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Abstract: This paper presents an extensive overview on statistical pattern recognition methods
for a variety of different tasks, related to multimodal human-computer interaction and multimedia
information processing. Typical tasks in the area of human-computer interaction include handwriting
and gesture recognition, as well as pen-based retrieval of image databases. Multimedia information
processing includes algorithms for document processing, video indexing or face recognition. The aim
of the paper is to demonstrate to the speech community the usability of classical speech recognition
algorithms, such as Hidden Markov Models and related statistical pattern recognition techniques, for
a much larger variety of related problems in man-machine-communication and the efficient processing
and retrieval of multimedia information.

1. INTRODUCTION

Hidden Markov Models (HMMs) represent a well-known statistical pattern recognition technique and
can be considered as the most powerful tool in speech recognition [1]. The efficiency of HMMs basically
has several reasons: One is the fact that HMMs are perfectly suited for warping of patterns of almost
arbitrary origin, and another major reason are the effective self-organizing learning capabilities of HMMs
using large databases. Other advantages include the decoding capabilities of HMMSs and their ability to
perform recognition and segmentation in one single step. It turns out, that exactly those capabilities can
be also useful for a variety of other challenging pattern recognition problems. One could expect that such
problems include especially the processing of time-sequential data, such as speech signals. This is indeed
true for applications as e.g. handwriting recognition and gesture recognition, because it is obvious, that
such applications directly imply the generation of feature sequences, derived from the pen input in case
of handwriting or from a video sequence in case of gesture recognition. These applications happen to be
also very popular modalities for human-computer interaction. However, as will be shown later, the use of
HMNMs is not only restricted to time-sequential data, but also ”static” data, such as still images, can be
succesfully modelled and processed using HMMs. In this case, the image space is used to subdivide the
image into segments, and the spatial order of these segments serves as substitute in order to artificially
generate sequences that can be processed by HMMs. In this way, images can be warped in vertical and
horizontal direction, leading to elastic matching capabilities for images using HMMs.

In this paper, we will not explicitly explain the fundamentals of HMMs, since it is assumed that these
are well-known for most of the people active in speech recognition. Instead, we will concentrate on pre-
senting some examples for the use of HMMs in the application areas mentioned above.

2. HMM-BASED HANDWRITING RECOGNITION

It is obvious that the most popular application area of HMMs has been speech recognition, but re-
cently, HMMs have also been more and more used for handwriting recognition. This is especially true
for on-line handwriting recognition, since the pen trajectory captured in this case can be interpreted as
one-dimensional, non-stationary pattern sequence. It has turned out that the superior learning abilities
of HMMs, their warping capabilities and the existence of very fast and effective decoding procedures
for connected patterns are also the major advantages of HMMs over other traditional pattern process-
ing techniques for handwriting recognition. Therefore, some of today’s most powerful large vocabulary
handwriting recognition systems are based on HMM-technology. Usually, in HMM-based handwriting
recognition, each letter of the alphabet is represented by one HMM. The various HMM states for one
letter represent different sections of this letter, and the topology has an important influence on the way
the production of that letter is modeled. It is also important for the connection of various letters in order



to build HMMs for entire words. As in speech recognition, also in handwriting, the major HMM com-
ponent is the output observation component, consisting of the probability density functions that model
the generation of the various strokes for each state. For on-line handwriting recognition, features are
extracted from the pen trajectory that contain some dynamic information about the handwriting pro-
duction process. It has turned out that further improvements can be obtained if additionally some static
features are incorporated into the recognition process. The large vocabulary handwriting recognition
system developed by the authors evaluates the following features:

angle « of the spatially resampled strokes (coded as sina and cosa)

difference of consecutive angles (sinAq, cosAa)

e pen pressure during writing (p)

9-dimensional vector (x) representing a bitmap slided along the pen trajectory in order to incorpo-
rate a fraction of the actual image of the currently written letter

Fig. 1 shows a few of the above described features along with an HMM with left-to-right topology typically
used for handwriting recognition.
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Figure 1: HMM for modeling the handwriting production process and typical features for recognition

An interesting question also in handwriting recognition is the choice of the correct modeling technique.
Our group has presented one of the first systematic investigations for that problem in [16], comparing
various discrete, continuous and hybrid modeling techniques for a demanding large vocabulary handwrit-
ing recognition task. It turned out the the new hybrid technique based on information theory principles
as described in [17] performed best in this case. The most advanced handwriting recognition systems
are capable of handling vocabularies of up to 200.000 words with recognition accuracies over 90% for
writer-dependent recognition mode, as described in [16].

3. STOCHASTIC MODELING OF IMAGE SEQUENCES

As mentioned already in the introduction, due to the fact that time series modeling has been the most
successful original application of HMMs, the HMM paradigm is the obvious and most natural choice if
it comes to the question of how to use the principle of statistical theories and stochastic modeling tech-
niques for image sequences. Obviously, the most suitable applications for image sequence processing with



HMMs are problems, that involve the recognition and classification of image sequences. Thus, typical
applications can be found in the area of gesture recognition, video-indexing, or tracking and surveillance.
It has indeed turned out that HMMSs can be used very efficiently for exactly these tasks, and our research
group has performed extensive investigations on the use of HMMs in these image sequence processing
areas. Because the area of image sequence processing and recognition has developed into a quite complex
and demanding research area during recent years, the description of all our activities carried out in that
area would be beyond the scope of this paper. Therefore, we concentrate here more on a brief description
of HMM-based approaches to gesture recognition and video-indexing.

3.1 Gesture Recognition

Gesture recognition is a typical problem that requires the effective combination of two different challenges
in computer vision: One is the capability to deal with image sequences rather than still images. The other
is the requirement of handling flexible non-rigid objects and computing useful scores in order to classify
the motion of these objects in the video sequence. HMMSs have been used by a few research groups in order
to deal with this problem, but many of these approaches still require the use of complicated segmentation
techniques, because they are in majority based on the idea of tracking the parts of the human body that
are mainly responsible for carrying out the gesture. The classical use of HMMs for gesture recognition is
therefore based on tracking the hands or the arms, and evaluating the feature sequences derived from this
tracking process using one-dimensional HMMs. However, this leads to problems due to the fact that the
involved tracking process is relatively complicated and not at all free of errors. Therefore, in many cases,
gesture recognition is only possible if the person is equipped with special sensors facilitating the tracking
process, or wears special clothing or performs the gestures only in front of a specified background.

Our approach, as outlined in more detail in [15], is capable of avoiding these limitations and enables
gesture recognition in a truly unconstrained way, using no additional equipment nor any background
limitations. For that purpose, we calculate from each image frame of a video sequence representing a
gesture some global motion features, which describe the gesture with moments derived from the difference
image of the video sequence. It turns out that these features can be conveniently visualized by an ellipsis,
showing the center of gravity of the motion and the motion variance as the axes of the ellipsis. Fig. 2
shows a few of the investigated gestures with the computed and overlayed motion ellipsis.
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Figure 2: Typical gestures and overlayed ellipsis representing the appropriate motion features

Additionally, we use the garbage modeling techniques offered by HMMs to model additional motions
that the person may perform for purposes such as relocation within the image or simply relaxing between
two gestures. The result of this is an HMM-based gesture recognition system that allows the recognition
of spontaneous gestures, performed at arbitrary moments, with unlimited lengths, or even performed as
sequence of several adjacent gestures. Only the use of the special decoding capabilities of HMMs in the
recognition process enabled the on-line recognition of spontaneously performed gestures as described in
more detail in [15].

3.2 Video Segmentation and Indexing

It turned out that the global motion features used in our gesture recognition system are also very suitable
for describing video sequences that do not contain gestures, but instead carry other information with a
wide range of different content, as it can be found in movies or other TV material. This suggests
immediately the use of 1D-HMMs for content recognition of video sequences, also known as content-
based video-indexing. In [18], we present a new approach for the content-based indexing of TV news



using HMMs. It turns out that in this case, the segmentation capabilities of HMMs can be used for
segmenting TV-news into typical content classes, such as "news caster”, ”report”, ”weather forecast”
and even such specialized items as ”interview”. The major innovation of this approach is the fact, that
in this case HMMs allow the use of a ”video-model”, that indicates how different content classes can
appear in typical news magazines. The result is a hierarchical HMM, that contains the stochastic model
of the various content classes in its highest level, and the frame-based features indicating such elementary
segmental cues as ”cut” or ”"wipe” in its lowest level, where all levels are integrated in a large stochastic
model, shown in Fig. 3. More details on this approach can be found in [18].
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Figure 3: Stochastic video model for content-based indexing of TV news

4. STOCHASTIC IMAGE MODELING USING ONE-DIMENSIONAL HMM'’S

As already mentioned, the original most popular use of HMMs has been in the area of time series classifica-
tion, where mainly one-dimensional signals varying in time can be efficiently modeled using the nonlinear
time warping capabilities of HMMs. As will be shown in the following sub-sections, even though com-
puter vision is mainly a problem involving two-dimensional pattern processing techniques, the classical
one-dimensional HMM approach can be also applied to patterns varying in space rather than time, and
specific computer vision tasks can be solved very elegantly with one-dimensional HMMs. For this pur-
pose, we present a brief introduction into the foundations of 1D-HMMs in the following sub-section.

4.1 Classification of Shapes Using HMM’s

One-dimensional Hidden Markov Models can be used in order to classify shapes of objects in natural
images or hand-drawn pictograms, where the elastic matching capabilities of the HMMs lead to a defor-
mation tolerant recognition mode. Obviously, when using 1D-HMMs, a feature sequence (34, . ..,01) has
to be built from the images or shapes. In order to calculate this sequence, He and Kundu [3] propose
the use of radii from the center of gravity (COG) to the shape boundary, (also known as signatures, see
e.g. [4]), as feature extraction technique. However, due to the use of these radii, they are limited to classify
closed contour shapes, rather than unconstrained shapes such as the one shown in Fig. 4. In this Figure,
the shape of a pair of nippers is shown, which is not sufficiently described by its outer geometry only.
In order to overcome this limitation, we propose the use of the polar subsampling technique illustrated
in Fig. 4, which is also known as a shape matrix [5, 6] and which takes the shapes inner geometry into
account as well.

In [3] eight classes of hand-drawn pictograms are classified in a rotation invariant mode. The rotation
invariance has been achieved by a number of preprocessing steps which aim to rotate all shapes to the same
orientation. These steps are based on geometric properties such as elongation axis and minimum radius
point. Hence, this preprocessing procedure is rather complicated. Later Lee and Lovell [7] carried out
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Figure 4: Feature extraction (polar sampling) and corresponding HMM structure for rotation variant recognition
of shapes

experiments on a similar eight class closed contour task. Like He and Kundu they use the preprocessing
steps to rotate the patterns prior to the feature extraction. The features itself are again the radii from the
center of gravity to the shape boundary. The major difference of their approach is that the classification
technique is based on a vector quantizer instead of HMMs.

In the approach proposed in the next section, we utilize the polar subsampling technique combined
with a HMM classifier. Instead of utilizing a complicated procedure based on rules and geometric prop-
erties, we make use of the combined segmentation and classification abilities of the HMMs, which leads
to a more elegant solution to the problem of invariant shape recognition.

4.2 Pattern Spotting Using HMMs with Filler States for Rotation Invariant Recognition
of Shapes

The polar sampling is performed in an adaptive way as shown in Fig. 4. Samples are taken on polar
coordinates (r, @) where the origin is placed at the COG. The sampling raster in Fig. 4 can be expressed
by

Li(n-Ar,m-Ap) =1 (Ar (n—3),m- Ap) (1)
m=1,...,T
n=1,...,k

where I; denotes the sampled image and Ar and Ay the sampling intervals of the radius and the angle,
respectively. The interval Ar is determined by dividing the radius R,,,45 by a fixed number (the dimension
of the feature vector) whereas Ay = %. Note that the feature extraction itself is rotation variant. Thus,
the sampling and modeling scheme in Fig. 4 would lead to a rotation variant recognition mode. In order
to achieve rotation invariance, we propose the use of modified HMMs, which have been concatenated
with so-called filler models. These filler models are copies of an original or initially trained HMM (as
shown in Fig. 4), which are attached in front of and behind the original model, with the first HMM (Filler
Model 1) having a modified initial state distribution vector 7 and the final one (Filler Model 2) being
modified so as to allow the HMM to be in any state, once the end of the feature sequence is reached. The
components of the vector 7 are uniformly set to %, where n denotes the number of states in the original
model. This step expresses the assumption, that every (quantized) rotation angle is equally likely. The
concatenation of the modified HMMs is illustrated in Fig. 5. If the feature sequence of an object being
rotated with respect to the (unrotated) shape used for training the original HMM, is presented twice
to the concatenated HMMs, the original model will be aligned to the unrota‘ged part of the sequence by
the Viterbi algorithm (see also Fig. 5). This leads to a high probability Pr(O|)) if the two objects have
similar shapes. It can be seen in Fig. 5, that once the alignment of the sequence to the Markov Models
has been found, the rotation angle can be estimated by the number of features which have been aligned
to the first and second Filler-model. These numbers of features are denoted as f; and f> in the following
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Figure 5: Alignment of the twice presented feature sequence to the original HMM and the Filler models.

and thus the rotation angle ¢* can be estimated as
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This is a typical pattern spotting problem that can be solved with HMMs more efficiently and elegantly
than with most other techniques, due to the fact that an automatic alignment to the filler models is the
direct result of the Viterbi decoding procedure. To verify the proposed approach, experiments on two
large pictogram databases, both consisting of 20 classes, have been carried out. Each class shows a large
intraclass variance and a large amount of contour perturbation. The 20 rotated pictograms per class
are split into a test and a training set, consisting of 10 drawings each. The experimental results show a
recognition accuracy of up to 99.5%. A detailed description of these experiments can be found in [11].

4.3 Image Retrieval Based on the Use of HMMs

As generally known, the class conditioned probability Pr(O|X) can be used to classify unknown patterns.
This likelihood can also be used as a score for ordering the elements of an image database according to
the similarity with a sketched query image. Thus, the techniques described in the previous section can be
used in order to perform content based image database retrieval by user sketch. In this case, every image
of the database is represented by a rotation invariant model (see also Fig. 5), whereas the rough sketch
of an object is represented by a feature sequence. This sequence can be scored in an efficient way by
applying well known pruning techniques within the HMM framework. After the probability score Pr(é [A)
has been calculated for every database element, those N images with the highest score are retrieved. An
experimental system showing the feasibility of the approach is described in [8].

By applying streams, it is possible to integrate inhomogeneous features derived from e.g. color and
shape into a single statistical model. Fig. 6 illustrates the generation of features for this case. Stream
1 of the sequence, which is derived from the shape of an object, is calculated by applying the steps
depicted in the upper part of Fig. 6. Note that the sampling scheme is identical to the one described in
Fig. 4. In order to calculate the color information (represented in an RGB color space), the binarization
step is skipped and the remaining steps as illustrated in the lower part of Fig. 6 are carried out. As
indicated in the figure, the feature vectors’ components are derived from heterogenous information. The
influence of the different cues shape and color can be controlled by stream weights, which thus become an
integral part of the query. The techniques presented in this section have been evaluated on a color-image
database consisting of 120 images of arbitrarily rotated objects. For every image of the database the
feature extraction steps presented in Fig. 6 have been applied, followed by the training of an individual
model utilizing the Baum-Welch algorithm. As discussed in the previous sub-section, these models are
concatenated with the modified filler HMMs and thus represent the image in a rotation invariant mode,
thereby integrating shape and color derived features. Fig. 7 presents some results achieved with our
system, where in every row the query sketch is shown first (light grey background), followed by those
four images (dark grey background) with the highest similarity scores. The numbers of features being
aligned to the first and second filler models (fi and fa, respectively) are given below the retrieved images
together with an estimated rotation angle calculated from these values according to Eq. 2. A larger
number of query sketches and corresponding retrieved images as well as a more detailed description of
the experimental retrieval system can be found in [20].
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Figure 6: Blockdiagram of the feature extraction steps
sketch 1 (11,25, 110°)
N\
sketch 2 (28, 8, 280°) ( 531, 50°)
sketch 3 (24,12, 240°) (32, 4, 320°) ( 6,30, 60°) (22,14, 220°)

Figure 7: Query sketches and retrieved images. Note that the colors match very well, the grips of the tong
(sketch 2) are red and so are the grips of the first three retrieved tongs.

5. STOCHASTIC MODELING OF IMAGES USING P2DHMMs

Pseudo 2-D HMMs (P2DHMMs) are an extension of the one-dimensional HMM paradigm, which have
been developed in order to model two-dimensional data. They are called pseudo due to the fact that the
state alignment of consecutive columns is calculated independently of each other.

5.1 A Brief Introduction to Pseudo 2-D HMMs

P2DHMMs, which are also known as planar HMMs, are stochastic automata with a two-dimensional
arrangement of the states, as outlined in Fig. 8. The states in horizontal direction are denoted as
superstates, and each superstate consists of a one-dimensional HMM in vertical direction. P2DHMMs
have been already used for character recognition [9] and face recognition [10, 12]. If one considers e.g.
the image of a face in Fig. 8 subdivided into vertical stripes, it is possible to use P2DHMMs for modeling
two-dimensional data in the following manner: Each stripe is aligned to one of the superstates of the
P2DHMM, resulting in a horizontal warping of the pattern. Furthermore, within the superstate, the
pattern representing the stripe is aligned to the one-dimensional HMM states, resulting in a vertical
alignment of the stripe. In a similar way, it is possible to model data, which is considered as consisting
of horizontal stripes.



Figure 8: Basic structure of a Pseudo 2-D HMM for image classification

The P2DHMM shown in Fig. 8 can be trained from data, after features have been extracted, using
the segmental k-means algorithm. Once the models have been trained for each class, the recognition
procedure is accomplished by calculating the class-dependent probability that the (unclassified) data has
been generated by the corresponding HMM. For this procedure, the doubly embedded Viterbi algorithm
can be utilized, which has been proposed by Kuo and Agazzi in [9]. Alternatively, Samaria shows in [10],
that a P2DHMM can be transformed into an equivalent one-dimensional HMM by the insertion of special
start-of-line states and features. Fig. 9 shows an augmented 6 x 6 P2DHMM with start-of-line states

Figure 9: Augmented 6 x 6 P2DHMM with start-of-line marker states

(indicated by a cross). These states generate a high probability for the emission of start-of-line features.
When using the structure in Fig. 9 one has to take care of the fact that the value for the start-of-line
feature is different from all possible ordinary features. These equivalent HMMs can be trained by the
standard Baum-Welch algorithm and the recognition step can be carried out using the standard Viterbi
algorithm. P2DHMMs can be utilized for the classification of images, which is demonstrated in the fol-
lowing section on a face recognition task.

5.2 Classification of Images Using Pseudo 2-D HMMs

The statistical modeling capabilities of the P2DHMMs have been demonstrated in [12], where a recogni-
tion accuracy of up to 99.5% could be achieved on the Olivetti Research Laboratory (ORL) face database.
This result has been achieved by applying the following steps: The first step, namely the feature extrac-
tion, is based on the discrete cosine transform (DCT). The image is scanned with a sampling window
(block) top to bottom and left to right. The pixels in this sampling window of the size 8 x8 are transformed



using the DCT according to the equation:

77
~ (2z 4+ 1)ur (2y + ovr
C(u,v) = a(u)av) ;;f(xay) cos (T) cos (T) (3)

A triangle shaped mask extracts the first 15 coefficients (u +v < 4), which are arranged in a vector. The
result of the feature extraction is a two-dimensional array of vectors.

An overlap between adjacent sampling windows improves the ability of the HMM to model the neigh-
borhood relations between the sampling blocks. The effect of this overlap is somehow comparable to the
use of delta-features in speech recognition, and includes redundant information into the features. Exper-
iments showed that an overlap of 75% (6 pixel) in each direction gives the best recognition accuracy.

The next step is the statistical classification based on P2DHMMs. A single P2HMM, with a model
structure as illustrated in Fig. 9, is trained for every person in the database using the Baum-Welch
algorithm. For the recognition the Viterbi algorithm or the forward-backward algorithm is used in order
to determine the probability of each face model for the test image. On the ORL database, both algorithms
showed similar recognition accuracies, however the Viterbi algorithm is faster than the forward-backward
algorithm and allows an automatic segmentation of the face. The image to be recognized is assigned to
the person, whose model has the highest production probability on the test image.

The Baum-Welch algorithm, which is used for training the P2DHMM for each person, provides the
HMM parameters corresponding to a local maximum of the likelihood function depending on the initial
model parameters [1]. Therefore, it is very important to provide a good initial model for the training.
We exploit the similarity of all faces compared to other objects and train a common initial model on all
200 faces of the training set. This common model is refined on the five faces of one person to obtain the
face model for that person.

The main improvements of our approach, compared to e.g. [10], are the use of DCT features instead
of grey values, and the use of a common initial model. Additionally, the columns of the images are
modeled by the superstates, while in [10] the rows are modeled by the superstates. We think that this
has advantages for the recognition of a person tilting the head. The eyes, which are very important points
in the human face, are not on the same level in this case. This effect can be compensated by modeling the
columns by the superstates. Fig. 10 shows the segmentation (Viterbi alignment) of a tilted face. Those
regions of the face, that have been aligned to the same state, are framed by white lines.

Figure 10: Segmentation (Viterbi alignment) of the image of a human face

6. SUMMARY AND CONCLUSION

The aim of this paper has been the demonstration of the use of statistical pattern recognition techniques
- mainly based on Hidden Markov Models - for other purposes than speech recognition. From the outlines
in this paper, it may be obvious that this approach has a tremendous potential in many application areas



of human-computer interaction and multimedia information processing. We therefore believe that the
research results presented in this paper may be helpful in stimulating other researchers to contribute to
the further exploration of this powerful paradigm for future demanding pattern recognition tasks.
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