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Abstract We describe the implementation of monaural
audio source separation algorithms in our toolkit open-
BliSSART (Blind Source Separation for Audio Recognition
Tasks). To our knowledge, it provides the first freely available
C++ implementation of non-negative matrix factorization
(NMF) supporting the Compute Unified Device Architecture
(CUDA) for fast parallel processing on graphics process-
ing units (GPUs). Besides integrating parallel processing,
openBliSSART introduces several numerical optimizations
of commonly used monaural source separation algorithms
that reduce both computation time and memory usage. By
illustrating a variety of use-cases from audio effects in music
processing to speech enhancement and feature extraction, we
demonstrate the wide applicability of our application frame-
work for a multiplicity of research and end-user applications.
We evaluate the toolkit by benchmark results of the NMF
algorithms and discuss the influence of their parameteriza-
tion on source separation quality and real-time factor. In the
result, the GPU parallelization in openBliSSART introduces
double-digit speedups with respect to conventional CPU com-
putation, enabling real-time processing on a desktop PC even
for high matrix dimensions.
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1 Introduction

1.1 Background

Blind Audio Source Separation (BASS) is a challenging, yet
promising field in signal processing. Its applications are man-
ifold; BASS can be used for auditory scene analysis [10]
or as an intelligent filter for Music Information Retrieval
(MIR) tasks, music re-mixing and automatic speech recog-
nition (ASR). The last years have seen a growing number
of approaches exploiting Non-Negative Matrix Factorization
(NMF) [2], whose most prominent advantage is that it can
extract an arbitrary number of sources from monophonic sig-
nals, in contrast to independent component analysis [13] or
similar microphone array methods. A typical application of
NMF in audio editing is the retrieval of single tracks from
professionally recorded (mono- or stereophonic) music, such
as drums [11, 21] or the leading voice [4] (‘karaoke applica-
tion’). In MIR, NMF can be used for polyphonic transcription
(‘waveform to MIDI converter’) [25]; furthermore, extraction
of the singer’s voice can improve the recognition of lyrics,
which appears to be a particularly challenging task [15]. In
the field of speech processing, monaural BASS techniques
based on NMF can deliver enhanced robustness of ASR by
separating the wanted speech from interfering signals such
as background noise [31,36], music [19] or even other speak-
ers [3, 16, 24]. Beyond its capability to extract sources from
audio signals, NMF can be exploited for audio feature extrac-
tion [22, 34], especially in highly noisy conditions [7, 23, 33]
due to its inherent separation capabilities.

With the increasing amount of computational power
available today, especially the parallel floating point com-
putation capabilities of industry standard graphics process-
ing units (GPUs), we are moving towards the point where
NMF-based algorithms are ready to be integrated in real-
time capable end-user applications [8]. Still, the lion’s share
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of the studies in the field focuses on optimizing the sep-
aration results, neglecting implementation issues. Besides,
few open-source implementations of general-purpose, NMF-
based source separation algorithms exist, with the notable ex-
ception of the FASST source separation toolbox [18]. FASST
provides a flexible BASS framework implemented in Mat-
lab; its focus is on automatic exploitation of prior knowl-
edge about the sources, as specified by the user. The open-
BliSSART toolkit, however, emphasizes performance and
integrability into existing end-user applications by providing
a modular C++ framework. By separating core algorithms
from pre- and post-processing components, it can be seam-
lessly integrated into speech and music processing appli-
cations. Source code and demonstrations can be found at
http://openblissart.github.com/openBliSSART. We have in-
troduced openBliSSART in [32]; since then, one remarkable
development has been to parallelize computationally inten-
sive parts of the algorithms on GPUs following the Compute
Unified Device Architecture (CUDA) standard. An earlier
study [1] proposed the usage of CUDA for NMF, but its eval-
uation was limited to a single NMF algorithm and the matrix
parameterization typically encountered in musical instrument
separation. Similarly, in [8], the use case of exemplar-based
speech classification by parallel NMF was considered exclu-
sively, which corresponds to a very high dimensional fac-
torization. In contrast, one of the main contributions of this
article is a large-scale performance evaluation of parallelized
NMF, oriented on a variety of use cases from speech and
music source separation and audio feature extraction, which
typically result in the usage of different NMF algorithms and
greatly varying input dimensions.

In the remainder of this article, we will first describe
the algorithmic framework implemented in openBliSSART
in Sec. 2. From a description of the generic algorithms, we
will derive numerical optimizations for special cases relevant
in practice, including novel optimizations for non-negative
matrix deconvolution (Section 3). We address the impact of
floating point precision and usage of GPUs on the real-time
capability of the system and conclude with benchmark per-
formances in application scenarios from speech processing
in Section 4.

1.2 Notations

To increase clarity of the following sections, we introduce the
following notations: For a matrix A, Ai, j denotes the element
at row i and column j, and the notation Ai,:—resembling
Matlab syntax—denotes the i-th row of A (as a row vector);
we analogously define A:, j for the j-th column of A (as a
column vector). We write A⊗B for the element-wise product
of matrices A and B; division of matrices is always to be
understood as element-wise. We write [A , B] for the column-
wise concatenation of matrices as in Matlab syntax. 0M×N

and 1M×N denote all-zero and all-one matrices of dimension
M×N. Finally, for a matrix A ∈RM×N and p≥ 0, we define

p→
A :=

{[
0M×p , A:,1:N−p

]
p > 0

A p = 0
, (1)

i. e., the entries of A are shifted p spots to the right, filling

with zeros from the left. Analogously, with
←p
A we denote a

‘left-shift’ version of A, where zeros are introduced from the
right.

2 Algorithmic Framework: Signal Separation and
Reconstruction

2.1 Component Separation Algorithms

openBliSSART’s design is oriented on BASS techniques re-
alized by NMF. A basic procedure is to extract an arbitrary
number R of sources (components) from audio files by com-
puting the non-negative factorization of a spectrogram matrix
V ∈ RM×N

+ obtained from short-time Fourier transformation
(STFT) into a spectral basis W∈RM×R

+ and activation matrix
H ∈ RR×N

+ :

V≈WH, (2)

yielding R component spectrograms V( j), j = 1, . . . ,R either
by multiplication of each basis vector w( j) := W:, j with its
activations h( j) := H j,:, as in [29], or by a ‘Wiener filter’
approach as described in [5, 24]:

V( j) = V⊗ w( j)h( j)

WH
. (3)

The latter ensures that ∑ j V( j) = V; hence, no information is
lost due to the factorization. Each V( j) is then transformed
back to the time domain by inverse STFT and overlap-add.

To obtain a factorization according to (2), a variety of
NMF algorithms can be used that minimize a distance func-
tion d(V|WH) by multiplicative updates of the matrices,
starting from a random initialization. d(V|WH) can be cho-
sen as the β -divergence or one of its special instances, the
Itakura-Saito (IS) [5] divergence, Kullback-Leibler (KL)
divergence, or squared Euclidean distance (ED) [14]. The
choice of β depends on the statistical properties of the signal;
hence, openBliSSART implements a generic algorithm for
the β -divergence as well as optimizations for special cases,
as laid out in Section 3.3. Besides, to support overcomplete
decomposition, i. e., choosing R such that R(M+N)�MN,
sparse NMF variants [29] for any of the aforementioned dis-
tance functions, as well as the sparse Euclidean NMF variant
used in [20], are implemented.

In addition to basic NMF, non-negative matrix decon-
volution (NMD) [24, 30] is provided as a context-sensitive
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NMF extension where each component is characterized by
a sequence of spectra, rather than by an instantaneous ob-
servation. Hence, NMD is a generalization of Non-Negative
Matrix Factorization (NMF). In an NMF-alike notation, the
signal model underlying NMD can be written as follows,
denoting the approximation of V by ΛΛ :

V≈
P−1

∑
p=0

W(p)
p→
H =: ΛΛ . (4)

where→ is the ‘shift’ operator defined in (1). To facilitate
discussion in the subsequent sections, the term ‘NMF’ will
refer to NMF or NMD unless explicitly stated otherwise.

The aforementioned NMF algorithms can be run on mag-
nitude, power, and Mel-scale spectra. As an additional trans-
formation of the spectrogram V, a sliding window can be
applied as in [7], transforming the original spectrogram V
to a matrix V′ whose columns correspond to overlapping
sequences of short-time spectra in V. This provides a con-
textual factorization as does NMD, but with each sliding
window factorized separately; whether this approach is su-
perior to NMD seems to depend on the application [12].
Note that openBliSSART also implements inverse operations
to the aforementioned transformations of the spectrogram—
including Mel filtering and sliding window—to allow proper
signal reconstruction.

2.2 Supervised Component Classification

To cope with scenarios such as instrument separation—as
in [11, 21]—it is necessary to extend the basic source separa-
tion capabilities: Here, typically 20–40 NMF components are
needed for appropriate signal modeling, thus the ‘tracks’ cor-
responding to one instrument, or an instrument class such as
drums, generally comprise more than one NMF component.
Consequently, a classification process is necessary to overlay
individual components into C class spectrograms, yielding
the procedure depicted in Figure 1: First, a selection of train-
ing signals is separated by means of NMF. Subsequently,
the resulting components are annotated (e. g., as drum or
harmonic sounds), and features are extracted from them to
train a classifier, e. g., a Support Vector Machine (SVM).
Then, the actual separation process performs NMF and uses
the previously trained classifier on the features of the sepa-
rated components to overlay them into class spectrograms
Vc,c = 1, . . . ,C: Defining

Jc = { j : (w( j),h( j)) classified as class c},

Vc = ∑
j∈Jc

V( j). (5)

For convenient annotation of the training components, open-
BliSSART provides a graphical user interface. Acoustic fea-
tures which are used for classification include Mel-frequency

preprocessing algorithms d(V|WH) reconstruction
Mel filter NMF IS div. default

Power spec. NMD KL div. Wiener filtering
Sliding window Eucl. dist. comp. classif.

+sparsity

Table 1: Spectrogram preprocessing, factorization (accord-
ing to a cost function d(V|WH)), and signal reconstruction
algorithms for monaural source separation implemented in
openBliSSART.

Training audio

Separation

Feature 
Extraction

Classification

Synthesis

Input signal

Separation

Feature 
Extraction

Storage

Output Class 1
(e.g. Drums)

Output Class C
(e.g. Harmonic)

...

Annotation

Fig. 1: Supervised component classification, as in instrument
separation: The openBliSSART storage module manages the
components from which a classifier is built for usage in the
separation process. The steps required to train the classifier
are depicted in gray shade.

Cepstral Coefficients or features specially suited to instru-
ment separation, such as noise-likeness or periodicity of the
time-varying gains [27]. The available NMF algorithms are
shown in Tab. 1, yielding a flexible framework for NMF-
based source separation where preprocessing, factorization,
and component reconstruction algorithms can be chosen in-
dependently.

2.3 (Semi-)Supervised NMF and Acoustic Feature
Extraction

As an alternative method to integrate a-priori knowledge
about the sources into NMF, supervised NMF is provided in
openBliSSART (cf. Figure 2). Here, the first NMF factor (W)
is pre-defined as a set of spectra that are characteristic for the
sources to be separated, as opposed to a random initializa-
tion, and only the second NMF factor is computed through
multiplicative updates. A typical application is speech en-
hancement, where the sources comprise different persons
speaking simultaneously [20,24], or speech and noise [24,31].
The spectra used for initialization can be estimated by NMF
decomposition of training material, as in [20, 24, 31]. An
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Training audio

Separation

Input signal

SeparationStorage Processing

NMF 
Features

Synthesis

Output Class 1
(e.g. Speech)

Output Class C
(e.g. Noise)

...

Fig. 2: Supervised NMF: A set of spectral components (which
can themselves be computed by NMF from training audio)
serve as constant basis for NMF; the activations can be ex-
ported as features or be used to synthesize audio signals for
the sources without the classification step from Figure 1.

alternative is to directly use training segments [19]; open-
BliSSART supports this by allowing initialization with the
spectrograms of training samples. Using any of the meth-
ods shown in Tab. 1, time signals corresponding to different
sources (e. g., speakers) can be synthesized by adding up
component spectrograms. In supervised NMF, no classifica-
tion step is needed, since the assignment of components to
sources is defined a priori.

Besides its usage for source separation, openBliSSART
was the toolkit used in our research on supervised NMF fea-
ture extraction, which has delivered excellent results in robust
speech processing [7] including detection of non-linguistic
vocalizations and emotion [33, 34]. Thereby different sets of
components are selected as an in- or overcomplete feature
basis, for which the time-varying activation matrix (i. e., the
second NMF factor) is computed by supervised NMF. Simi-
larly to supervised NMF for source separation, this basis can
be estimated by means of NMF from training spectrograms—
as, e. g., in [22, 23]—or, these can be used directly as a basis.
In both cases, training data is assumed to be labeled, e. g.,
with words [7] or sound classes [23, 34], and thus the activa-
tions of the basis vectors directly reveal the content of the
audio signal [7, 23]. openBliSSART allows this matrix to be
exported for further processing, e. g., by popular research
toolkits such as Weka [9] or HTK (Hidden Markov Model
Toolkit) [38], enabling the usage of NMF features for a huge
variety of research.

Finally, openBliSSART also supports semi-supervised
NMF [17, 23, 26]: In that case, only part of the W matrix is
pre-defined and kept constant throughout the NMF iterations;
this allows unknown, variable sources such as instationary
additive noise to be estimated ‘on-the-fly’ during source sep-
aration or NMF feature extraction. The ‘free’ NMF compo-
nents in semi-supervised NMF can be input to component
classification as in the previous section.

3 Numerical Optimizations

To describe the numerical optimizations that openBliSSART
provides for NMD and NMF, we first recall the multiplicative
update rules at the core of the source separation algorithms,
which make up for the lion’s share of the computational
effort. In turn, they are dominated by dense matrix-matrix
multiplication, which can be parallelized very efficiently by
‘off-the-shelf’ libraries, especially those provided by GPU
vendors. Other operations such as element-wise matrix oper-
ations do require some ‘hand-crafted’ routines (cf. Section
3.4), but are less critical for performance [1]. The update
rules for the matrices W(p), p = 0, . . . ,P−1 as well as H in
NMD were given for the KL divergence cost function in [24]
and for the Euclidean distance in [30]. In [16], they were
generalized to the general beta-divergence. The formulation
of the W(p) update rule using matrix products is as follows:

W(p)←W(p)⊗ (V⊗ΛΛ β−2)(
p→
H )T

ΛΛ β−1(
p→
H )T

. (6)

The rule (6) is applied for p = 0, . . . ,P−1. Note that in (6),
the shifted matrix H is transposed, not vice versa. After up-
dating each W(p), the value of ΛΛ has to be recomputed;
however, doing so by using (4) takes O(P2) matrix products
per iteration, which can be decreased to O(P) by using the
difference-based formulation from [30]. The latter is imple-
mented in openBliSSART.

The update rule for H implemented in openBliSSART is
a slightly modified version of the rule proposed in [24, 30],
which averages over the influence that every W(p) has on H.
Our formulation avoids the divisions by zero in the rightmost
columns of the right hand side operands, which occur in the
original formulation of the algorithms:

H j,t ←H j,t
1

P(t)

P(t)−1

∑
p=0

W(p)T
←p

(V⊗ΛΛ β−2)

W(p)T
←p

ΛΛ β−1


j,t

, (7)

with j = 1, . . . ,R, t = 1, . . . ,N and P(t) := min{P,N− t+1}.

3.1 Elimination of Shift Operators in NMD

Overall, the above update rules in ‘matrix form’ are compact,
and can be implemented very efficiently using linear algebra
routines employing vectorization (cf. Section 3.4). Still, if
implemented straightforwardly, the shift operators introduce
additional operations and increase memory usage. Hence,
we will show how to eliminate them completely by reduc-
ing multiplications with shifted matrices to multiplication of
submatrices. This is in contrast to [2] where usage of special
Matlab functions has been proposed to eliminate the shifts.
Observe that the shift operators are always used within a
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matrix-matrix multiplication, introducing zeros into one of
the factors: Thus, the shifting can be ‘simulated’ by adjusting
the summation ranges in the scalar products used in matrix
multiplication. This allows an easy and very efficient im-
plementation without having to compute (and store) shifted
versions of the matrices, or submatrices: The BLAS (Basic
Linear Algebra Subroutines) standard supports submatrix
multiplications directly on the memory blocks corresponding
to the full matrices. Defining Ṽ := V⊗ΛΛ β−2, the numerator
of the rule (6) can be transformed using

Ṽ(
p→
H )T = Ṽ

[
0R×p , H:,1:N−p

]T
= Ṽ:,p+1:NHT

:,1:N−p , (8)
and the numerator of the rule (7) can be reformulated using

W(p)T
←p

Ṽ = W(p)T [Ṽ:,p+1:N , 0M×p]
=
[(

W(p)T Ṽ:,p+1:N
)
, 0M×p] . (9)

The denominators of the rules can be transformed accord-
ingly. Finally, the shifts in the computation of ΛΛ (Eq. 4) can
be eliminated by exploiting the equality

W(p)
p→
H = W(p)

[
0R×p , H:,1:N−p

]
=
[
0M×p , (W(p)H:,1:N−p)

]
, (10)

thereby eliminating all shift operators from the algorithm.

3.2 Optimization of Kullback-Leibler NMD

For the KL divergence (β = 1), one can eliminate the matrix
multiplication from the denominator of (6) by computing row
sums for j = 1, . . . ,R:

(1M×N(
p→
H )T )i, j =

N−p

∑
t=1

H j,t , (11)

reducing the effort to O(RN) operations. Analogously, one
‘reduces’ the denominator of (7) to a column sum for t =
1, . . . ,N:

(W(p)T
←p

1M×N) j,t =

{
∑

M
i=1 W(p)i, j t ≤ N− p

0 t > N− p.
(12)

Since calculation of these row and column sums consumes
only a fraction of the total processing time [1], we simply im-
plement them by a scalar product with an all-one vector. Note
that due to our formulation of the H update rule (Eqn. 7), no
division by zero occurs in practice. Furthermore, we point
out that in contrast to the algorithm implemented in open-
BliSSART (Eqns. 11 and 12), the original formulation of the
KL divergence NMD algorithm [24] ignored the fact that the
1 matrix in the update rule for H must be shifted. As a result,
the original implementation sums up zero updates in the av-
erage update for H, which makes the rightmost P columns
of H effectively vanish after a few iterations, depriving the
algorithm of RP degrees of freedom and leading to slower
convergence especially for short signals.

3.3 Optimization of Euclidean NMF

In case of NMD minimizing Euclidean distance (β = 2),
the update rules (Eqns. 6, 7) are greatly simplified, as the
element-wise multiplication with ΛΛ β−2 = 1 is eliminated.
Besides, in case of Euclidean NMF (P = 1), the update rules
are further reduced to the ones originally proposed in [14].
In matrix formulation, they read

H ← H⊗ WT V
WT WH

and (13)

W ←W⊗ VHT

WHHT . (14)

In these rules, we can rearrange the matrix products by using
their associativity. First, we consider the denominator of the
H update rule (Eq. 13), which contains the product WT WH.
When executed in the order WT (WH), the computational
complexity is O(MNR); in contrast, it is O(R2(M+N)) for
the order (WT W)H, assuming the standard matrix multipli-
cation algorithm. Thus, the effort for the first case is expected
to be lower if and only if MN < R(M +N), that is, in case
of overcomplete factorization. The nested matrix product
WHHT in the denominator of rule (14) can be treated analo-
gously. Naturally, these are only asymptotic considerations,
which are however supported by our experimental results
using efficient linear algebra routines (Sec. 4). Hence, the
openBliSSART routine for ED-NMF uses the computation
order (WH)HT and WT (WH) for MN < R(M +N), and
W(HHT ) and (WT W)H otherwise. For evaluation of this
strategy in the next section, the algorithms that always use
the former or latter computation order will subsequently be
denoted by ‘NMF-ED-ov’ and ‘NMF-ED-in’, as they are ar-
guably optimized to either over- or incomplete factorization.

3.4 Implementation

For a practical implementation of the NMF algorithms using
the above considerations, high performance linear algebra
routines are needed. For CPU computation, we opt for the
open-source BLAS implementation provided by the ATLAS
project [35]. The ATLAS libraries can be considered indus-
try standard and are at the core of Matlab’s linear algebra
capabilities. From our experience, the ATLAS routines de-
crease the real-time-factor (RTF) by an order of magnitude
for typical NMF applications, compared to a ‘naı̈ve’ matrix
multiplication routine implemented in C++. Similarly, for
GPU computation, we rely on the ‘CUBLAS’ implementa-
tion of the BLAS standard in NVIDIA’s CUDA Computing
Software Development Kit (SDK). However, some opera-
tions needed for NMF are not foreseen as routines in the
BLAS standard, such as in the update of the H matrix per-
formed by the KL-NMF algorithm, which (conceptionally)
features an element-wise division of the H matrix by a vector
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of column sums (cf. Eqns. 7 and 12). In order to run the NMF
algorithm entirely on the GPU without time intensive mem-
ory transfers to the CPU memory, openBliSSART extends
CUBLAS by specialized CUDA ‘kernels’ implementing such
operations. Kernels are routines that are automatically dis-
tributed to the GPU cores for vector processing in a ‘single
instruction, multiple data‘ (SIMD) fashion. For example, in
the element-wise division mentioned above, every thread is
assigned a submatrix of H, and a pointer to the corresponding
column sums, which can be processed independently without
expensive inter-thread communication. More details on the
implementation of CUDA kernels can be found in [1].

For further performance enhancement, openBliSSART
utilizes FFTW (Fastest Fourier Transform in the West) [6] to
realize Fast Fourier Transformation (FFT) for arbitrary (even
prime) vector sizes, disposing of the need for zero padding.
FFTW is particularly well suited to short-time Fourier trans-
formation, as the library automatically pre-computes the best
algorithmic strategy for a given Discrete Fourier Transform
(DFT) size through on-the-fly performance measurements,
then uses that strategy for all subsequent calculations. As
the complexity of STFT is linear in the length of the audio
signal—precisely, the number of frames—, and each frame
can be processed independently, we expect it to be fruitful to
integrate a parallel GPU version of the FFT algorithm into
openBliSSART in the future.

4 Experimental Evaluation

In this section, we provide benchmark results achieved with
the openBliSSART toolkit. We start first with an evaluation
of the numerical optimization of Euclidean distance NMF
in practice. We then move on to demonstrate the variety of
means that openBliSSART provides to adjust the trade-off
between computation time and separation quality, including
parallelization, single- or optional double-precision calcula-
tion on both CPU and GPU, and parameterization of NMF
itself, including various cost functions, the number of itera-
tions, and the spectrogram dimension (DFT window size and
frame shift).

All computation was performed on a desktop PC running
Ubuntu Linux 10.04. The PC had an Intel Core2Quad CPU
with 2.4 GHz clock frequency and 4 GB of RAM, and an
NVIDIA GeForce GTX560 GPU with 336 CUDA cores—
each with 810 MHz core and 160 MHz shader frequency—
and 2 GB of RAM. CPU computation was performed using
a single computation thread (i. e., using only one of the four
cores), in order to minimize singular effects due to interfer-
ences with concurrent system processes, to reflect an end-user
application where only part of the CPU computation power
can be dedicated to audio processing, and to compare to a
baseline with no parallelization across computation units.
However, intra-core vectorized processing on the CPU is

performed by the employed ATLAS library, exploiting the
Intel Multimedia Extensions (MMX) and their follow-up
technologies.

4.1 Numerical Optimization

In Fig. 3, the processing times for in- and overcomplete fac-
torization by NMF minimizing the ED function are shown,
for CPU computation. For the ‘component-level’ evaluation
of NMF in this experiment, we used random matrices, as
both algorithms are numerically equivalent and separation
quality is thus unaffected by the choice of algorithm. By com-
paring the processing times for the ‘openBliSSART’ strategy
to either of the algorithms optimized to in- or overcomplete
factorization (‘NMF-ED-in’, ‘NMF-ED-ov’) according to
Sec. 3.3, it can be seen that the proposed implementation
that determines the optimal algorithm by the factorization
dimensionality leads to considerable decrease of computa-
tional effort, especially for very low or very high numbers of
components.

4.2 Parallelization on Graphics Processing Units

Next, we evaluate the influence of computation architecture
(CPU vs. GPU) on the real-time factors, using matrix dimen-
sions encountered in typical applications in speech and music
processing. It is of high interest to assess whether there is a
‘break-even point’ for GPU calculation: It could be expected
that due to the overhead introduced by CPU-to-GPU memory
transfers and thread synchronization of parallel computations
on the GPU, GPU can outperform CPU calculation only
for ‘sufficiently high’ matrix dimensions. Furthermore, we
evaluate the impact of floating point precision for both CPU
and GPU, as current generation GPUs increasingly support
double precision calculations—they are increasingly popu-
lar in scientific computing applications, where the required
precision depends on the application [37].

In Figure 4, we show the processing time of the NMF
algorithm (KL divergence) on a 500× 1000 matrix. This
corresponds to a 1 001-point DFT (≈ 63 ms window size at
16 kHz sampling rate) and 10 s signal length at 10 ms frame
shift (as used in speech feature extraction by NMF in [7, 23])
or, longer signals analyzed with larger frame shifts. The num-
ber of NMF components was varied from 5 to 5 000 to reflect
NMF applications reaching from the extraction from a few
number of simple sources [10] to high-dimensional decompo-
sition [7]. Comparing single vs. double precision, we observe
a consistent speedup from 1.9 up to 3.5 for GPU computation,
depending on R. In contrast, for CPU computation, the results
are more mixed when using lower numbers of components;
particularly, for R = 50, double precision is about 1.2 times
faster than single precision. Furthermore, in case of single
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Fig. 3: Euclidean NMF processing times depending on the number of components (1 – 2 000), for matrices with N = 1000
columns and M ∈ {50,100,200,500} rows (Figs. 3a through 3d); CPU computation. ‘NMF-ED-ov’ and ‘NMF-ED-in’ denote
the algorithms optimized for overcomplete and incomplete factorization, according to Sec. 3.3. ‘openBliSSART’ refers to the
proposed automatic selection between ‘NMF-ED-ov’ and ‘NMF-ED-in’ based on the criterion R(M+N)> MN to distinguish
over- from incomplete factorization. The limit case R(M+N) = MN is shown by the vertical bars, and real-time capability
(processing time < 10 s) is indicated by the horizontal lines.
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Fig. 4: Processing time of the NMF algorithm (KL divergence) on a 500×1000 matrix by the number of NMF components;
single / double floating point precision and CPU /GPU computation. Speedup for double or single precision on both CPU and
GPU, and single precision GPU vs. double precision CPU.

precision, the measured RTF is not linear in the number of
components R. We attribute these phenomena to peculiarities
of the employed ATLAS library.

Measuring the speedup by using parallel GPU instead
of CPU computation, we observe a speedup of at least 6.8
even for ‘small’ matrices (R = 5), indicating that the over-
head by parallel computation is quite low in a typical au-
dio source separation scenario. Speedups of up to 24.9 are
reached for double precision and up to 58.1 for single pre-
cision. In other words, the maximum speedup obtained by
using single-precision GPU computation instead of double-
precision CPU computation is 86.0. As expected, speedups
increase with the dimensionality R. In the result, by using
single-precision GPU computation, real-time processing (i. e.,
a processing time below 10 s) is achievable even for 5 000

NMF components. Note that the above benchmark results
have been obtained with the openBliSSART benchmark tool
delivered with the source code to ensure best reproducibility.

To put our results in perspective, we point out that in [8],
a speedup factor of 28 has been reported for sparse NMF clas-
sification of a spectral matrix with R = 8000, M = 690 and
N = 182, comparing double precision NMF computations on
a CPU with a single precision implementation on a GPU. In
that study, a slightly less performant GPU with only 675 MHz
core frequency (instead of 810) was used; however, it can be
assumed that the timing of the CPU computation refers to
using both cores of the employed Intel Core2Duo CPU with
2.4 GHz (as is the default setting in Matlab) while we used
only one core. Generally, the RTFs reported in our study are
higher than in [8], where supervised NMF is applied (i. e.,
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Separation quality [dB] RTF
Precision SDR SIR SAR CPU GPU

double 5.16 10.15 7.92 .522 .068
single 5.16 10.15 7.92 .937 .033

Table 2: Double and single precision in supervised speech
separation by NMF: Separation quality in terms of SDR, SIR
and SAR, as well as corresponding real-time factors (RTF)
for CPU and GPU computation.

only the H matrix is updated), while our performance mea-
surements pertain to unsupervised NMF including the update
for W. Furthermore, in an earlier study on parallelization of
music source separation by NMF [1], an 18× speedup has
been reported for R = 30, M = 512 and N = 3445 comparing
single precision calculations in a single CPU thread (Intel
Core i7 920) vs. a single precision CUDA implementation
(NVIDIA GTX 280); this speedup is lower than the speedup
gained in our experiments for similar dimensions, but this
can be attributed to the slightly different processing hardware
used. Overall, we conclude that our results corroborate the
results from [8] and [1] in a larger scale study.

4.3 Benchmark Performances in Supervised Speech
Separation

The remainder of our experimental evaluation is dedicated
to a real-life application: supervised speaker separation (cf.
2.3). We defined our evaluation methodology in accordance
with [24]: Since in [24], no significant gain in perceptual
quality could be obtained by using NMD instead of NMF
bases, we restrict the evaluation to NMF. For all subsequent
experiments, we selected 12 random pairs of male and female
speakers from the TIMIT database. For each pair, we mixed
together two randomly selected sentences of roughly equal
length, and computed an NMF basis W from the spectra
in the other sentences spoken by each speaker using 250
multiplicative update iterations. Through supervised NMF
with W, separated signals for both speakers were obtained.
As quality measures, we employed signal-to-distortion ratio
(SDR) as a measure of overall separation quality, source-
to-interference ratio (SIR) to quantify suppression of the
undesired speaker (which may however lead to information
loss in the wanted speech signal due to spectral overlap),
and source-to-artifact ratio (SAR) to evaluate degradation of
speech quality by the separation. Measurements were carried
out using the open-source BSS Eval toolkit [28].

First, we determine whether using single instead of dou-
ble floating point precision has a negative impact on separa-
tion quality. From Table 2, it is evident that this is not the
case: In fact, the SDR, SIR and SAR values are identical for
double and single precision up to the third decimal. This is in
accordance with the findings of [8] for non-negative sparse

classification. Interestingly, the matrix dimension in our case
(50 components) coindices with a configuration where double
precision is faster than single precision in CPU computation,
confirming the singularity evident from Figure 4; this sur-
prising result has been corroborated in multiple repetitions
to cope with random fluctuations due to operating system
CPU usage etc. Conversely, in GPU computation, the RTF
can be halved by using single precision without decreasing
the separation quality.

In a second experiment, we assess the effect of using
different numbers of iterations, DFT window sizes and the
NMF cost function. The importance of the former two param-
eters on separation quality has been pointed out in [24], and
various previous studies clearly suggest that different cost
functions maybe optimal for different source separation prob-
lems [5,30,32]. Still, to our knowledge, the trade-off between
separation quality and the RTF has been rarely investigated
in the light of these parameters, although the algorithms min-
imizing different cost functions considerably differ in the
number of required matrix operations, and their complexity
(cf. Section 3.3).

In this experiment, the number of separation iterations
was chosen from {20, 40, 80, 160, 320} due to the quick
saturation of the convergence of multiplicative update NMF
algorithms in audio source separation [21]. The different DFT
window sizes considered were powers of two, ranging from
26 to 212, or 8–256 ms assuming 16 kHz sample rate. We
evaluated both the RTF for both CPU and GPU computation,
taking the elapsed computation time over the length of the
mixed signals. From Fig. 5, it can be seen that the best aver-
age results are obtained by using the KL divergence as cost
function. The Euclidean distance allows faster separation at
the expense of quality. Reasonable results are only achieved
for long window sizes (256 ms), which limits the practical ap-
plicability in contexts where real-time operation is required.
Finally, the IS divergence enables robust separation, but is
inferior to KL divergence both in terms of separation quality
and RTF.

Generally, we observe that in case of inadequate model-
ing of the sources (indicated by overall low SDR), more iter-
ations do not necessarily improve separation quality, despite
the fact that they linearly increase computational complexity;
in fact, more iterations sometimes degrade quality, e. g., for
the Euclidean cost function and 16 or 64 ms window size. As
expected, the window size itself only slightly influences the
RTF: Recall that the asymptotic complexity of each iteration
step is O(MNR); M is linear in the window size while N
corresponds to the number of frames, and thus changing the
window size while keeping the overlap between successive
frames constant leaves the product MN unaffected.
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Fig. 5: Tuning of the trade-off between RTF and perceptual quality for supervised NMF speech separation by adjusting the
number of NMF iterations (20–320), the DFT window size (16 ms, 64 ms, 256 ms) and the NMF cost function. The average
signal-to-distortion ratio (SDR) [28] is shown for the separation of mixed signals spoken by pairs of male / female speakers
(24 speakers total) from the TIMIT database.

5 Conclusion

We have outlined recent developments in the openBliSSART
toolkit for NMF-based audio source separation, speech en-
hancement and non-negative feature extraction. Besides nu-
merical optimizations of the NMF algorithms themselves,
we were able to drastically reduce the computational effort
required in practice by using parallel computation on GPUs,
reaching real-time capability for several thousand NMF com-
ponents. Still, the exact speedup induced by parallel compu-
tation of NMF is depending on a variety of external factors
such as the number of double and single precision floating
point units which can operate in parallel, the implementa-
tion of the employed BLAS libraries and the instruction set
architecture of the CPU and GPU. While separation quality
is seemingly unaffected by floating point precision, using
single precision is not necessarily faster for all configura-
tions. Conducting performance studies in a real-life, end-user
oriented setup featuring a state-of-the-art desktop PC—as
in this article—usually implies that the CPU has a complex
instruction set architecture (ISA) where performance of float-
ing point operations strongly depends on the used machine
instructions. This is in contrast to GPUs whose ISA is usually
similar to the concept of reduced instruction set computer
(RISC) architectures. Overall, we believe that by providing
the source code of the algorithms as well as the benchmarks,
it will be straightforward for the research community to gain
additional insights into the performance of NMF in different
hardware setups.

Besides, the observed real-time factors motivate us to
address truly on-line, i. e., incremental audio processing in
future development. It will be of particular research interest
to study incremental refinement of source models and classi-
fication of on-line estimated components in semi-supervised
separation.
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