for the n(n − 1)/2 × 1 and
n× 1 column matrices:

[q̇2] = [q̇2
1 q̇2

2 . . . q̇
2
n]
T ; (3.19)

and

[q̇q̇] = [q̇1q̇2 q̇1q̇3 . . . q̇1q̇n q̇2q̇3 . . . q̇2q̇n . . . q̇n−1q̇n]
T . (3.20)

3.2.2 Potential Energy

If g0 represents the vector of gravity acceleration, as shown in Figure
3.4 the potential energy Ui(q) corresponding to link i is

Ui(q) = mi(−pCi
)Tg0.

The manipulator potential energy can be written as

U(q) = −
n∑

i=1

mip
T
Ci

g0. (3.21)
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pCi mig0

Link i

x0

y0

z0

g0

Figure 3.4: Gravity Forces

The vector of gravity forces, g(q) is given by

G(x) = ∇U(q).

The jth component of g is

gj =
δU

δqi
= −

n∑

i=1

(
δpCi
δqi

)Tmig0.

Using the transpose of the Jacobian matrix associated with the vector
pCi, the vector of gravity forces can be written as

g(q) = −
n∑

i=1

JTvi (mig0). (3.22)

Example 1

The links of the RP manipulator shown in Figure 3.5 have total mass
m1 and m2. The center of mass of link 1 is located at a distance l1 of the
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IC2

m2⊗

IC1

q1

g0

m1⊗

l1

q2

Figure 3.5: An RP Manipulator

joint axis 1, and the center of mass of link 2 is located at the distance
q2 from the joint axis 1. The inertia tensors of these links evaluated at
the center of mass with respect to axes parallel to R0 are

IC1
=



Ixx1 0 0
0 Iyy1 0
0 0 Izz1


 ; and IC2

=



Ixx2 0 0
0 Iyy2 0
0 0 Izz2


 .

Matrix A

The kinetic energy matrix A is obtained by applying equation (3.12)
to this 2 d.o.f manipulator:

A = m1J
T
v1Jv1 + JTω1IC1

Jω1 +m2J
T
v2Jv2 + JTω2IC2

Jω2.

Jv1 and Jv2 are obtained by direct differentiation of the vectors:

pC1 =



l1c1
l1s1
0


 ; and pC2 =



q2c1
q2s1
0


 .

In R0, these matrices are:

Jv1 =



−l1s1 0
l1c1 0
0 0


 ; Jv2 =



−q2s1 c1
q2c1 s1
0 0


 .
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This yields

m1(J
T
v1Jv1) =

[
m1l

2
1 0

0 0

]
; (m2J

T
v2Jv2) =

[
m2q

2
2 0

0 m2

]
.

The matrices Jω1 and Jω2 are given by

Jω1 = [ ε̄1z1 0 ] = and Jω2 = [ ε̄1z1 ε̄2z2 ] .

Joint 1 is revolute and joint 2 is prismatic. In R0, these matrices are:

Jω1 = Jω2 =




0 0
0 0
1 0


 .

and

(JTω1IC1
Jω1) =

[
Izz1 0
0 0

]
; (JTω2IC2

Jω2) =
[
Izz2 0
0 0

]
.

Finally, the matrix A is

A =
[
m1l

2
1 + Izz1 +m2q

2
2 + Izz2 0

0 m2

]
.

Centrifugal and Coriolis Vector b

The Christoffel Symbols are defined as

bi,jk =
1

2
(aijk + aikj − ajki); where aijk =

∂aij
∂qk

; with biii = biji = 0.

For this manipulator, only a11 (see matrix A) is configuration dependent
– function of q2. This implies that only a112 is non-zero,

a112 = 2m2q2.

Matrix B

B =
[
2b112

0

]
=
[
2m2q2

0

]
.
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Matrix C

C =
[

0 b122
b211 0

]
=
[

0 0
−m2q2 0

]
.

Vector b

b =
[
2m2q2

0

]
[ q̇1q̇2 ] +

[
0 0

−m2q2 0

] [
q̇2
1

q̇2
2

]
.

The Gravity Vector g

g = −[JTv1m1g0 + JTv2m2g0].

In R0, the gravity vector is

g =
[−l1s1 l1c1 0

0 0 0

]



0
−m1g0

0


+

[−q2s1 q2c1 0
c1 s1 0

]



0
−m2g0

0


 ;

and

g =
[
(m1l1 +m2q2)g0c1

m2g0s1

]
.

Equations of Motion

[
m1l

2
1 + Izz1 + m2q

2
2 + Izz2 0

0 m2

] [
q̈1

q̈2

]
+

[
2m2q2

0

]
[ q̇1q̇2 ] +

[
0 0

−m2q2 0

] [
q̇2
1

q̇2
2

]
+

[
(m1l1 + m2q2)g0c1

m2g0s1

]
=

[
Γ1

Γ2

]
.
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3.3 Joint Space Dynamic Control

In dynamic control schemes, the manipulator dynamic model is used
to compensate for the configuration dependency of the inertias, and
for the inertial coupling, centrifugal, Coriolis, and gravity forces. This
technique is based on the theory of nonlinear dynamic decoupling (Fre-
und, 1975), or the so called “computed torque method.”

The dynamic decoupling and motion control of a manipulator in joint
space is achieved by selecting the control structure

Γ = Â(q)Γ? + b̂(q, q̇) + ĝ(q); (3.23)

q̈d

qd, q̇d Servo Â(q) Robot

b̂ + ĝ

Γ? Γ q, q̇

Figure 3.6: Joint Space Dynamic Control

where, Â(q), b̂(q, q̇), and ĝ(q) represent the estimates of A(q), b(q, q̇),
and g(q). Γ? is the input of the decoupled system. At this level, various
control structures can be selected, e.g. PID, adaptive control, or robust
control.
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Chapter 4

Operational Space
Framework

Task specification for motion and contact forces, dynamics, and force
sensing feedback, are most closely linked to the end-effector’s motion.
Joint space dynamic models are, obviously, unable to provide a descrip-
tion of the end-effector’s dynamic behavior, which is crucial for the
analysis and control of the end-effector’s motion and applied forces.

4.1 Basic Concepts

The basic idea in the operational space approach (Khatib 1980, Khatib
1987) is to control motions and contact forces through the use of control
forces that act directly at the level of the end-effector. These control
forces are produced by the application of corresponding torques and
forces at the manipulator joints.

For instance, subjecting the end-effector to the gradient of an attractive
potential field will result in joint motions that position the effector at

53
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the configuration corresponding to the minimum of this potential field.
This type of control can be shown to be stable. However, the dynamic
performance of such a control scheme will clearly be limited, given the
inertial interactions between the moving links.

High performance control of end-effector motions and contact forces
requires the construction of a model describing the dynamic behavior
as perceived at the end-effector, or more precisely at the point on the
effector where the task is specified. This point is called the operational
point.

A coordinate system associated with the operational point is used to
define a set of operational coordinates. A set of operational forces act-
ing on the end-effector is associated with the system of operational
coordinates selected to describe the position and orientation of the
end-effector. The construction of the end-effector dynamic model is
achieved by expressing the relationship between its positions, veloci-
ties, accelerations, and the operational forces acting on it.

The operational forces are produced by submitting the manipulator to
the corresponding joint forces, using a simple force transformation. The
use of the forces generated at the end-effector to control motions leads
to a natural integration of active force control. In this framework,
simultaneous control of motions and forces is achieved by a unified
command vector for controlling both the motions and forces at the
operational point.

The operational space robot control system is organized in a hierarchi-
cal structure, as shown in Figure 4.1, of three control levels:

• Task Specification Level: At this level, tasks are described in terms
of motion and contact forces of the manipulated object or tool.

• Effector Level: This level is associated with the end-effector dy-
namic model, the basis for the control of the end-effector mo-
tion and contact forces. The output here is the vector of joint
forces and torques to be produced by the joint level in order to
generate the operational forces and moments associated with the
end-effector control vector.
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Task  Specification

EffectorEffector

Control

Control

Sensing

Sensing

JointJoint

Torque

Robot & Environment

Commands

1 − 3KHz

200−600Hz

Motion/Force
Commands

Figure 4.1: Operational Space Control Structure

• Joint Level: This level is formed by the set of individual joint
torque controllers, allowing each joint to produce its assigned
torque component for producing the vector of joint torques cor-
responding to the end-effector control vector.
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4.2 Effector Equations of Motion

When the dynamic response or impact force at some point on the end-
effector or manipulated object is of interest, the inertial properties in-
volved are those evaluated at that point, termed the operational point.
Attaching a coordinate frame to the end-effector at the operational
point and using the relationships between this frame and the reference
frame attached to the manipulator base provide a description, x, of the
configuration, i.e. position and orientation, of the effector.

First, let us consider the case of non-redundant manipulators, where a
set of operational coordinates forms a system of generalized coordinates
for the manipulator. The manipulator configuration is represented by
the column matrix q of n joint coordinates, and the end-effector posi-
tion and orientation are described, in the frame of reference R0, by the
m0 × 1 column matrix x of independent configuration parameters, i.e.,
operational coordinates. The number, m0, of independent parameters
needed to describe the position and orientation of the end-effector de-
termines the number of degrees of freedom the end-effector possesses.
With the non-redundancy assumption we have the equality n = m0.

Now let us examine the conditions under which a set of independent
end-effector configuration parameters can be used as a generalized co-
ordinate system for a non-redundant manipulator. In the reference
frame R0, the system of m0 equations expressing the components of x
as functions of joint coordinates, i.e., the geometric model, is given by

x = G(q). (4.1)

Let q
i
and qi be respectively the minimal and maximal bounds of the ith

joint coordinate qi. The manipulator configuration represented by the
point q in joint space is confined to the hyper-parallelepiped defined by
the products of the intervals [q

i
, qi],

Dq =
n∏

i=1

[q
i
, qi]. (4.2)

Let Dx be the domain of the operational space corresponding to the
vector-function G over Dq. Obviously, for an arbitrary kinematic link-
age and arbitrary joint boundaries, G is not one-to-one. Generally, a
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configuration x of the end-effector could be obtained from several dif-
ferent configurations qc1, qc2, etc., of the manipulator. The restriction
to a domain where G is one-to-one is therefore necessary in order to
construct, with the operational coordinates, a system of generalized
coordinates for the manipulator.

In addition, for some configurations, the end-effector motion is re-
stricted by the linkage constraints and its freedom of motion locally
decreases. These are the singular configurations, which can be found
by considering the differential characteristics of the geometric model G.
Singular configurations, q ∈ Dq, are those where the Jacobian matrix
J(q) involved in the variational or kinematic model associated with G,

δx = J(q)δq;

is singular.

Let D̃q be a domain obtained from Dq by excluding the manipulator
singular configurations and such that the vector function G of (4.1) is
one-to-one. Let D̃x designate the domain

D̃x = G(D̃q). (4.3)

The independent parameters x1, x2, . . . , xm0
form a complete set of con-

figuration parameters for a non-redundant manipulator, in the domain
D̃x of the operational space and thus constitute a system of generalized
coordinates for the manipulator.

The kinetic energy of the holonomic system is a quadratic form of the
generalized operational velocities

T (x, ẋ) =
1

2
ẋTΛ(x)ẋ; (4.4)

where Λ(x) designates the m0 ×m0 symmetric matrix of the quadratic
form, i.e., the kinetic energy matrix. This matrix describes the effector’s
inertial properties.

Using the Lagrangian formalism, the end-effector equations of motion
are

d

dt
(
∂L

∂ẋ
) − ∂L

∂x
= F; (4.5)
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where the Lagrangian L(x, ẋ) is

L(x, ẋ) = T (x, ẋ) − U(x);

and U(x) represents the potential energy due to gravity. F is the op-
erational force vector. Let p(x) be the vector of gravity forces

p(x) = ∇U(x).

The end-effector equations of motion in operational space can be writ-
ten (Khatib 1980, Khatib 1987) in the form

Λ(x)ẍ + µ(x, ẋ) + p(x) = F; (4.6)

where µ(x, ẋ) is the vector of centrifugal and Coriolis forces.

Joint Space/Operational Space Relationships

The relationship between the matrices Λ(x) and A(q) can be estab-
lished by stating the identity between the two quadratic forms of kinetic
energy:

1

2
q̇TA(q)q̇ =

1

2
ẋTΛ(x)ẋ.

Using the kinematic model this identity yields

A(q) = JT (q)Λ(x)J(q). (4.7)

The relationship between the centrifugal and Coriolis forces b(q, q̇) and
µ(x, ẋ) can be established by the expansion of the expression of µ(x, ẋ)
that results from (4.5),

µ(x, ẋ) = Λ̇(x)ẋ −∇T (x, ẋ).

Using the expression of Λ(x) in (4.7), µ(x, ẋ) can be written as

Λ̇(x)ẋ = J−T (q)Ȧ(q)q̇ − Λ(q)h(q, q̇) + J̇−T (q)A(q)q̇;

∇T (x, ẋ) = J−T (q)l(q, q̇) + J̇−T (q)A(q)q̇;
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where
h(q, q̇) = J̇(q)q̇. (4.8)

and

li(q, q̇) =
1

2
q̇TAqi(q)q̇; (i = 1, . . . , n).

The subscript qi indicates the partial derivative with respect to the ith

joint coordinate. Observing from the definition of b(q, q̇) that,

b(q, q̇) = Ȧ(q)q̇ − l(q, q̇);

yields,
µ(x, ẋ) = J−T (q)b(q, q̇) − Λ(q)h(q, q̇). (4.9)

The relationship between the expressions of gravity forces can be ob-
tained using the identity between the functions expressing the gravity
potential energy in the two systems of generalized coordinates and the
relationships between the partial derivatives with respect to these co-
ordinates. Using the definition of the Jacobian matrix yields,

p(x) = J−T (q)g(q). (4.10)

In the foregoing relations, the components involved in the end-effector
equations of motion, i.e., Λ,µ,p, are expressed in terms of joint coor-
dinates. This solves the ambiguity in defining the configuration of the
manipulator corresponding to a configuration of the end-effector in the
domain Dx. With these expressions, the restriction to the domain D̃x,
where G is one-to-one, then becomes unnecessary. Indeed, the domain
of definition of the end-effector dynamic model of a non-redundant ma-
nipulator can be extended to the domain Dx defined by

Dx = G(Dq);

where Dq is the domain resulting from Dq by excluding the kinematic
singular configurations.

Finally, the above relationships allow to rewrite the end-effector inertial
and gravity forces which appear in the left-hand side of equation (4.6)
as

J−T (q)[A(q)q̈ + b(q, q̇) + g(q)] = Λ(x)ẍ + µ(x, ẋ) + p(x).
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Substituting the right-hand sides of equations (3.13) and (4.6) yields

Γ = JT (q)F. (4.11)

This shows the extension to the dynamic case of the force/torque re-
lationship whose derivation from the virtual work principle assumes
static equilibrium. This relationship is the basis for the actual control
of manipulators in operational space.

The joint space centrifugal and Coriolis force vector b(q, q̇) can be
written in the form

b(q, q̇) = B(q)[q̇q̇]; (4.12)

where B(q) is the n× n(n+ 1)/2 matrix given by

B(q) =




b1,11 2b1,12 . . . 2b1,1n b1,22 2b1,23 . . . 2b1,2n . . . b1,nn
b2,11 2b2,12 . . . 2b2,1n b2,22 2b2,23 . . . 2b2,2n . . . b2,nn
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

bn,11 2bn,12 . . . 2bn,1n bn,22 2bn,23 . . . 2bn,2n . . . bn,nn




;

(4.13)
and

[q̇q̇] = [q̇2
1 q̇1q̇2 q̇1q̇3 . . . q̇1q̇n q̇2

2 q̇2q̇3 . . . q̇2q̇n . . . q̇
2
n]
T . (4.14)

bi,jk are the Christoffel symbols given as a function of the partial deriva-
tives of the joint space kinetic energy matrix A(q) w.r.t. the generalized
coordinates q by

bi,jk =
1

2
(
∂aij
∂qk

+
∂aik
∂qj

− ∂ajk
∂qi

). (4.15)

Similarly the vector h(q, q̇) can be written as

h(q, q̇) = H(q)[q̇q̇]. (4.16)

The expression of the operational space centrifugal and Coriolis forces
becomes

µ(x, ẋ) = [J−T (q)B(q) − Λ(q)H(q)][q̇q̇]. (4.17)
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In summary the relationships between the components of the joint space
dynamic model and those of the operational space dynamic model are

Λ(x) = J−T (q)A(q)J−1(q);

µ(x, ẋ) = [J−T (q)B(q) − Λ(q)H(q)][q̇q̇];

p(x) = J−T (q)g(q).
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4.3 End-Effector Motion Control

The generalized joint forces Γ required to produce the operational forces
F are

Γ = JT (q)F; (4.18)

This relationship is the basis for the actual control of manipulators in
operational space.

4.3.1 Passive Systems

The most simple design of end-effector motion control is to submit
the end-effector to the gradient of an attractive potential field. An
attractive potential field to a goal position xgoal is a positive continuous
differentiable function, which attains its minimum when x = xgoal. This
is for instance

Ugoal =
1

2
kp(x − xgoal)

T (x − xgoal);

where kp is a constant.

In order to compensate for the gravity effects, the control vector must
in addition include an estimate of the gravity forces, p̂ = ∇xÛ . The
end-effector equations of motion become

d

dt
(
∂T

∂ẋ
) − ∂(T − U)

∂x
= −∂(Ugoal − Û)

∂x
.

With a perfect gravity compensation (Û = U), the equations can be
written as

d

dt
(
∂T

∂ẋ
) − ∂(T − Ugoal)

∂x
= 0. (4.19)

The resulting system is a conservative system with a stable oscillatory
motion around the goal position xgoal. Asymptotic stabilization of this
system can be achieved by the addition of dissipative forces Fs. Since
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all non-dissipative forces in this control design are conservative, the
asymptotic stability condition can be simply stated as

FT
s ẋ < 0; for ẋ 6= 0. (4.20)

For instance, Fs could be selected as

Fs = −kvẋ;

and the asymptotic stability condition implies that kv must be posi-
tive. This type of control ignores the dynamic interaction between the
moving links in the mechanical system, and its dynamic performance
is very limited.

4.3.2 Dynamic Decoupling

The dynamic decoupling and motion control of the manipulator in op-
erational space is achieved by selecting the control structure

F = Λ̂(x)F? + µ̂(x, ẋ) + p̂(x); (4.21)

where, Λ̂(x), µ̂(x, ẋ), and p̂(x) represent the estimates of Λ(x), µ(x, ẋ),
and p(x). The system (4.6) under the command (4.21) can be repre-
sented by

Im0
ẍ = G(x)F? + η(x, ẋ) + d(t); (4.22)

where Im0
is the m0 ×m0 identity matrix, and

G(x) = Λ−1(x)Λ̂(x); (4.23)

η(x, ẋ) = Λ−1(x)[µ̃(x, ẋ) + p̃(x)]. (4.24)

with

µ̃(x, ẋ) = µ̂(x, ẋ) − µ(x, ẋ); (4.25)

p̃(x) = p̂(x) − p(x). (4.26)
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d(t) includes unmodeled disturbances. With a perfect nonlinear dy-
namic decoupling, the end-effector becomes equivalent to a single unit
mass, Im0

, moving in the m0-dimensional space,

Im0
ẍ = F?. (4.27)

F? is the input of the decoupled end-effector. This provides a general
framework for the selection of various control structures

The stability and robustness of this type of control structures require
good estimates of the manipulator dynamic parameters. The parame-
ters related to the Coriolis and centrifugal forces are particularly criti-
cal for the stability of the system. In fact it is better to set µ̂(x, ẋ) in
equation (4.21) to zero rather than to use a poor estimate, which could
results in a globally unstable damping in the system.

4.3.3 Goal Position

For tasks that involve large motion to a goal position, where a particular
trajectory is not required, a PD controller of the form

F? = −kvẋ − kp(x − xg); (4.28)

where xg is the goal position will result in a poor coordination of the
end-effector motions along its degrees of freedom. This is primarily due
to actuator saturations, bandwidth and velocity limitation. A coordi-
nation allowing a straight line motion of the end-effector with an upper
speed limit has been found to be a desirable behavior for this type of
tasks. By rewriting equation (4.28) as

F? = −kv(ẋ − ẋd); (4.29)

where

ẋd =
kp
kv

(xg − x); (4.30)

F? can be interpreted as a pure velocity servo-control with a velocity
gain kv, and a desired velocity vector ẋd. The desired velocity is a
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linear function of the position error. For large motions the initial ve-
locity command will be very large, approaching zero as the desired goal
position is reached. The limitation on the end-effector velocity can be
obtained by limiting the magnitude of ẋd at Vmax while its direction
still points toward the desired goal position. The resulting control is

F? = −kv(ẋ − νẋd); (4.31)

where

ν = sat(
Vmax
| ẋd |

); (4.32)

and sat(x) is the saturation function:

sat(x) =

{
x if |x | ≤ 1.0
sgn(x) if |x |> 1.0.

(4.33)

and sgn(x) is the sign function.

This allows a straight line motion of the end-effector at a given speed
Vmax. The velocity vector ẋ is in now controlled to be pointed to-
wards the goal position while its magnitude is limited to Vmax. The
end-effector will then travel in a straight line with velocity Vmax except
during the acceleration and deceleration segments. This type of com-
mand vector is particularly useful when used in conjunction with the
gradient of an artificial potential field for collision avoidance.

4.3.4 Trajectory Tracking

For tasks where the desired motion of the end-effector is specified, a
linear dynamic behavior can be obtained by selecting

F? = Im0
ẍd − kv(ẋ − ẋd) − kp(x − xd); (4.34)

where xd, ẋd and ẍd are the desired position, velocity and acceleration,
respectively, of the end-effector. kp and kv are the position and velocity
gains. The above dynamic decoupling and motion control result in the
following end-effector closed loop behavior

Im0
ε̈x + kvε̇x + kpεx = 0;
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where
εx = x − xd.
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4.4 Active Force Control

High performance control of end-effector motion and contact forces
requires the description of how motions along different axes are in-
teracting, and how the apparent or equivalent inertia or mass of the
end-effector varies with configurations and directions.

The operational space formulation provides a natural framework to ad-
dress the problem of motion and force control in an integrated manner,
allowing the development of a unified approach for the control of end-
effector motions and contact forces.

In constrained motion operations, the end-effector is subjected to a set
of geometric constraints which restrict its freedom of motion. However,
active forces and moments at these constraints can still be controlled.
The number of degrees of freedom for the motion of the constrained
end-effector is given by the difference between the number of degrees
of freedom of the unconstrained end-effector and the number of the
independent equations, that specify the geometric constraints. The
description of a fine motion task involves specifications of the forces
and moments that must be applied at the geometric constraints, and
specifications of the end-effector motion freedom directions.

4.4.1 Generalized Selection Matrices

In the operational space framework, the control of the end-effector mo-
tions and contact forces is based on a model which describes the dy-
namic behavior as perceived at some reference point on (or attached
to) the end-effector. It is with respect to this point O, called the op-
erational point, that the end-effector translational and rotational mo-
tions, active forces and moments are specified. Forces and moments
applied at the operational point are defined by a global reference frame
RO(O,x0,y0, z0). This frame always remains parallel to the fixed ref-
erence frame, RO(O,x0,y0, z0), irrespectively of the orientation of the
end-effector. This is illustrated in Figure 4.2, which also shows the
end-effector frame R(O,x,y, z), which translates and rotates with the
end-effector.
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Figure 4.2: Reference Frames

Let us consider the case of the simple one-point contact task, illustrated
in Figure 4.3. Let Fd be the vector of desired forces to be applied
by the end-effector at the contact point. The freedom of motion of
the constrained end-effector lies in the subspace orthogonal to Fd. A
convenient coordinate frame for the description of such a task is the
coordinate frame RF(O,xF ,yF , zF) obtained from R0 by a rotation
transformation, SF . For this type of contact, it is convenient to select
the axis zF along the direction of the desired force Fd. Clearly, this
assignment of axes might not be the most appropriate for other types
of contact. For multiple contact tasks, the z axis can be more efficiently
selected along one of the axes of freedom of translational motion.

In the coordinate frame RF , the motion specification matrix can be
defined as

ΣF =



σFx

0 0
0 σFy

0
0 0 σFz


 ; (4.35)

where σFx
, σFy

, and σFz
are binary numbers assigned the value 1 when a

free motion is specified along the axes OxF , OyF , and OzF respectively,
and zero otherwise. In the case of the task of Figure 4.3, these are
(1,1,0).

The directions of force control are described by the force specification
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Figure 4.3: A Constrained Motion Task

matrix ΣF associated with ΣF and defined by

ΣF = I3 − ΣF ; (4.36)

where I3 designates the 3 × 3 identity matrix.

A similar specification matrix can be defined for tasks involving con-
strained rotations and applied moments. Let Md be the vector, in the
frame of reference R0(O,x0,y0, z0), of moments that are to be applied
by the end-effector, and RM(O,xM, yM, zM) is a coordinate frame
obtained from R0(O,x0,y0, z0) by a rotation SM. The axis zM can be
selected along the direction of the moment vector Md or one of the
axes of freedom of rotation.

To a task specified in terms of end-effector rotations and applied mo-
ments in the coordinate frame RM, are associated the rotation/moment
specification matrices ΣM and ΣM, defined as

ΣM =



σMx

0 0
0 σMy

0
0 0 σMz


 ; (4.37)

where σxM, σyM , and σzM are binary numbers assigned the value 1
when a free rotation is specified about the axes OxM, OyM, and OzM
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respectively, and zero otherwise. The directions of moment control are
described by the torque specification matrix ΣM associated with ΣM
and defined by

ΣM = I3 − ΣM; (4.38)

Tasks involving both position/force and orientation/moment specifica-
tions (see Figure 4.4), are described by the generalized task specification
matrices

Ω =
(
STFΣFSF 0

0 STMΣMSM

)
; (4.39)

and

Ω =
(
STFΣFSF 0

0 STMΣMSM

)
; (4.40)

associated with specifications of motion and forces, respectively.

Ω and Ω act on vectors described in the reference frame R0. A command
vector, for instance, initially expressed in R0 is transformed by the
rotation matrix SF to the task coordinate frame RF . The motion
directions are then selected in this frame by the application of ΣF .
Finally the resulting vector is transformed back in R0 by STF .

For tasks specified with respect to the end-effector coordinate frame, the
generalized specification matrix can be similarly defined with respect
to that coordinate frame.

The rotation matrices STF and STM are different in general, as illustrated
in the example of Figure 4.4. However, these two matrices will be often
identical in practical cases.

The generalized specification matrix provides a description of the task
in the same coordinate frame (reference frame R0) where the manip-
ulator geometric, kinematic and dynamic models are specified. This
results in a more efficient implementation of the control system for
real-time operations. Control systems using specifications based only
on the matrices ΣF and ΣM will require costly geometric, kinematic,
and dynamic transformations between the reference frame and the task
coordinate frames.
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4.4.2 Basic Dynamic Model

By the nature of coordinates associated with spatial rotations, oper-
ational forces acting along rotation coordinates are not homogeneous
to moments and vary with the type of representation being used (e.g.
Euler angles, direction cosines, Euler parameters). While this char-
acteristic does not raise any difficulty in free motion operations, the
homogeneity issue is important in tasks where both motions and active
forces are involved. This issue is also a concern in the analysis of inertial
properties. These properties are, in fact, expected to be independent
of the type of representation used for the description of the end-effector
orientation.

The homogeneity issue is addressed by using the relationships between
operational velocities and instantaneous angular velocities. The Jaco-
bian matrix J(q) associated with a given selection, x, of operational
coordinates can be expressed as

J(q) = E(x)JO(q); (4.41)

where JO(q) is the basic Jacobian defined independently of the partic-
ular set of parameters used to describe the end-effector configuration,
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while E(x) is dependent upon those parameters. E(x) is of the form

E(x) =
(
Ep(xp) 0

0 Er(xr)

)
; (4.42)

where Ep(xp) depends on the selected position representation, xp, while
Er(xr) depends on the selected orientation representation, xr. For
Cartesian coordinates, Ep(x) is the identity matrix of order 3.

The basic Jacobian establishes the relationships between generalized
joint velocities q̇ and end-effector linear and angular velocities v and
ω.

ϑ
4
=
[
v
ω

]
= JO(q)q̇. (4.43)

Using the basic Jacobian matrix, the mass and inertial properties at
the end-effector are described by

ΛO(x) = J−T
O (q)A(q)J−1

O (q). (4.44)

The above matrix is related to the kinetic energy matrix associated
with a set of operational coordinates, x, by

Λ(x) = E−T (x)Λ0(x)E−1(x). (4.45)

Like angular velocities, moments are defined as instantaneous quanti-
ties. A generalized operational force vector F associated with a set of
operational coordinates, x, is related to forces and moments by

F0
4
=
[

F

M

]
= ET (x) F; (4.46)

where F and M are the vectors of forces and moments. With respect
to linear and angular velocities, the end-effector equations of motion
can be written as

Λ0(x)ϑ̇ + µ0(x,ϑ) + p0(x) = F0; (4.47)

where Λ0(x), µ0(x,ϑ), and p0(x) are defined similarly to Λ(x), µ(x, ẋ),
and p(x) using J0(q) instead of J(q). In equation (4.47), the dynamics
of the end-effector is described with respect to linear and angular veloci-
ties. Therefore, a task transformation of the description of end-effector
orientation is needed. Such a transformation involves the inverse of
E(x) and its derivatives.
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4.4.3 A Mass-Spring System

Let us consider for instance, the problem of controlling the contact
forces of a one-degree-of-freedom manipulator acting along the direction
z using a force sensor. The dynamic behavior of this end-effector/sensor
system can be modeled as a simple mass, m, and spring, ks, system, as
shown in Figure 4.5.

m

f

ks z

Figure 4.5: A Mass/Spring System

The dynamic model of the end-effector/sensor system is

m z̈ + ks z = f ;

where f represents the control force along the z direction. The mea-
surement of contact forces at the sensor is

fs = ksz.

This allows to rewrite the dynamic model of the mass/sensor system as

m
1

ks
f̈s + fs = f.

Based on this model, force control can be achieved by selecting

f = fs −m [kf (fs − fd) + kvf
ḟs]; (4.48)

and the closed loop behavior is given as

f̈s + kskvf
ḟs + kskf (fs − fd) = 0.
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4.4.4 Unified Motion and Force Control

For a multi-linked manipulator, the end-effector/sensor equations of
motion can be written as

Λ0(x)ϑ̇ + µ0(x,ϑ) + p0(x) + Fcontact = F0; (4.49)

The vector Fcontact represents the contact forces acting at the end effec-
tor. The unified approach for end-effector dynamic decoupling, motion
and active force control is achieved by selecting the control structure

F0 = Fmotion + Factive−force; (4.50)

where

Fmotion = Λ̂0(x)ΩF?
motion + µ̂0(x,ϑ) + p̂0(x); (4.51)

Factive−force = Λ̂0(x)ΩF?
active−force + Fsensor; (4.52)

and Λ̂0(x), µ̂0(x, ẋ), and p̂0(x) represent the estimates of Λ0x), µ0(x, ẋ),
and p0(x). The vectors F?

motion and F?
active−force represent the inputs to

the decoupled system. The generalized joint forces Γ required to pro-
duce the operational forces F0 are

Γ = JT0 (q)F0. (4.53)

With perfect estimates of the dynamic parameters and perfect sens-
ing of contact forces, i.e. Fsensor = Fcontact, the closed loop system is
described by the following two decoupled sub-systems:

Ωϑ̇ = ΩF?
motion; (4.54)

Ωϑ̇ = ΩF?
active−force. (4.55)

The unified motion and force control system is shown in Figure 4.6.

4.4.5 Implementation

To further enhance the efficiency of the real-time implementation, the
control system is decomposed into two layers – a low rate dynamic pa-
rameter evaluation layer, that updates the dynamic parameters, and a
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Figure 4.6: Unified Motion and Force Control Structure

high rate servo control layer that computes the command vector using
the updated dynamic coefficients. This is achieved by factoring the
equations of motion into the product of a matrix with coefficients in-
dependent of the velocities, and a vector which contains the velocity
terms. The matrix of coefficients is then given as a function of the
manipulator’s configuration. With this separation of the velocity and
configuration dependency of the dynamics, the real-time computation
of the equations of motion coefficients can be paced by the rate of con-
figuration changes, which is much lower than that of the mechanism
dynamics.

Goal-Position Control

Given a desired position and orientation vector, xd = (xTpd xTrd)
T , the

input of the decoupled end-effector can be selected as

F
? = −kp(xp − xpd) − kvẋp;

and

M
? = −kp δΦ − kv ω;
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where δΦ is the instantaneous angular error corresponding to the error,
δxr between the actual orientation of the end-effector xr and its desired
orientation xrd.

δxr = xr − xrd. (4.56)

We have seen that the time derivative of xr is related to the corre-
sponding angular velocity vector ω by

ẋr = Er(xr) ω. (4.57)

Replacing velocities by elementary rotations yields

δxr = Er(xr) δΦ. (4.58)

Using the left inverse of Er, the instantaneous angular error can be
written as

δΦ = E+
r (xr) δxr; . (4.59)

The closed loop behavior is

ẍp + kvẋp + kp(xp − xpd) = 0;

and
ω̇ + kvω + kpδΦ = 0.

Direction Cosines: With the direction cosines representation, the
end-effector orientation is described by the 9 × 1 column matrix

xr = (sT1 sT2 sT3 )T .

The desired orientation is given as

xrd = (sT1d sT2d sT3d)
T .

The left inverse in this case is simply given by

E+
r =

1

2
ET
r ;
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where
ET
r (xr) = (−ŝT1 − ŝT2 − ŝT3 ) .

This yields

δΦ =
1

2
ET
r (xr)(xr − xrd);

Since
ET
r (xr)xr = ŝ1s1 + ŝ2s2 + ŝ3s3 = 0;

the angular rotation error is

δΦ = −1

2
(ŝ1s1d + ŝ2s2d + ŝ3s3d). (4.60)

Euler Parameters The end-effector orientation is described by the
4 × 1 column matrix

xr = λ = (λ0 λ1 λ2 λ3)
T .

The desired orientation is

λd = (λ0d λ1d λ2d λ3d)
T .

The orientation error vector is

δλ = λ − λd.

The left inverse in this case is

E+
r (xr) = 2

∨

λ
T

;

where

∨

λ
T

=



−λ1 λ0 −λ3 λ2

−λ2 λ3 λ0 −λ1

−λ3 −λ2 λ1 λ0


 .

Noting that
∨

λ
T

λ = 0;

the angular rotation error can be written as

δΦ = −2
∨

λ
T

λd. (4.61)
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Trajectory Tracking

In this case, the input of the decoupled end-effector can be selected as

F
? = ẍpd − kp(xp − xpd) − kv(ẋp − ẋpd);

and
M

? = ω̇d − kp δΦ − kv (ω − ωd);

where
ωd = E+

r (xrd) ẋrd;

and the desired angular acceleration, ω̇d, is obtained by taking the
time-derivative of equation (4.57)

ẍrd = Er(xrd) ω̇d + Ėr(xrd) ωd; (4.62)

and using the left inverse E+
r yields,

ω̇d = E+
r (xrd) ẍrd − E+

r (xrd)Ėr(xrd) ωd.

The closed loop behavior is

(ẍp − ẍpd) + kv(ẋp − ẋpd) + kp(xp − xpd) = 0;

and
(ω̇ − ω̇d) + kv(ω − ωd) + kp δΦ = 0.

Direction Cosines With this representation, the end-effector orien-
tation is described by

xr = (sT1 sT2 sT3 )T ;

where s1, s2, and s3 are the components in the base reference frame
of the three unit-vectors x(n+1), y(n+1), and z(n+1), associated with the
end-effector frame. The second time derivatives of these three vectors
are given by

d2x(n+1)

dt2
= −x(n+1) × ω̇ + (x(n+1) × ω) × ω; (4.63)

d2y(n+1)

dt2
= −y(n+1) × ω̇ + (y(n+1) × ω) × ω; (4.64)

d2z(n+1)

dt2
= −z(n+1) × ω̇ + (z(n+1) × ω) × ω. (4.65)
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However for any set of three vectors u, v, and w, we have the property

u × v × w = (uTv) w − (vTw) u.

Using the above property yields,

ẍr = E(xr) ω̇ +R(xr,ω) ω − (ωT ω) xr;

where R(xr,ω) is the 9 × 3 matrix

R(xr,ω) =




(sT1 ω)I3
(sT2 ω)I3
(sT3 ω)I3


 .

Using the left inverse of E(xr), the angular acceleration is

ω̇ =
1

2
ET
r [ẍr −R(xr,ω) ω + (ωT ω) xr].

Since
ET
r (xr) xr = 0;

the angular acceleration can be written as

ω̇ =
1

2
ET
r (xr)ẍr +

1

2
RT (xr,ω) ẋr.

The desired angular acceleration is

ω̇d =
1

2
ET
r (xrd)ẍrd +

1

2
RT (xrd,ωd) ẋrd.

Euler Parameters: In this case, it can be shown that the accelera-
tion associated with Euler parameters are given by (Khatib 1980)

¨
λ =

1

4

∨

λ ω̇ − 1

2
(ωT ω) λ. (4.66)

Since
∨

λ
T

λ = 0;
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The angular acceleration vector can be written as

ω̇ = 4
∨

λ
T

¨
λ. (4.67)

The desired angular acceleration is

ω̇d = 4
∨

λ
T

d
¨
λd. (4.68)



Chapter 5

Redundancy and
Singularities

A manipulator is said to be redundant when the number, n, of its
degrees of freedom is greater than the number, m, of its end-effector
degrees of freedom. In this definition, redundancy is a characteristic of
the manipulator. The extent of the manipulator redundancy is given
by (n−m), which defines the manipulator degree of redundancy.

In manipulation, there is also task redundancy. This type of redun-
dancy is associated with tasks that involve a subset of the parameters
needed to describe the configuration of the end effector. This redun-
dancy concerns all types of manipulators. For instance, positioning the
end effector of a non-redundant manipulator results in a redundancy
with respect to the task of controlling the end-effector position.

A manipulator is said to be redundant with respect to a task if the
number, mTask, of independent parameters needed to describe the task
configuration is smaller than the number n of the manipulator degrees
of freedom.

81
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5.1 Redundant Manipulators Dynamics

A set of operational coordinates – describing only the end-effector po-
sition and orientation – is obviously insufficient to completely specify
the configuration of a redundant manipulator. Therefore, the dynamic
behavior of the entire system cannot be described by a dynamic model
using operational coordinates. Nevertheless, the dynamic behavior of
the end effector itself can still be described, and its equations of motion
in operational space can still be established. In fact, the structure of the
effector dynamic model has been shown (Khatib 1980, Khatib 1987) to
be identical to that obtained in the case of non-redundant manipulators
(equation (4.6)). In the redundant case, however, the matrix Λ should
be interpreted as a “pseudo kinetic energy matrix.” As shown below,
this matrix is related to the joint-space kinetic energy matrix by

Λ−1(q) = J(q)A−1(q)JT (q). (5.1)

The above relationship provides a general expression for the matrix
Λ that applies to both redundant and non-redundant manipulators.
While equation (4.6) provides a description of the whole system dy-
namics for non-redundant manipulators, the equation associated with
a redundant manipulator only describes the dynamic behavior of its end
effector. In that case, the equation can be thought of as a “projection”
of the system’s dynamics into the operational space. The remainder of
the dynamics will affect joint motions in the null space of the redundant
system. This analysis is discussed below.

The operational space equations of motion describe the dynamic re-
sponse of a manipulator to the application of an operational force F
at the end effector. For non-redundant manipulators, the relationship
between operational forces, F, and joint torques, Γ, is

Γ = JT (q)F. (5.2)

However, this relationship becomes incomplete for redundant manipula-
tors that are in motion. Analysis of the kinematic aspect of redundancy
shows that, at a given configuration, there is an infinity of elemen-
tary displacements of the redundant mechanism that could take place



5.1. REDUNDANT MANIPULATORS DYNAMICS 83

without altering the configuration of the effector. Those displacements
correspond to motion in the null space associated with a generalized
inverse of the Jacobian matrix.

There is also a null space associated with the transpose of the Jacobian
matrix. When the redundant manipulator is not at static equilibrium,
there is an infinity of joint torque vectors that could be applied without
affecting the resulting forces at the end effector. These are the joint
torques acting within the null space of JT (q). With the addition of
null space joint torques, the relationship between end-effector forces
and manipulator joint torques takes the following general form

Γ = JT (q)F +
[
I − JT (q)JT

#

(q)
]
Γ0; (5.3)

where Γ0 is an arbitrary generalized joint torque vector, which will be
projected in the null space of JT , and JT

#

is a generalized inverse of
JT . Clearly, equation (5.3) is dependent on JT

#

and there is an infinity
of generalized inverses for JT , namely, {JT# | JT = JTJT

#

JT}. Below,
it is shown that only one of these generalized inverses is consistent with
the system dynamics.

We start by applying to the manipulator system (3.13), a joint torque
vector in the general form (5.3). To establish the relationship between
operational acceleration and operational force, we premultiply equation
(3.13) by the matrix J(q)A−1(q), and use the relationship between joint
acceleration and operational accelerations (ẍ − J̇(q)q̇ = J(q)q̈). The
resulting equation can be written as

ẍ +
(
J(q)A−1(q)b(q, q̇) − J̇(q)q̇

)
+ J(q)A−1(q)g(q) =

(
J(q)A−1(q)JT (q)

)
F + J(q)A−1(q)

[
I − JT (q)JT

#

(q)
]
Γ0. (5.4)

This equation expresses the relationship between ẍ and F. the matrix(
J(q)A−1(q)JT (q)

)
, which premultiplies F, is homogeneous to the in-

verse of a kinetic energy matrix. This matrix, which exists everywhere
outside kinematic singularities, is the pseudo kinetic energy matrix of
equation (5.1)

Λ(q) =
(
J(q)A−1(q)JT (q)

)−1
.
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Equation (5.4) shows that the acceleration at the operational point is
affected by Γ0 unless the term involving Γ0 is zero. That is, in order
for joint torques associated with the null space in equation (5.3) not to
produce any operational acceleration, it is necessary that

J(q)A−1(q)
[
I − JT (q)J#T

(q)
]
Γ0 = 0. (5.5)

A generalized inverse of J(q) satisfying the above constraint is said to
be dynamically consistent (Khatib 1990).

Theorem 1: (Dynamic Consistency)

A generalized inverse that is consistent with the dynamic
constraint of equation (5.5), J(q), is unique and is given by

J(q) = A−1(q)JT (q)Λ(q). (5.6)

The proof is based on a straightforward analysis of equation
(5.5). This equation can be rewritten as

[
J(q)A−1(q) −

(
J(q)A−1(q)JT (q)

)
J#T

(q)
]
Γ0 = 0;

which, using the definition of Λ, yields

Λ(q)J(q)A−1(q) = J#T

(q).

Notice that J(q) of equation (5.6) is actually the generalized inverse of
the Jacobian matrix corresponding to the solution of δx = J(q)δq that
minimizes the manipulator’s instantaneous kinetic energy.

5.1.1 Equations of Motion

Now, the end-effector equations of motion for a redundant manipulator
can be obtained by using the dynamically consistent generalized in-
verse in equation (5.4) and premultiplying this equation by the matrix
Λ(q). The resulting equations are of the same form as equation (4.6)
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established for non-redundant manipulators. In the case of redundancy,
however, the inertial properties vary not only with the end-effector con-
figuration, but also with the manipulator posture.

Λ(q)ẍ + µ(q, q̇) + p(q) = F; (5.7)

where

µ(q, q̇) = J
T
(q)b(q, q̇) − Λ(q)J̇(q)q̇; (5.8)

p(q) = J
T
(q)g(q). (5.9)

Equation (5.7) provides a description of the dynamic behavior of the
end effector in operational space. This equation is simply the projec-
tion of the joint-space equations of motion (3.13), by the dynamically

consistent generalized inverse J
T
(q),

J
T
(q) {A(q)q̈+b(q, q̇)+g(q) = Γ} =⇒ Λ(q)ẍ+µ(q, q̇)+p(q) = F.

(5.10)
The above property also applies to non-redundant manipulators, where

the matrix J
T
(q) reduces to J−T (q).

5.1.2 Torque/Force Relationship

The dynamically consistent relationship between joint torques and op-
erational forces for redundant manipulator systems is

Γ = JT (q)F +
[
I − JT (q)J

T
(q)

]
Γ0. (5.11)

This relationship provides a decomposition of joint torques into two
dynamically decoupled control vectors: joint torques corresponding to
forces acting at the end effector (JTF); and joint torques that only

affect internal motions,
(
[I − JT (q)J

T
(q)]Γ0

)
.

Using this decomposition, the end effector can be controlled by opera-
tional forces, while internal motions can be independently controlled by
joint torques that are guaranteed not to alter the end effector’s dynamic



86 CHAPTER 5. REDUNDANCY AND SINGULARITIES

Table 5.1: Position/Force Duality

Position Force
(*) δq = J−1 δx Γ = JT F

(**) δq = J δx + [I − J J ] δq0 Γ = JT F + [I − JT J
T
] Γ0

(*) non-redundant manipulators, (**) redundant manipulators

behavior. This relationship is the basis for implementing the dextrous
dynamic coordination strategy for macro-/mini-manipulators.

With the relationship (5.11), the force/position duality for non-redundant
manipulators can be extended to the case of redundant manipulators
as summarized in Table 1.

5.1.3 Stability Analysis

Dynamic decoupling at the end-effector of a redundant manipulator
and the control of its motion and contact forces can be accomplished
with the very same operational control structure used for the effectors
of non-redundant manipulators. However, operational control forces
alone cannot provide asymptotic stabilization to the whole redundant
manipulators. Asymptotic stabilization of the redundant system re-
quires the use of additional dissipative joint torques.

First, let us assume that the end-effector is simply subjected to the
gradient of the attractive potential

Ugoal =
1

2
kp(x − xgoal)

T (x − xgoal);

and to a dissipative operational force

Fdis = −kvẋ;

where kp and kv are positive constants. The gravity of the manipulator
is further assumed to be compensated for. In these condition, the
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Lagrange equations for the controlled system are

d

dt
(
∂T

∂q̇
) − ∂(T − Ugoal)

∂q
= Γdis; (5.12)

where
Γdis = −kvJT (q)ẋ.

Using the relationship between joint velocities and operational veloci-
ties, the dissipative torques Γdis can be written as

Γdis = −kvJT (q)J(q)q̇.

Since all non-dissipative forces in this control design are conservative,
the stability condition is

ΓT
disq̇ ≤ 0; for q̇ 6= 0; (5.13)

or
−q̇TD(q)q̇ ≤ 0; for q̇ 6= 0;

where
D(q) = kv[J

T (q)J(q)].

This condition is satisfied, since D(q) is an n×n positive semi-definite
matrix of rank m0. However, the redundant mechanism can still de-
scribe movements that are solutions of the equation

q̇TD(q)q̇ = 0.

Asymptotic stabilization requires

ΓT
disq̇ < 0; for q̇ 6= 0. (5.14)

This can be achieved by the addition of joint dissipative torques (−kvqq̇).
The vector of total dissipative torques becomes

Γdis = −kvJT (q)J(q)q̇ − kvqq̇.

The matrix D(q) corresponding to the new expression for the dissipa-
tive joint forces becomes

D(q) = kvJ
T (q)(q)J(q) + kvqIn;
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where In is the identity matrix of order n. Now, the matrix D(q) is
positive definite and the system is asymptotically stable.

Let us now consider the case where operational space dynamic compen-
sations are used. The operational dissipative forces are (−kvΛ(q)ẋ),
and the corresponding joint torques are (−kvJT (q)Λ(q)J(q)q̇). To ac-
count for the manipulator dynamics, the additional dissipative torques
that are needed to asymptotically stabilize the internal motions will
be weighted by the joint space kinetic energy matrix A(q), this is
(−kvqA(q)q̇). To prevent disturbances at end-effector, these torques
must be selected from the dynamically consistent null space. The total
dissipative torques are

Γdis = −kvJT (q)Λ(q)J(q)q̇ + [I − JT (q)J
T
(q)][−kvqA(q)q̇];

which can be written as

Γdis = −D(q)q̇;

with
D(q) = [(kv − kvq)J

T (q)Λ(q)J(q) + kvqA(q)].

With an appropriate selection of kv and kvq, the matrix D(q) is positive
definite and the redundant manipulator is asymptotically stable.

5.1.4 Dynamic Consistency: An Example
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Figure 5.1: Null Space Motion with Pseudo Inverse
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Figure 5.2: Null Space Motion with Dynamically Consistent Inverse

The impact of the dynamically consistent control decomposition is il-
lustrated on the 3R-planar manipulator shown in Figure 5.1 and Fig-
ure 5.2. This manipulator is treated as a redundant mechanism with
respect to the task of positioning the end-effector.

The goal here is to maintain the end-effector position, while letting
the manipulator move in the null space. The end-effector position is
controlled by operational forces, F. An oscillatory motion in the null
space is produced by the application, in the null space, of the gradient
of an attractive potential without any dissipative forces, i.e. Γ0 =
−A(q)∇V0.

Two different generalized inverses are used to construct the projection
of Γ0 onto the null space: the Moore-Penrose or pseudo inverse (J+ =

JT (JJT )
−1

) and the dynamically consistent inverse (J̄). The simulation
results are shown in Figure 5.1 and Figure 5.2.

As expected, with the dynamically consistent inverse (see Figure 5.2)
the motion in the null space does not affect the end-effector position,
while large coupling forces are produced at the end-effector when the
pseudo inverse is used (see Figure 5.1).
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5.2 Singular Configurations

A singular configuration is a configuration q at which the end-effector
mobility – defined as the rank of the Jacobian matrix – locally decreases.
At a singular configuration, the end-effector locally loses the ability to
move along or rotate about some direction in Cartesian space.

Singularities and mobility are characterized by the determinant of the
Jacobian matrix for non-redundant manipulators; or by the determi-
nant of the matrix product of the Jacobian and its transpose for redun-
dant mechanisms. This determinant is a function, s(q), that vanishes
at each of the manipulator singularities. This function can be developed
into a product of terms,

s(q) = s1(q) · s2(q) · s3(q) ... sns
(q); (5.15)

each of which corresponds to one of the different singularities associated
with the mechanism. Here, ns is the number of different singularities.
A singular configuration always has a corresponding singular direction.
It is in or about this direction that the end-effector presents infinite
effective mass or effective inertia. The end-effector movements remain
free in the subspace orthogonal to this direction. In reality, the difficulty
with singularities extends to some neighborhood around the singular
configuration, as illustrated in Figure (5.3). The neighborhood of the
ith singularity, Dsi

, can be defined as

Dsi
= {q | |si(q)| ≤ ηi}; (5.16)

where ηi is positive.

5.2.1 Control Strategy

The basic concept in our approach to end-effector control at kinematic
singularities is described as follows: In the neighborhood Dsi

of a sin-
gular configuration q, the manipulator is treated as a redundant sys-
tem in the subspace1 orthogonal to the singular direction. End-effector

1a subspace of the end-effector operational space.
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Ds1

Ds2

Figure 5.3: Kinematic Singularities

motions in that subspace are controlled using the operational space re-
dundant manipulator control, while null space joint torques are used
to deal with the control in the singular direction according to the type
of singularity. The use of the dynamically consistent force/torque re-
lationship guarantees decoupled behavior between end-effector control
and null space control.

In the neighborhood of singular configurations, singular directions and
the associated singular frames are identified. A singular frame is a frame
in which one of the axes is aligned with the singular direction. Next,
the Jacobian matrix is rotated into the singular frame and the rows
corresponding to singular directions are eliminated. This redundant
Jacobian corresponds to the redundant mechanism with respect to end-
effector motion in the subspace orthogonal to the singular directions.
The null space generated by the dynamically consistent inverse of this
redundant Jacobian matrix is used to control motions in the null space.

An additional task to be carried out using the null space can be real-
ized by constructing a potential function, V0(q), whose minimum cor-
responds to the desired task. This is accomplished by selecting

Γnull−space =
[
I − JT (q)J

T
(q)

]
Γ0; (5.17)

with

Γ0 = −A(q)[∇V0 + kvqq̇]. (5.18)
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−A(q)kvqq̇ corresponds to the dissipative torques needed to provide
asymptotic stabilization of the mechanism. The interference of Γ0 on
the end-effector is eliminated by projecting this vector in the dynami-
cally consistent null space.

The strategy for the control of a manipulator at a singularity depends
on the type of singularity.

5.2.2 Types of Singularities

In previous work, singularities have been characterized in terms of the
internal freedom of motion a manipulator has at a singular configura-
tion while its end-effector remains fixed.

However, for control purposes, we separate singularities into two groups
based on the control characteristics of their null spaces. Type 1 sin-
gularities are those at which the end-effector can be controlled in the
singular directions using null space torques. Type 2 singularities arise
when null space torques affect only the internal joint motions.

A projection of joint torques into the null space associated with a Type 1
singularity results only in a finite end-effector motion in the singular
direction. A projection into the null space associated with a Type 2 sin-
gularity results only in a finite change of the singular direction through
finite internal joint motions.

Singularity Type 1: The end-effector motion in the singular direc-
tion can be controlled directly through the associated null space
by selecting a potential function whose minimum corresponds
to the desired configuration. The resulting torques from Equa-
tion 5.18 affect the end-effector motion only along the singular
direction.

Singularity Type 2: The configuration of the manipulator itself is
controlled to change the singular direction until the singular di-
rection is orthogonal to the operational force vector. By con-
structing a potential function such that its minimum corresponds
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to the configuration where the singular direction is orthogonal to
the operational force vector, the singular direction can be changed
in the null space. The resulting torques from Equation 5.18 affect
only the change of the singular direction via internal joint motions
while maintaining the position and orientation of the end-effector.

Since a small end-effector motion in the singular direction can
cause a large internal joint motion in the null space, following
a time-dependent trajectory can be difficult. A solution to this
difficulty is to use a simple path planning algorithm which keeps
the singular direction orthogonal to the end-effector motion in the
neighborhood of singularities. Paths generated in this way will
avoid the time delay caused by finite internal joint motions of the
manipulator. Another practical approach, which eliminates the
need for this type of path planning, is to use time-independent
trajectories such as the goal position method.

5.2.3 Example: The PUMA 560

The above strategy is applied here to the control a PUMA 560 with
the goal position method. Figure 5.4 shows the three basic singularities
in a PUMA 560: elbow lock, wrist lock, and head lock from left to
right. Elbow lock is Type 1 and the other two are Type 2. Since these
basic singularities can occur at the same time, the rank of the Jacobian
matrix can vary from 3 to 6. The minimum rank of the Jacobian
corresponds to the configuration at which the end-effector reaches the
highest point directly above the base.

In Figure 5.5, the end-effector of a PUMA 560 is simultaneously moving
out of two singularities, elbow lock (Type 1) and wrist lock (Type 2).
The goal is to translate along the singular direction, x, while maintain-
ing all other positions and orientations. Since internal joint motions
are not needed, the end-effector motion is fully controlled as shown in
the plot in Figure 5.5.

In Figure 5.6, the end-effector of a PUMA 560 is moving out of the
singular configuration of wrist lock (Type 2) along the singular direc-
tion, x, while maintaining all other positions and orientations. The
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Figure 5.4: Three Basic Singular Configurations in PUMA 560
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Figure 5.5: Compound Singular Configuration

initial configuration is shown in Figure 5.6 and the goal is to rotate 45◦

about x-axis. The motion of joint 4 and 6 is the finite internal joint
motion and the motion of joint 5 accounts for the end-effector motion.
The symmetric motion of joint 4 and 6 ensures the decoupled behav-
ior. The end-effector motion remains smooth (solid line), even though
there is a sharp velocity change in joint 4 and 6 at the boundary of the
singular configuration.
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Chapter 6

Inertial Properties

The inertial properties of a manipulator are generally expressed with
respect to its motion in joint space. For an n degree-of-freedom manip-
ulator, the joint space inertial properties are described by the kinetic
energy matrix, A(q). When the dynamic response or impact force at
some point at the end-effector or manipulated object are of interest,
the inertial properties involved are those evaluated at the operational
point. The operational space kinetic energy matrix Λ(x) provides a de-
scription of the inertial properties of the manipulator at the operational
point.

The analysis of the end-effector inertial properties relies on study of the
matrix

Λ0(q) =
(
J0(q)A−1(q)JT0 (q)

)−1
;

where J0(q) is the basic Jacobian associated with the end-effector lin-
ear and angular velocities. Using this matrix, Asada (1983) proposed
the generalized inertia ellipsoid as a geometric representation for the
inertial properties of a manipulator. An alternative to the ellipsoid of
inertia is the ellipsoid of gyration suggested by Hogan (1984). This el-
lipsoid is based on analysis of the matrix, Λ−1

0 (q), whose existence is al-
ways guaranteed. The eigenvalues and eigenvectors of the matrix Λ0(q)

97



98 CHAPTER 6. INERTIAL PROPERTIES

were used in combination with the hyper-parallelepiped of acceleration
in the design of manipulators aimed at achieving the smallest, most
isotropic, and most uniform inertial characteristics; and the largest,
most isotropic, and most uniform bounds on the magnitude of end-
effector acceleration (Khatib and Burdick 1985, Khatib and Agrawal
1989).

The eigenvalues associated with the matrix Λ0(q) or its inverse Λ−1
0 (q)

provide a useful characterization of the bounds on the magnitude of the
inertial properties. However, these eigenvalues correspond to eigenvec-
tors in a six-dimensional space that combines translational and rota-
tional motions and are difficult to interpret.

6.1 Inertial Properties and Task Redun-

dancy

When analyzing the inertial properties of manipulators, two distinct
types of tasks are examined: end-effector translational tasks and end-
effector rotational tasks. Given the redundancy of the manipulator with
respect to each of these tasks, the dynamic behavior at the end-effector
can be described by a system of equations similar to (5.7).

First, let us consider the task of positioning the end effector. The
Jacobian in this case is the matrix, Jv(q), associated with the linear
velocity at the operational point. The pseudo kinetic energy matrix is:

Λ−1
v (q) = Jv(q)A−1(q)JTv (q). (6.1)

The matrix Λ−1
v (q) provides a description of the end-effector transla-

tional response to a force. Consider, for instance, the task of positioning
the end effector along the y-axis, as illustrated in Figure 6.1-a. The Ja-
cobian associated with this task reduces to the row matrix Jvy

(q). The
pseudo kinetic energy matrix in this case is a scalar, my, representing
the mass perceived at the end effector in response to the application of
a force fy along the y axis:

1

my

= Jvy
(q)A−1(q)JTvy

(q).
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Figure 6.1: Effective Mass (a) and Effective Inertia (b)

With y0 representing the unit vector along the y-axis, the matrix Jvy
(q)

can be written as
Jvy

(q) = yT0 Jv(q);

and
1

my

= yT0 Λ−1
v y0.

For rotational tasks, the Jacobian involved is the matrix Jω(q) associ-
ated with the angular velocity measured about the different axes of the
operational frame. The pseudo kinetic energy matrix is:

Λ−1
ω (q) = Jω(q)A−1(q)JTω (q). (6.2)

The matrix Λ−1
ω (q) provides a description of the end-effector rotational

response to a moment. Consider now the task of rotating the end
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effector about the z axis, as illustrated in Figure 6.1-b. The Jacobian
associated with this task is the row matrix

Jωz
(q) = zT0 Jω(q);

z0 is the unit vector along the z-axis. The pseudo kinetic energy matrix
in this case is a scalar, Iz, representing the inertia perceived at the end
effector in response to a moment Γz applied about the z-axis:

1

Iz
= zT0 Λ−1

ω (q)z0.
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6.2 Effective Mass/Inertia

The above analysis can be easily extended for translational and rota-
tional motions along or about an arbitrary direction. If u is the unit
vector describing this direction, the inertial properties can be analyzed
by considering the two matrices Jvu

(q) and Jωu
(q). These matrices are

given by

Jvu
(q) = uTJv(q); and Jωu

(q) = uTJω(q).

The effective mass, mu(Λv), perceived at the operational point along
a direction u is given by

1

mu(Λv)
= uTΛ−1

v (q)u. (6.3)

Starting from rest, the inverse of magnitude of the effective mass
is equal to the component of the linear acceleration along the
direction u that results in response to a unit force applied along
u.

The effective inertia, Iu(Λω), perceived at the operational point about
a direction u is given by

1

Iu(Λω)
= uTΛ−1

ω (q)u. (6.4)

Starting from rest, the inverse of magnitude of the effective inertia
is equal to the component of the angular acceleration about the
direction u that results in response to a unit moment applied
about u.

The above characterization can be extended to describe the overall
effective inertial properties of a manipulator in a direction represented
by a unit vector w in the m-dimensional space. The effective inertial
properties in a direction w is described by the scalar

σw(Λ0) =
1

(wTΛ−1
0 w)

. (6.5)

Although difficult to physically interpret, σw(Λ0) provides a useful mea-
sure of the magnitude of the overall inertial properties.
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6.3 Structure of Λ
−1
0

We have seen that the end-effector translational response to a force
and its rotational response to a moment can be characterized by the
matrices Λ−1

v (q) and Λ−1
ω (q), respectively. These two matrices have

been established separately by considering pure translational motion
tasks and pure rotational motion tasks.

Consider again, the matrix
(
J0(q)A−1(q)JT0 (q)

)
expressed in terms of

the matrix A−1(q) and the basic Jacobian J0(q). The basic Jacobian
matrix can be written as

J0(q) =
[
Jv(q)
Jω(q)

]
; (6.6)

where Jv(q) and Jω(q) are the two block matrices associated with the
end-effector linear and angular velocities, respectively. Using this de-
composition, the matrix Λ−1

0 (q) can be written in the form

Λ−1
0 (q) =

[
Λ−1
v (q) Λvω(q)

Λ
T

vω(q) Λ−1
ω (q)

]
; (6.7)

where Λv(q) is the matrix given in equation (6.1) and Λω(q) is the
matrix given in equation (6.2). The matrix Λvω(q) is given by

Λvω(q) = Jv(q)A−1(q)JTω (q).

The matrix Λv(q), which describes the end-effector translational re-
sponse to a force, is homogeneous to a mass matrix, while Λω(q), which
describes the end-effector rotational response to a moment, is homoge-
neous to an inertia matrix. The matrix Λvω(q) provides a description
of the coupling between translational and rotational motions.
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Figure 6.2: Effective Mass/Inertia (Ellipsoid Representation)

6.4 Belted Ellipsoid

As illustrated in Figure 6.2, one possible representation of the mass/inertial
properties associated with the two matrices Λ−1

v (q) and Λ−1
ω (q) is to

use the two ellipsoids:

vTΛ−1
v (q)v = 1; and vTΛ−1

ω (q)v = 1.

However, ellipsoid representations only provide a description of the
square roots of effective mass (inertia) in (about) a direction.

We propose a geometric representation that characterizes the actual
magnitude of these properties. This representation is based on what
we have termed the belted ellipsoid. A belted ellipsoid is obtained by a
polar transformation of an ellipsoid. A point on the ellipsoid surface is
transformed to a point located along the same polar line at a distance
equal to the square of the initial point distance. This construction is
illustrated in Figure 6.3.



104 CHAPTER 6. INERTIAL PROPERTIES

√
mu

mu

u

v
w

Figure 6.3: Construction of Belted Ellipsoids from Ellipsoids

A point on the ellipsoid represented by a vector v is transformed into
a point on the belted ellipsoid represented by a vector w. The vector
w is collinear to v and is of a magnitude equal to vTv. That is

w = ‖v‖v.

The equation of a belted ellipsoid, therefore, can be obtained from the
equation of an ellipsoid by replacing the vector v by the vector v√

vT v
.

Figure 6.4: Examples of Belted Ellipsoids
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The equations for the two belted ellipsoids corresponding to the two
matrices Λ−1

v (q) and Λ−1
ω (q) are

vTΛ−1
v (q)v√
vTv

= 1; and
vTΛ−1

ω (q)v√
vTv

= 1. (6.8)

For instance, the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1;

becomes

x2

a2
√
x2 + y2 + z2

+
y2

b2
√
x2 + y2 + z2

+
z2

c2
√
x2 + y2 + z2

= 1.

Two examples of belted ellipsoids are shown in Figure 6.4. For a redun-

(a)

(b)

mu (b)

mu (a)
u

Figure 6.5: Effective Mass of a Redundant Manipulator

dant manipulator, the inertial properties perceived at a given position
and orientation of the end effector vary with the manipulator config-
uration. This is illustrated for the effective mass in Figure 6.5 using
belted ellipsoids.
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Chapter 7

Macro-/Mini-Manipulators

We now consider the case of systems resulting from the serial combi-
nation of two manipulators. The manipulator connected to the ground
will be referred to as the macro-manipulator. It has nM degrees of
freedom and its configuration is described by the system of nM gen-
eralized joint coordinates qM . The second manipulator, referred to as
the mini-manipulator, has nm degrees of freedom and its configuration
is described by the generalized coordinates qm. The resulting struc-
ture is an n-degree-of-freedom manipulator with n = nM + nm. Its
configuration is described by the system of generalized joint coordi-

nates q =
[
qTM qTm

]T
. If m represents the number of effector degrees of

freedom of the combined structure, nM and nm are assumed to obey

nM ≥ 1 and nm = m. (7.1)

This assumption says that the mini-manipulator must have the full
freedom to move in the operational space. The macro-manipulator
must have at least one degree of freedom.
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R0

RM

R�

pM

pm

Figure 7.1: Kinematics of a Macro-/Mini-Manipulator System

7.1 Kinematics of Macro/Mini Structures

The configuration of the macro-manipulator is described with respect
to a reference frame R0 and the configuration of the mini-manipulator
structure is described with respect to a frame RM attached to the
last link of the macro-manipulator, as illustrated in Figure 7.1. The
coordinate frame associated with the operational point, is denoted by
R�. Let SM(qM) be the transformation matrix describing the rotation
between the frames RM and R0.

Let pM be the vector connecting the origins of frames R0 and RM , and
pm the vector connecting those of RM and R�. The position of the
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operational point, with respect to R0, is described by the vector

p = pM + pm.

If vM and ωM represent the linear and angular velocities at the origin
of frame RM attached to the last link of the macro-manipulator, the
linear velocity at the operational point is

v = vM + vm + ωM × pm;

where vm represents the linear velocity at the operational point result-
ing form the motion of the mini-manipulator. The angular velocity at
the end effector is

ω = ωM + ωm.

Thus, the linear and angular velocities at the operational point ex-
pressed with respect to the reference frame R0 are

[
v
ω

]

(R0)

=
[
I −p̂m(0)

0 I

] [
vM
ωM

]

(R0)

+
[
SM 0
0 SM

] [
vm
ωm

]

(RM )

; (7.2)

where p̂m(0) is the cross product operator associated with the position
vector pm(0) and expressed in R0. If JM(0)(qM ) and Jm(0)(qm) are the
basic Jacobian matrices associated with two individual manipulators,
the basic Jacobian matrix associated with the serial combination can
be expressed as

J0 = [V JM(0) Jm(0) ] ; (7.3)

where

V =
[
I −p̂m(0)

0 I

]
. (7.4)
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7.2 Dynamics of Macro/Mini Structures

The kinetic energy matrix, A(q), of the combined system can be de-
composed in block matrices corresponding to the dimensions of the two
manipulators’ individual kinetic energy matrices

A(q) =
[
A11 A12

AT12 A22

]
. (7.5)

Lemma 1:

The nm × nm joint-space kinetic energy matrix, Am, of the
mini-manipulator considered alone is identical to the matrix
A22 of (7.5).

Proof: The kinetic energy of the combined macro-/mini-
manipulator is

T (q, q̇) =
1

2
q̇TA q̇.

The kinetic energy associated with the mini-manipulator
considered alone is

Tm =
1

2
q̇TmAmq̇m.

Tm must be identical to T (q, q̇)|q̇M=0,

T (q, q̇)|q̇M=0 =
1

2
[ 0 q̇Tm ]

[
A11 A12

AT12 A22

][
0

q̇m

]
=

1

2
q̇TmA22q̇m;

(7.6)
which implies the identity between Am and A22. 2

The operational space pseudo kinetic energy matrix Λ0 associated with
the linear and angular velocities is defined by (J0A

−1JT0 )−1.
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Lemma 2:

The operational space pseudo kinetic energy matrix Λ0 as-
sociated with the macro-/mini-manipulator and the opera-
tional space kinetic energy matrix Λm(0) associated with the
mini-manipulator are related by

Λ−1
0 = Λ−1

m(0) + ΛC ; (7.7)

where

ΛC = (V JM(0) − Jm(0)A
−1
22 A21) (A11 − AT21A

−1
22 A21)

−1

(V JM(0) − Jm(0)A
−1
22 A21)

T . (7.8)

Proof: The proof is based on a special matrix decompo-
sition of the kinetic energy matrix A. A is a symmetric
positive definite matrix. The sub-matrix A22 is nonsingu-
lar. Therefore, the matrix A can be decomposed (Golub
and Van Loan 1983) as

A =
[
I AT21A

−1
22

0 I

][
A11

−1
0

0 A22

][
I 0

A−1
22 A21 I

]
; (7.9)

where
A11 = (A11 − AT21A

−1
22 A21)

−1. (7.10)

The matrix Λ−1
0 is

Λ−1
0 = [V JM(0) Jm(0) ]

[
I 0

−A−1
22 A21 I

][
A11 0
0 A−1

22

]

[
I −AT21A−1

22

0 I

][
JTM(0)V

T

JTm(0)

]
. (7.11)

Substituting Am for A22 in the above expression yields equa-
tions (7.7) and (7.8). 2

The inertial properties of the macro/mini-manipulator are represented
by the m × m matrix, Λ0. The magnitude of these properties in a
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direction represented by a unit vector w in the m-dimensional space
can be described by the scalar

σw(Λ0) =
1

(wTΛ−1
0 w)

,

which represents the effective inertial properties in the direction w.

Theorem 2: (Reduced Inertial Properties).

The operational space pseudo kinetic energy matrices Λ0

(combined mechanism), and Λm(0) (mini-manipulator) sat-
isfy

σw(Λ0) ≤ σw(Λm(0)), (7.12)

in any direction w.

The magnitudes of the inertial properties of the macro-/mini-manipulator
system shown in Figure 7.2, at any configuration and in any direction,
are smaller than or equal to the magnitudes of the inertial properties
associated with the mini-manipulator.

Proof: The proof of this theorem involves the following two
steps:

Step 1: (Relationship) Equation (7.7) yields,

wTΛ−1
0 w = wTΛ−1

m(0)w + wTΛCw.

This relation can be written as

1

σw(Λ0)
=

1

σw(Λm(0))
+ α,

where
α = wTΛCw. (7.13)

Completion of the proof requires to show that α ≥ 0, that
is to show that ΛC is a non-negative definite matrix.
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Figure 7.2: Inertial Properties of a Macro-/Mini-Manipulator

Step 2. Non-negative Definition of ΛC. Examination of

equation (7.11) shows A11 = (A11−AT21A−1
22 A21)

−1 to be the
upper diagonal block matrix in the inverse of A. (A11 −
AT21A

−1
22 A21)

−1 is thus a positive definite matrix, which can
be written as BBT . Using this form in the expression of
ΛC in equation (7.8) shows that the matrix ΛC itself can
be written as CCT . This implies that ΛC is a non-negative
definite matrix. Substituting this result in equation (7.13)
completes the proof of the theorem. 2

The reduced effective inertia result obtained for the matrix Λ0 also
applies to the matrices Λv and Λω. The matrix Λv can be obtained
from Λ0 by replacing the Jacobian J0 by the matrix

Jv = [ I 0 ]J0. (7.14)
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Using equations (7.14), the decomposition of equation (7.7) takes the
form

Λ−1
v = Λ−1

m(v) + ΛC(v); (7.15)

where

ΛC(v) = ( I 0 ) ΛC

(
I
0

)
. (7.16)

This shows that, like ΛC , the matrix ΛC(v) is a non-negative definite
matrix. The same procedure can be applied to Λω using

Jω = [ 0 I ] J0. (7.17)

Corollary 2.1: (Reduced Effective Inertia).

The effective mass (inertia) in (about) any direction u of a
macro/mini-manipulator system is smaller than or equal to
the effective mass (inertia) associated with the mini-manipulator
in (about) that direction:

mu(Λv) ≤ mu(Λm(v)) and Iu(Λω) ≤ Iu(Λm(ω)); (7.18)

as defined in Section 6.2.

Example: (A Three-Degree-of-Freedom Manipulator) Let us con-
sider the three-degree-of-freedom manipulator shown in Figure 7.3.
This manipulator is redundant with respect to the task of position-
ing the end effector. In this example, the mini-manipulator portion
involves two degrees of freedom, nm = 2, and the macro-manipulator
portion has only one degree of freedom, nM = 1.

With respect to frame R1, the Jacobian associated with the end-effector
position takes the simple form

J0(1) =
[−q3 1 0
q2 0 1

]
.
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m3 +m2 × η
m3

R1
R0 R0

m3

m3 +m2

Figure 7.3: A 3 DOF Manipulator with a 2 DOF Mini-Manipulator

The joint-space kinetic energy matrix is

A(q) =



I1 +m2q

2
2 +m3(q

2
2 + q2

3) −m3q3 m3q2
−m3q3 m2 +m3 0
m3q2 0 m3


;

where I1 is the inertia of link 1 about joint axis 1 and where m2 and m3

are the masses of link 2 and link 3. For simplicity we have assumed that
the center of mass of link 2 is located at joint axis 3 and the center of
mass of link 3 is located at the end-effector. The kinetic energy matrix,
Λm(0), associated with the two-degree-of-freedom mini-manipulator is

Λm(0) =
[
m2 +m3 0

0 m3

]
.
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In frame R1, the kinetic energy matrix, Λ0(1), associated with the three-
degree-of-freedom macro-/mini-manipulator is

Λ0(1) =
[
m2 +m3 × η 0

0 m3

]
;

where

η =
I1 +m2q

2
2

I1 +m2(q
2
2 + q2

3)
≤ 1.

The inertial properties of the macro-/mini-manipulator and the mini-
manipulator are illustrated in Figure 7.3. The belted ellipsoids shown
in this figure correspond to the eigenvalues and eigenvectors associated
with the matrices Λ0(1) and Λm(0).

With respect to frame R0, the kinetic energy matrix, Λ0 is

Λ0 = ΩΛ0(1)Ω
T ;

where

Ω =
[
cos(q1) − sin(q1)
sin(q1) cos(q1)

]
.

A more general statement of Theorem 2 is that the inertial properties
of a redundant manipulator are bounded above by the inertial properties
of the structure formed by the smallest distal set of degrees of freedom
that span the operational space. The equality of the inertial properties
in Theorem 2 is obtained for mechanisms that involve only prismatic
joints (Khatib 1990).
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7.3 Dextrous Dynamic Coordination

The dynamic performance of a macro-/mini-manipulator system can
be made comparable to (and, in some cases, better than) that of the
lightweight mini-manipulator. The basic idea behind the approach for
the coordination of macro and mini structures is to treat them to-
gether as a single redundant system. High dynamic performance for
the end-effector task (motion and contact forces) can be achieved with
an operational space control system based on equation (5.7). Minimiz-
ing the instantaneous kinetic energy, such a controller will attempt to
carry out the entire task using essentially the fast dynamic response of
the mini structure. However, given the mechanical limits on the mini
structure’s joint motions, this would rapidly lead to joint saturation of
the mini-manipulator degrees of freedom.

The dextrous dynamic coordination we propose is based on combining
the operational space control with a minimization of deviation from the
midrange joint positions of the mini-manipulator. This minimization
must be implemented with joint torque control vectors selected from the
dynamically consistent null space of equation (5.11). This will eliminate
any effect of the additional control torques on the end-effector task.

Let qi and q
i
be the upper and lower bounds on the ith joint position

qi. We construct the potential function

VDextrous(q) = kd
n∑

i=nM+1

(
qi −

qi + q
i

2

)2

; (7.19)

where kd is a constant gain. The gradient of this function

ΓDextrous = −∇VDextrous; (7.20)

provides the required attraction (Khatib 1986) to the mid-range joint
positions of the mini-manipulator. The interference of these additional
torques with the end-effector dynamics is avoided by projecting them
into the null space of JT (q). This is

Γnd =
[
In − JT (q)J

T
(q)

]
ΓDextrous. (7.21)
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In addition, joint limit avoidance can be achieved using an “artificial
potential field” function (Khatib 1986). It is essential that the range
of motion of the joints associated with the mini-manipulator accom-
modate the relatively slower dynamic response of the arm. A sufficient
margin of motion is required to achieve dextrous dynamic coordination.

This approach has been implemented for the coordination and control
of a free-flying robotic systems (Russakow and Khatib 1992). In the
context of this system, several other internal motion behaviors have
been proposed for the coordination of the free-flying base, treated as
a macro structure, and the manipulator, considered as the relatively
lightweight mini structure.



Chapter 8

Multi-Effector/Object
System

We now consider the problem of object manipulation in a parallel sys-
tem of N manipulators. The effectors are assumed to be rigidly con-
nected to the manipulated object. The number of degrees of freedom
of the parallel system will be denoted by ns.

First, we will consider the case of a system of N non-redundant manip-
ulators that all have the same number of degrees of freedom, n. The
end effectors are also assumed to have the same number of degrees of
freedom, m (m = n). Under these assumptions, the number of degrees
of freedom of the parallel system in the planar case (n = m = 3) is
ns = 3. In the spatial case (n = m = 6), this number is ns = 6.

8.1 Augmented Object Model

To analyze the dynamics of this multi-effector system, we start by se-
lecting the operational point as a fixed point on the manipulated object.
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Because of the rigid grasp assumption, this point is also fixed with re-
spect to the end effectors. The number of operational coordinates, m, is
equal to the number of degrees of freedom, ns, of the system. Therefore,
these coordinates form a set of generalized coordinates for the system
in any domain of the workspace that excludes kinematic singularities.
Thus the kinetic energy of the system is a quadratic form of the gener-
alized operational velocities, 1

2
ẋTΛ⊕(x)ẋ. The m × m kinetic energy

matrix Λ⊕(x) describes the combined inertial properties of the object
and the N manipulators at the operational point. Λ⊕(x) can be viewed
as the kinetic energy matrix of an augmented object representing the
total mass/inertia at the operational point.

Now, let ΛL(x) be the kinetic energy matrix associated with the object
itself. We will analyze the effect of this load on the inertial properties of
a single manipulator, and generalize this result to the N -manipulator
system to find Λ⊕(x).

Effect of a Load

The kinetic energy matrix Λ(x) associated with the operational coordi-
nates x describes the inertial properties of the manipulator as perceived
at the operational point. When the end effector carries a load (see Fig-
ure 8.1) the system’s inertial properties are modified. The addition of
a load results in an increase in the total kinetic energy. If we let mL
be the mass of the load and IL(C) be the load inertia matrix evaluated
with respect to its center of mass pC , the additional kinetic energy due
to the load is

TL =
1

2

(
mLv

T
C vC + ωTIL(C)ω

)
; (8.1)

where vC and ωC are the linear and angular velocities measured at the
center of mass with respect to the fixed reference frame. The kinetic
energy matrix associated with these velocities is

ΛL(C) =
[
mLI 0
0 IL

]
; (8.2)

where I and 0 are the identity and zero matrices of appropriate dimen-
sions.
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v ω
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ωC

r

pC

⊗

R0

Figure 8.1: Center-of-Mass/Operational-Point Velocities

To compute the kinetic energy matrix with respect to the operational
point, we define r as the vector connecting the operational point to the
object’s center of mass pC . The linear and angular velocities, v and ω,
at the operational point are related to the linear and angular velocities
at the center of mass by

[
v
ω

]
=
[
I r̂
0 I

] [
vC
ωC

]
; (8.3)

where r̂ is the cross product operator associated the vector r. Using the
inverse of this relationship, the kinetic energy matrix associated with
the load and expressed with respect to the velocities at the operational
point can be written as

ΛL(0) =
[
mLI −mLr̂

−mLr̂
T IL +mLr̂

T r̂

]
. (8.4)

The generalized operational velocities ẋ are related to the linear and
angular velocities by a matrix E(x). Expressed in terms of operational
velocities, the kinetic energy due to the load is

TL =
1

2
ẋTΛL(x)ẋ; (8.5)
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where

ΛL(x) = E−T (x)ΛL(0)E
−1(x). (8.6)

Lemma 3

The operational space kinetic energy matrix of the effector
and load system is the matrix

Λeffector+load(x) = Λeffector(x) + ΛL(x). (8.7)

This is a straightforward implication of evaluation of the
total kinetic energy of the system with respect to the oper-
ational coordinates.

To extend this result to an N -manipulator system, let Λi(x) be the
kinetic energy matrix associated with the ith unconnected end effector
expressed with respect to the operational point.

Theorem 3: (Augmented Object)

The kinetic energy matrix of the augmented object is

Λ⊕(x) = ΛL(x) +
N∑

i=1

Λi(x). (8.8)

This results from the evaluation of the total kinetic energy
of the N effectors and object system expressed with respect
to the operational velocities,

T =
1

2
ẋTΛL(x)ẋ +

N∑

i=1

1

2
ẋTΛi(x)ẋ

The use of the additive property of the augmented object’s kinetic en-
ergy matrix of Theorem 3 allows us to obtain the system equations
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=⇒

Augmented Object

F⊕F⊕ ẍẍ

Figure 8.2: A Multi-Arm Robot System

of motion from the equations of motion of the individual manipula-
tors. As illustrated in Figure 8.2, the dynamic behavior of a multi-
effector/object system is described by the augmented object model

Λ⊕(x)ẍ + µ⊕(x, ẋ) + p⊕(x) = F⊕. (8.9)

The vector, µ⊕(x, ẋ), of centrifugal and Coriolis forces also has the
additive property

µ⊕(x, ẋ) = µL(x, ẋ) +
N∑

i=1

µi(x, ẋ); (8.10)

where µL(x, ẋ) and µi(x, ẋ) are the vectors of centrifugal and Corio-
lis forces associated with the object and the ith effector, respectively.
Similarly, the gravity vector is

p⊕(x) = pL(x) +
N∑

i=1

pi(x), (8.11)

where pL(x) and pi(x) are the gravity vectors associated with the ob-
ject and the ith effector. The generalized operational forces F⊕ are
the resultants of the forces produced by each of the N effectors at the
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operational point.

F⊕ =
N∑

i=1

Fi. (8.12)

The effector’s operational forces Fi are generated by the corresponding
manipulator actuators. The generalized joint torque vector Γi corre-
sponding to Fi is given by

Γi = JTi (qi) Fi;

where qi is the vector of joint coordinates associated with the ith ma-
nipulator and JTi (qi) is the Jacobian matrix of the ith manipulator
computed with respect to the operational point. The dynamic decou-
pling and motion control of the augmented object in operational space
is achieved by selecting a control structure similar to that of a single
manipulator (Khatib 1987),

F⊕ = Λ̂⊕(x)F? + µ̂⊕(x, ẋ) + p̂⊕(x); (8.13)

where, Λ̂⊕(x), µ̂⊕(x, ẋ), and p̂⊕(x) represent the estimates of Λ⊕(x),
µ⊕(x, ẋ), and p⊕(x). With a perfect nonlinear dynamic decoupling, the
augmented object (8.9) under the command (8.13) becomes equivalent
to a unit mass, unit inertia object, Im, moving in the m-dimensional
space,

Imẍ = F?. (8.14)

Here, F? is the input to the decoupled system. The control structure
for constrained motion and active force control operations is similar to
that of a single manipulator.

The control structure (8.13) provides the net force F⊕ to be applied
to the augmented object at the operational point for a given control
input, F?. Due to the actuator redundancy of multi-effector systems,
there is an infinity of joint-torque vectors that correspond to this force.

In tasks involving large and heavy objects, a useful criterion for force
distribution is minimization of total actuator activities (Khatib 1988).
In contrast, dextrous manipulation requires accurate control of inter-
nal forces. This problem has received wide attention and algorithms for
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internal force minimization (Nakamura 1988) and grasp stability (Ku-
mar and Waldron 1988) have been developed. Addressing the problem
of internal force in manipulation, we have proposed a physical model,
the virtual linkage (Williams and Khatib 1993), for the description and
control of internal forces and moments in multi-grasp tasks. This ap-
proach has been used in the manipulation of objects with three PUMA
560 manipulators.
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8.2 Redundancy in Multi-Arm Systems

When redundant structures are involved in multi-arm manipulation,
the number of degrees of freedom of the entire system might increase.
When this happens, the configuration of the whole system cannot be
uniquely described by the set of parameters that specify only the ob-
ject position and orientation. Therefore, the dynamic behavior of the
entire system cannot be described by a dynamic model in operational
coordinates. As in the single redundant manipulator case, however, the
dynamic behavior of the augmented object itself can still be described,
and its equations of motion in operational space can still be established.

The number of degrees of redundancy of the multi-arm system can be
defined by ns−m, where m is the number of degrees of freedom of the
augmented object. Obviously, the freedom of the object is restricted by
the freedom of the effectors. If mi is the number of degrees of freedom
for the ith effector before connection to the object, the number, m, of
degrees of freedom the connected object has will satisfy

m ≤ min
i
{mi}. (8.15)

The inequality in (8.15) reflects the fact that additional constraints can
be introduced by the connection of effectors.

When the multi-manipulator system is redundant, (i.e. ns > m), this
implies that one or more manipulators must be redundant. In this case,
the redundancy of the system can either be localized in one manipu-
lator or distributed between several manipulators. If ni represents the
number of degrees of freedom for the ith manipulator, the number of
degrees of redundancy of the ith manipulator is given by ni −m. Only
one of the two manipulators in Figure 8.3-a is redundant (one degree
of redundancy) and both manipulators in Figure 8.3-b are redundant
(one degree of redundancy each).
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(a) ns = 4, m = 3

(b) ns = 5, m = 3

Figure 8.3: Redundancy in Multi-Arm Systems

8.3 Augmented Object in a Redundant Sys-

tem

To establish the augmented object dynamic model for redundant ma-
nipulators, we first determine the number of degrees of freedom of the
object, m (m ≤ mini{mi}). The dynamic behavior of the augmented
object is then obtained by summing the dynamic properties of the indi-
vidual manipulators in this m-dimensional operational space. The dy-
namics of each manipulator will be “projected” into the m-dimensional
operational space following the same procedure described for a single
redundant manipulator. At this point, the dynamic behavior of each
of the effectors will be described by an equation of the form (4.6). The
dynamic behavior of the augmented object system will be given by an
equation similar to equation (8.9), which was established for the non-
redundant multi-arm system. In this case however, the inertial proper-
ties of the augmented object are dependent on the full configuration of
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the system, which is described by

q = (qT1 qT2 . . . qTN )T .

In this equation, qi is the vector of generalized joint coordinates for the
ith manipulator. The pseudo kinetic energy matrix of the redundant
multi-arm system is

Λ⊕(q) = ΛL(x) +
N∑

i=1

Λi(qi). (8.16)

Dynamic decoupling and control of the multi-effector/object system
can be achieved by selecting the same control structure (8.13) used in
the non-redundant case. However, as in the case of a single redundant
manipulator, dynamics in the null spaces associated with the redun-
dant manipulators must be calculated and controlled. This requires
the identification of dynamically consistent relationships between joint
torque vectors and end-effector operational forces.
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8.4 Dynamic Consistency in Multi-Arm

Systems

In the case of a single redundant manipulator, we have seen that the
general relationship between joint torques and end-effector forces is
based on the use of a dynamically consistent generalized inverse of the
Jacobian transpose. For a single manipulator, this inverse is given (see
equation 5.6) by

J(q) = A−1(q)JT (q)Λ(q).

The extension of this relationship to redundant multi-arm systems is
complicated by the fact that the dynamically consistent generalized
inverse is dependent on the joint-space kinetic energy matrix A(q). The
joint-space kinetic energy matrix of a redundant manipulator in a multi-
arm system is not simply the matrix associated with the unconnected
manipulator considered alone. Connection of the manipulator to an
object results in increased loading on the effector of this manipulator.
This load, which is due to the object and all the other manipulators
connected to it, affects the kinetic energy matrix of this manipulator.

To analyze this, we will first examine how the joint-space kinetic energy
matrix in the case of a single manipulator is affected by the addition
of a simple load.

Effect of a Load on a Single Manipulator

The addition of a load to the effector of a single manipulator will result
in an increase in the kinetic energy of the system. Let Λload(x) be
the kinetic energy matrix associated with the load and expressed with
respect to the operational point.

Lemma 4:

The joint-space kinetic energy matrix of a manipulator with
load is the matrix

Aarm+load(q) = Aarm(q) +
[
JT (q)Λload(x)J(q)

]
. (8.17)
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(Arm 1)

(Arm 2)

Λ⊕ (Λ⊕ − Λ2)

Figure 8.4: Reflected Load

This result is derived by expressing the total kinetic energy
of the combined arm/load system in joint space:

T =
1

2

[
q̇TA(q)q̇ + ẋTΛload(x)ẋ

]
;

=
1

2
q̇T
[
A(q) + JT (q)Λload(x)J(q)

]
q̇. (8.18)

Reflected Load

The pseudo kinetic energy matrix Λ⊕(q) describes the inertial charac-
teristics of the N -effector/object system as reflected at the operational
point. Viewed from a given manipulator, the object and the other ef-
fectors can be seen as a load attached to its effector. The additional
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load perceived by the ith manipulator is Λ⊕(q) − Λi(qi), as illustrated
in Figure 8.4. Following Lemma 4, the kinetic energy matrix of the
manipulator resulting from this additional load is

A+i
(q) = Ai(qi) + JTi (qi) [Λ⊕(q) − Λi(qi)] Ji(qi). (8.19)

Theorem 4: (dynamic consistency in multi-arm system)

The generalized inverse associated with the ith manipula-
tor and consistent with the dynamic behavior of the multi-
effector/object system is

J̄i(q) = A−1
+i

(q)JTi (qi)
[
Ji(qi)A

−1
+i

(q)JTi (qi)
]−1

. (8.20)

Finally, the joint torque end-effector force relationship for the ith ma-
nipulator is

Γi = JTi (qi)Fi +
[
In − JTi (qi)J̄

T
i (q)

]
Γi0 ; (8.21)

where Γi0 is an arbitrary joint-torque vector. Asymptotic stabilization
(Khatib 1987), dextrous dynamic coordination, link collision avoidance
(Khatib, 1986), and control of manipulator postures can all be inte-
grated in the vector Γi0 which causes no acceleration at the operational
point.


