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Abstract

Reliable confidence measures are essential to the basis of decisionmaking for en-
riching human-machine speech interaction with necessary intelligence in ergonomic
dialog management. In addition to a survey of the state of the art in confidence mea-
surement, this work also provides classification of methods derivated from several
points of view and describes possible fields of application. The thesis includes com-
parative evaluation results of different computation algorithms which apply posterior
probability as the hypothesis confidence measure in HMM-based speech recognition.
The key contribution of the dissertation is the description of several utilization
techniques that rely on confidence measurement and are intended to enhance the
performance of speech recognition systems. A new confidence-guided approach is
presented to control the pruning of the Viterbi search process dynamically by tak-
ing variable search quality into consideration to fit time-variant requirements. The
thesis explores dialog management strategies and several aspects of improving user
acceptance in speech-based applications by the use of confidence measurement.
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Chapter 1

Introduction

Speech-based human-machine communication has made substantial gains in popu-
larity over the last decade. Aside from other communication channels, e.g. visual
or haptic, speech has enormous potential to fulfill high expectations of ergonomic
human-machine interfaces (HMI). Speech is qualified to be the best choice for con-
trolling machines by means of commands, not only for professionals to free their
hands while performing other tasks at the same time, but also in the commercial
sector to implement more ergonomic user interfaces for the ever-increasing complex-
ity of household devices. Millions of people use speech interfaces every day to control
their computers, mobile phones, navigation systems and also voice portals to settle
their affairs with service companies or to manage bank accounts, to mention a few
examples. Innumerable speech applications have been already developed for many
branches of business, particularly in the telecommunication sector. There is a clear
tendency that speech applications are in the process of becoming truly ubiquitous.

There are two primary supporting forces that keep this process moving forward:
the natural method of speech communication for humans and the unquenchable
demand of companies to automate services. However, speech communication among
humans is a very complex process, hence its realization between human and machine
is a real challenge. This is because speech communication operates on different levels
of information transfer, i.e. acoustic-phonetic, syntactic and semantic levels, and only
the perfect interplay of those levels makes it spontaneous, just as humans interact
by nature.

State-of-the-art speech applications are not yet able to achieve that level of
perfection. In fact, there remains a long stretch before all difficulties are sorted out
concerning human-machine speech interaction. Humans, for example, master speech
communication under very noisy circumstances since they can readily determine the
confidence in their speech understanding under different conditions. One of the main
pillars of spontaneous speech dialog among humans is to be able to confirm speech
content during a dialog if necessary, but only if necessary. Otherwise the dialog flow
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can be crippled by too many queries and make speech interaction frustrating. On
the other hand too few queries or inadequate ones can cause misunderstanding or
lead the dialog to a dead end.

Many speech-based interfaces support only a limited number of commands or
phrases which need to be known by the user. Therefore the usage of those inter-
faces implies a learning phase just as with other, non speech-based HMIs. But these
limitations give the user a feeling of inconvenience and uncertainty and therefore
decrease the ergonomic quality of the service. Speech has huge potential to support
design and implementation of HMIs at a high ergonomic level without the need to
learn special commands or a limited number of phrases. Unfortunately, due to the
restrictions of current automatic speech recognition (ASR) systems and performance
issues, today’s speech HMIs still require some extra learning for their use. Neverthe-
less the major target of speech-based interfaces remains unchanged: to frame speech
communication as naturally as possible in the form of ergonomic dialogs. The indus-
trial term for the knowledge of dialog flow design is voice user interface (VUI) design.
This is a collection of methods based on scientific principles in language technology,
linguistics and psychology, and it is also proven by industrial experience.

The primary weakness of current ASR systems is deeply-rooted in the principle
of the stochastic approach of the speech decoding process: it searches for the best
hypothesis of possible candidates defined in the dictionary or grammar for a given
speech utterance. Therefore, it always produces a best hypothesis result even if
the current speech utterance is not contained in the list of possible candidates.
To overcome this problem the grammar is often extended with what are known
as out-of-vocabulary (OOV) phrases as a general catch-all for unrecognizable user
utterances. OOV should always become the best hypothesis result if none of the
grammar entries match the speech utterance. However, the quality of OOV detection
suffers as the vocabulary size increases and therefore it is not always applicable for
large vocabulary systems. Also confidence scores are used to rate the certainty of
the recognized phrase, which is unalterable in human-machine communication. The
computed confidence scores can be used to evaluate the quality of the recognition
result and hence to control an interactive dialog between human and machine. The
use of confidence-based decisions allows a more ergonomical and user-friendly dialog
management.

VUI design implies different strategies to deal with these difficulties on the level
of dialog flow control. The most important point is to link the capabilities of the
underlying ASR system to the dialog strategies for a specific speech application.
During the dialog design phase marginal conditions such as the following are to be
clarified:

e Scope of the application to be covered with the dialog in order to provide access
to all necessary user tasks via the speech HMI.



e Degree of naturalness to achieve during human-machine communication. This
expectation is highly dependent on the target user group; for example, it
depends on users’ age and technical savvy. Users with little or no experience
should be guided through the application, with only a restricted set of input
choices at each dialog step to avoid confusion.

e Robustness to withstand interference from the users’ environment such as back-
ground noise or poor audio channel quality. These disturbing factors should
be warded off by appropriate error handling procedures.

e Dialog length, which generally should not be extended for a specific task in
order to avoid a frustrating user experience and to keep the application target
in focus.

o Confirmation steps required to fulfill other expectations like robustness or
error handling. It is also important to decide what kind of confirmation step,
implicit or explicit confirmation, is the best choice for a specific task. Implicit
confirmation allows a more natural dialog flow but is not as robust as the
explicit counterpart, which is a more restricted choice.

e Usage of mized-initiative dialog forms which are able to fulfill expectations
of both so-called power users and also first-time users (or those with little
experience in using speech applications). This flexibility is achieved by the
handling of both complex and simple user input at a specific dialog point.
In the case of simple user phrases, the dialog asks for further details not yet
specified with a simple user input but which are necessary for the dialog. Power
users, on the other hand, are allowed to phrase all necessary information in
one complex utterance.

o Fuallback strategies which are necessary at different levels of error handling.

The successful implementation of all of these conditions requires control instruments
that are able to direct the dialog flow at every dialog step depending on the content
of the user input. Speech recognizers deliver the best hypothesis result for the user
utterance. From the dialog’s perspective, however, the information regarding the
degree of accuracy of the hypothetical result is just as important as the content
itself. Dialog control strategies presuppose appropriate confidence scores, whose
high quality is vitally important for the satisfaction of the user.

Therefore, ASR systems must be endowed with confidence measurement tech-
niques to allow them to compute confidence scores as an assessment of their confi-
dence in the recognition result. Confidence scores can be then applied at a higher
level of speech processing, i.e. in dialog control, to render the dialog flow more appro-
priate for human-machine communication. Aside from computation of the scores,
confidence measurement techniques can also improve efficiency of speech recognition
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algorithms as will be shown later on in this work. Furthermore they can also be
utilized for supervised training and adaptation algorithms.

1.1 Motivation, Field of Application

For the reasons mentioned above, confidence measurement (CM) is one of the main
areas of current research activities concerning speech recognition. CM techniques
can be arranged into two main groups depending on their operational scope within
the speech recognition process. On the one hand, confidence scores can be assigned
to a specific unit of the recognition result (e.g. words, phrases or sentences); on the
other hand, confidence measurement approaches also have the ability to optimize
algorithms within the speech decoding process in order to make it more efficient.

The difficulty in computing reliable confidence scores is anchored deeply in the
fundamentals of the speech decoding process. Using Bayes’ rule,

) — P KW p(v). w

p(X) p(X)

it is generally sufficient to work with relative likelihood in order to select the best
recognition result by comparing the probabilities p(X, W) which describe the pro-
duction of a word sequence W by an acoustic observation sequence X. For the
selection criteria of the best hypothesis, i.e. highest probability p(X, W), the obser-
vation probability p(X) in the denominator of Equation 1.1 can be omitted, since
it is independent of W. Omitting p(X) saves computation time but in that case
hypothesis probabilities can only be used as relative values and therefore they are
no longer appropriate as a confidence measure. This is because confidence measures
need to imply an absolute statement regarding the certainty of a specific hypothesis
and not only a comparison among alternative hypotheses.

As a result, either the decoding process is extended with additional computation
of observation probability or alternative quantities of the decoding process are used
to generate confidence scores. A vast body of literature has been published on the
evaluation and rating of those alternative measurement techniques and their diverse
combinations. However, Wessel et al. (2001) show that the best performance is
achieved by the posterior probability based confidence measurement which uses the
observation probability as the basis of confidence score computation. Especially if
the word unit boundaries of similar alternative hypotheses are considered, very high
CM quality can be achieved. For this reason, Wessel et al. (2001) carry out the
computation of p(X) on the word graph as a post-processing step to the decoding
process.

Another main field of application of confidence measurement techniques is for
improving the decoding process itself, which means that further optimization of ASR
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is possible through use of appropriate CM methods. This is due to the fact that
the practical implementation of the speech decoding process is only suboptimal.
This means that several ASR modules contain some simplifications of the under-
lying mathematical theorems for feasibility as shown later in Chapter 2. Without
simplification it is generally not possible to perform the entire decoding or training
algorithms by definition owing to limitations of computational time and perfor-
mance. Such simplifications are, for example, limitations in the number of hidden
Markov models (HMMs) which can be used for acoustic modeling or the complexity
of their Gaussian probability density functions.

Also Bayes’ rule in Equation 1.1 (page 4), which shows the link between the
acoustic model probability p(X|W) and the language model probability p(W) as
a simple multiplication operation, cannot be realized strictly by definition. This
decoding rule is only optimal if the underlying acoustic and language models are
optimal; in other words they are based on optimal probability distribution functions.
In the practical implementation of a decoding process, however, this cannot be the
case. One of the limitations is, for example, that feature vectors are not independent
of each other as normally stated in the definition of the acoustic models.

Another well-known example for simplification of the decoding process is the
pruning applied for the search process. In order to save computational effort and
memory, not all hypotheses but only a limited number of them are processed during
the decoding. At each time frame, hypotheses designated as bad candidates are
pruned. But the question is: how can we keep only a limited number of hypotheses
without jeopardizing our main goal of finding the best one? How can we ensure at
every time frame that the hypothesis is retained which will become the best one
once the decoding of the utterance has finished? This dilemma is always a trade-off
between efficiency and accuracy. Improving efficiency calls for pruning as many
hypotheses as possible to keep the size of the search space as small as possible.
Improving accuracy, on the other hand, calls for keeping the best hypothesis until
the very end of the decoding process. Extensive pruning, however, increases the risk
of losing the best hypothesis at a specific pruning step. Classical pruning approaches
are generally based on hypothesis score rating like beam pruning, or they specify the
amount of hypotheses to be pruned as preset values such as histogram pruning.
These approaches work without considering the actual quality of hypotheses. In
contrast to classical pruning approaches this work presents a novel dynamic pruning
technique which was developed to consider the quality of the hypotheses in the
search space at each time frame. This is carried out by computation of normalized
log likelihood based confidence measurement in real time to achieve higher efficiency
in pruning.

The thesis summarizes the results of the author’s research activities carried out in
collaboration with the Institute for Human Machine Communication at the Techis-
che Universitdt Miinchen. Results of experiments are presented concerning CM
quality and its impact on dialog control. Basic CM approaches and algorithms are
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explained and a survey of the abundant literature is presented on the state of the art
in confidence measurement techniques resulting from the surge of interest concerning
CM in automatic speech recognition. The dissertation describes several utilization
techniques of confidence measurement which are intended to enhance performance
in automatic speech recognition and user acceptance in speech-based applications.

1.2 Thesis Overview

A general overview of a state-of-the-art HMM-based speech decoding process is
given in Chapter 2. The main areas are explained, i.e. acoustic modeling, Viterbi
search, word graph and language modeling. The description of the main modules
and algorithms in this section elucidate the details of CM techniques which are
described later on in this work. Also potential problems, weaknesses and suboptimal
algorithms within speech decoding are pointed out in order to present ideas for
utilization of confidence measurement techniques.

Chapter 3 on page 27 presents a review of literature on different confidence mea-
surement techniques and shows their basic underlying ideas. The methods are classi-
fied in groups based on the level (position) of their action within the speech decoding
algorithms such as word and semantic level confidence measurements. Some utiliza-
tion examples are also presented in this section along with a comparison between
word level and semantic level confidence measurement used in One-stage Decoder
for Interpretation of Natural Speech (ODINS). This chapter classifies confidence
predictor features which are usually merged by neuronal network for building joint
confidence in order to improve the quality of a single CM feature.

Chapter 4 on page 59 describes a confidence-guided dynamic (CGD) pruning
approach which was developed based on the experimental results of this work. CGD
pruning improves the efficiency of Viterbi search pruning by utilizing the normalized
log likelihood (NLL) as confidence measure and makes the decoding process faster.
This chapter describes the computation of NLL scores of active hypotheses in HMM-
based speech recognition environment in real time for each time frame and shows
how can it be utilized as the basis for pruning decisions. A comparison between
CGD pruning and an adaptive pruning technique, based on adaptive control, is also
given in this section.

Chapter 5 on page 79 provides examples of how confidence measurement can
serve dialog flow control in human-machine speech communication. It also shows
which additional knowledge sources are appropriate for improving quality of confi-
dence scores in practical example applications. This chapter discusses main aspects
of user interaction together with underlying dialog architectures. Potential problem
sources in speech-based interaction are classified. The major goal of this chapter is to
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show CM utilization techniques which have the potential to improve user acceptance
by better application ergonomics.

Conclusions and outlook are presented in Chapter 6.






Chapter 2

HMM-Based Speech
Recognition

Speech recognition is a complex decoding process which translates speech into its
corresponding textual representation. Because of the stochastic nature of speech,
stochastic models are used for its decoding by modeling relevant acoustic speech
features. The decoding process can be expressed mathematically to find the sequence
of most likely words W with the mazimum a posteriori (MAP) probability p(W|X),
conditioned on the sequence of acoustic feature vectors X, as follows:

W = argmax p(W|X), (2.1)
wew

where W is the space of all possible word sequences. Using Bayes’ decision rule from
Equation 1.1 (page 4) the maximum can be found with minimal risk of error and
the equation above can be formed as follows:

W = argmax 23 POV)

Wew p(X) (22)

For further simplification, the observation probability p(X) can be omitted, since it
is independent of any word sequence W:

W = argmax p(X|W) p(W), (2.3)
Wew

where p(W) describes the probability of the word sequence W and therefore it is
also called the language model probability. p(X|W) is called the acoustic model
probability as it describes the probability of a sequence of acoustic observations X
conditioned on the word sequence W.
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Language

Models

" Word Graph )| .
f(t) Feature Viterbi o i W
Ea— Post-
FExtraction Search
processmg

Acoustic Modeling HMM Search Space
Acoustic Pronunciation
Models Dictionary

Figure 2.1: Schematic overview of speech recognition modules. The signal flow is shown

by the speech signal f(t) — feature vector sequence X — word sequence W — and
modified word sequence W . The HMM search space is comprised of acoustic models,
pronunciation dictionary and language models.

This chapter gives a general overview of the main modules of HMM-based ASR
systems. The description of methods and algorithms provides the reader with a
basic understanding of the speech decoding process. Therefore, it can be seen as a
preparation for the main part of the thesis which focuses on confidence measurement
techniques. Methods described later in this work refer back to ASR basics shown
here.

The structure of this chapter follows the main modules of the speech recogni-
tion process as illustrated schematically in Figure 2.1. Different feature extraction
methods are described in Section 2.1 on page 11 which are based on human speech
production and perception processes. Construction of HMM-based acoustic models
and their training methods are also shown in this section. Language models, pre-
sented in Section 2.2 on page 17, are necessary for the computation of p(W), the
probability of the word sequence, and also they are often used to narrow the search
space in order to improve recognition performance. The Viterbi search process is
optimized to find the best hypothesis among all competitive search paths; it is de-
scribed in Section 2.3 on page 19. Several pruning strategies are also explained in
that section which are designed to make the search process more effective. How
search results can be represented and post-processed in a compact structure, the
word graph, is shown in Section 2.4 on page 22. Problems and weaknesses of the

10
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whole decoding process are discussed in Section 2.5 on page 24.

2.1 Acoustic Modeling

The first step toward building an automated speech recognition system is to create
a module for acoustic representation of speech. The main goal of this module is the
computation of the acoustic model probability p(X|W) from Equation 2.3 (page 9).
Two main branches of possible model types have gained popularity, namely neural
networks (NNs) and hidden Markov models (HMMs). NNs have their main advan-
tage in modeling non-linear speech characteristics, whereas HMMs convince through
their simplicity, flexibility, reusability and optimized training algorithms. HMMs are
commonly used for stochastic modeling, especially in the field of automated speech
recognition. This is because they have been found to be eminently suited to the
task of acoustic modeling. For that reason most of the experiments for this work
were carried out on the well known and widely used Hidden Markov Model Toolkit
(HTK) open-source ASR system which, as its name indicates, is based on HMMs
(for details see Young, 1994a). A detailed description of the theory of HMMs is
proposed in Rabiner (1989); Rabiner & Juang (1993).

The hidden Markov model is a (first order) Markov model whose topology is
optimized for the task of speech recognition. It is strictly a left-to-right model
consisting of states and transitional edges as the example shows in Figure 2.2 on
page 12. It is called hidden because the state sequence is effectively hidden from
the resulting sequence of observation vectors. The number of states depends on
the speech unit modeled by the HMM. Possible speech units are phones or phone
groups (e.g. biphones or triphones), syllables, words or even sentences. The decision
of which unit is the most suitable for a specific speech decoding task is always a
trade-off between flexibility and trainability:

o Flexibility: The smaller the speech unit, the fewer different models are needed
to describe a specific language domain. For example, there are about forty
phones which describe the entire German language, whereas a couple thousand
syllables, several ten thousand words and an almost infinite number of possible
sentences are necessary in order to achieve the same level of coverage. The
drawback of small speech units is often their insufficiency in modeling speech
characteristics at the unit transition boundaries, so called co-articulation ef-
fects. Characteristics of speech units, vowels and consonants for example,
depend on their predecessor and successor units. Positions, shapes and sizes
of the articulators of the vocal tract vary while it builds a specific sound,
depending on the sounds which are to be made before and after.

e Trainability: When a great number of speech units are needed for a specific
speech domain, a huge amount of training material is necessary to train the
corresponding acoustic models. Age, gender and different dialects need to

11
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bl (33) bg(.]?) bg(l‘)

Figure 2.2: Three-state hidden Markov model, where ¢; marks the state ¢ which gen-
erates the feature vector x with the probability b;(x), a;; is the probability of the
transition from state i to state j and 7w, denotes the initial probability of the first state.

be considered in the definition of the training set. The drawback of large
speech units (sentences or words), which provide a high-quality description
of co-articulation effects, is the limitation in the amount of training material.
Therefore it is often only feasible to train them for a highly limited domain.

For reasons mentioned above, the clear tendency is to use rather small speech units
like diphones and triphones with a sufficient amount of training material to allow
speech recognition independently of the speaker’s age, gender or dialect. On the
other hand, diphones and triphones are also capable of modeling co-articulation
effects in an acceptable manner.

Improved performance of speech unit representation can be achieved through
use of the so-called context-dependent speech units (see Rabiner & Juang, 1993).
This is because context-independent subword units are not always optimal in repre-
senting the corresponding speech units in all contexts, i.e. the effects of predecessor
and successor sounds, sound stress and even the word where the speech units oc-
cur. Improved quality in acoustic speech modeling can be achieved by extending the
set of subword units with context-dependent ones, such as context-dependent tri-
phones, multiple phone units or word-dependent units, which also consider context-
dependent speech features.

The link between the speech signal and the corresponding speech units is made
by acoustic modeling. This means that the emission of a sequence of acoustic feature
vectors X is modeled by a sequence of stationary stochastic processes which, on the
other hand, are associated with a state sequence of a stochastic HMM described by
probability density functions. If acoustic models are given for all classes of speech
units, then it is possible to compute the class-specific probability density functions
for a given feature vector sequence X. The emission of those probability density
functions can be then used for later classification during the search process (see
Section 2.3 on page 19).

An example of a three-state HMM as it is typically used as a diphone or triphone
acoustic model is shown in Figure 2.2. In this model the state ¢; produces the feature
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vector x with the state emission probability b;(x), and the probability of making the
transition from state ¢ to state j is marked as a;;. The estimation of the acoustic
model probability p(X|W) in Equation 2.3 (page 9) is equivalent to the computation
of the probability of the observation sequence X = (z1,22...,x7) of the length T

given the state sequence Q@ = (q1,¢2,...,qr) and the model parameter set \ as
follows:
T
p(X[W) =p(X|Q; ) = [ [ p(elas V). (2.4)
t=1

2.1.1 Feature Extraction

HMM-based acoustic models need to be trained first and then deployed for the
operation of speech recognition. Training, on the other hand, requires the definition
of a set of acoustic features which are then described by the model parameters.
In order to achieve best speech recognition results, detailed knowledge of human
speech production and perception has been developed over past several decades.
Psychoacoustic details of human acoustic perception were adapted to the field of
speech recognition (see Zwicker, 1982).

The main tasks of the acoustic feature extraction procedure are the conversion
of the analog speech signal to its discrete representation and the extraction of the
relevant acoustic features in terms of best speech recognition capability. For this
reason the speech signal is recorded and transformed to a quantized digital signal for
further signal processing steps. The sampling rate for the quantization depends on
the data transmission medium; e.g. typically 8 kHz in the telecommunication sector.
A stationary signal for processing is required for subsequent signal processing steps.
Speech can be considered stationary if it is portioned into small parts of sufficient size
(i.e. frames). For this reason, as the next step following quantization, equidistant
windows with a length of 20-40 milliseconds are extracted from the speech signal
repeatedly at an interval of 10-20 milliseconds.

Further processing of the speech signal is based on speech processing steps which
are similar to human audio preprocessing. Functional modeling of the specific loud-
ness, as described in Ruske (1994), divides the speech relevant frequency range into
22 channels using bandpass filtering which model the excitation level of the human
ear. Mel frequency cepstral coefficients (MFCCs), on the other hand, use the mel
scaled filter bank. Mel filters have a triangular bandpass frequency response charac-
teristic. Bandwidth and distance of the filters are determined by the constant mel
frequency interval as described in detail in Rabiner & Juang (1993). Thus the mel
spectrum consists of the output of mel filters and can be used for the computation
of the cepstral coefficients.

Perceptual linear prediction (PLP) is a combination of the discrete Fourier trans-
formation (DFT) and linear prediction (LP) techniques, as presented in Makhoul
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(1975). PLP is a way of warping spectra in order to minimize the differences between
speakers while preserving relevant speech information. A detailed description of PLP
can be found in Hermansky & Junqua (1988); Hermansky (1990). An analysis of
the ability of PLP to describe vowels independently of the gender of the speaker is
given in Fabian & Vicsi (1999). The main steps of PLP analysis are as follows:

e spectral analysis, as the first step, means fast Fourier transformation (FFT)
on Hamming windows with a typical window length of 20 milliseconds and
subsequent conversion to power spectral density,

e critical-band spectral resolution warps the power spectrum onto a Bark scale
using the following approximation:

Qw)=61n (w/12007r + \/(w/12007r)2 + 1) , (2.5)

then the Bark scaled spectra and the spectra of the critical band filter are
convolved as a simulation of the ear’s frequency resolution,

e cqual loudness preemphasis is a compensation for the unequal perception of
loudness at different frequencies using the equal-loudness curve:

e 1027 (w2 +58.6 106)w4 v
w= (w2 463 106)2(w2 +0.38 109) (w6 +9.58 1026) -9

o intensity-loudness conversion is based on t]gle following relation between per-
ceived loudness and intensity: L(w) = I(w)3,

e autoregressive modeling is carried out as inverse DFT as the last step of the
PLP analysis.

As a further development of the PLP approach there is another speech feature repre-
sentation technique known as RASTA-PLP, relative spectral transform - perceptual
linear prediction as presented in Hermansky & Morgan (1994). RASTA is a speech
feature extraction technique that is more robust to steady-state spectral factors in
the speech channel such as distortion or noise on a telephone line.

The other main task of the feature extraction module is data reduction, which
has the goal of decreasing the dimension of the speech feature vectors while keeping
as much relevant information as possible for the classification step. Data reduction is
carried out either by selection of the elements of the feature vector or via a transfor-
mation algorithm such as linear or non-linear discriminant analysis (LDA or NLDA).
LDA maximizes the ratio of inter-class variance to the intra-class variance in a par-
ticular sequence of acoustic data vectors in order to achieve maximal separability
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(see Ruske, 1994). NLDA is a representation where the extraction of discriminant
parameters of the data set is performed by multi-layer perceptrons (a special sort of
NN) where each hidden layer computes its output as non-linear transformation of
the layer’s input data (see Reichl et al., 1996).

2.1.2 Training of HMMs

The next step to follow definition of the relevant acoustic features is the training of
the acoustic model parameters. In this context, training means the computation of
model parameters based on appropriate training material in order to emulate the
stochastic nature of the speech signal. Therefore, the training material needs to
be representative for the speech domain for whose recognition the acoustic models
will be used later. Over iterations through the training data, efficient reestima-
tion approaches used by standard training methods converge to a local optimum.
During this task, however, overfitting to the training material is to be avoided as
otherwise recognition accuracy can decrease as a consequence. There are several
well-established training methods such as the maximum likelihood (ML) or maxi-
mum a posteriori (MAP) approaches described in Rabiner & Juang (1993); Ruske
(1994); Schukat-Talamazzini (1995).

The main goal of the ML training is to maximize the emission probability p(X|\)
of an HMM of the class ¢ for a given sequence of the training feature vector X =
(.7,‘1,.1‘2 PN ,xT):

Ay = argmax p(X|A). (2.7)
A

Therefore, the parameter set A of the HMM is to be found, which fulfills this criterion.
Baum-Welch training and Viterbi training are commonly used implementations of
the ML training approach. One main characteristic of Viterbi training is the direct
assignment of speech frames to HMM states described as p(z; = i), which is the
probability of assignment from feature vector x; of frame ¢ to the HMM state i. The
Baum-Welch training algorithm is more flexible and allows overlaps in the frame to
state assignment during the training procedure.

One possible realization of the Baum-Welch training approach is based on the
forward-backward algorithm described in Rabiner & Juang (1993). Reestimation is
carried out based on the computation of forward probability, defined as

at(i) :p(‘rlvaw")It)qt :7/|)\)7 (28)

meaning the probability of the partial sequence of feature vectors x1, xs,...,x: and
state ¢ at time ¢, given the model parameter set A, with the following recursion
formula:
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N
a1 (f) = (Z at@)%‘) bj(w¢41), 1<j<N, 1<t<T-1 (2.9
=1

where a;; is the probability of the transition from state i to j and b;(xy1) is the
probability that the feature vector x can be produced (emitted) in state j at time
t + 1. The initialization of recursion is as follows: «aj(i) =m;b;(x1), for 1 < i< N,
where 7; is the probability of state ¢ at time ¢. N is the number of possible i states,
1 <i < N, at time t from which state j can be reached at time ¢ + 1. Termination
is given by

N
XN =3 o). (2.10)
=1

The backward probability £;(i) for 1 < i < N and T'> ¢t > 1 can be computed
analogously as follows:

N

Bi () :Zaij bj(1+1) Be1(4), 1<i<N, t=T-1, T-2,...,1 (2.11)
=1

with the arbitrary initial condition Sr(i)=1 for all 4, 1 <i<N.

In contrast to the Baum-Welch training algorithm, the Viterbi training is less
expensive computationally but it delivers comparably good results of model quality
if a sufficient amount of training material is available. As the first step of Viterbi
training, the HMM parameters are estimated based on an initial segmentation (rough
guess) of the training data. Then the Viterbi decoding algorithm (see Section 2.3
on page 19) is used with these HMMs in order to find the best state sequence of the
training material which is then considered as the new segmentation of the data. This
new segmentation again allows the reestimation of HMM parameters and with it the
reinitialization of the HMMs. Each iteration successively improves the estimation of
the acoustic model probability. The training procedure is finished when no further
significant improvement can be achieved.

MAP training has the goal of optimizing the maximum a posteriori probability
of the model parameter set A conditioned on the feature training vector sequence
X. The optimization criterion is stated as follows:

Avap = argmax p(A|X) = argmax p(X|\) p(N), (2.12)
A A

where the denominator p(X) is omitted since maximization is independent of it.
MAP training can be also used successfully for retraining of HMM parameters in
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speaker adaptation tasks as described in Fabian (1999). Detailed description and a
comparison of both ML and MAP training algorithms are given in Pfau (2000).

2.2 Language Modeling

The language model (LM), also known as grammar, is used to estimate the probabil-
ity p(W) for Equation 2.3 (page 9), which describes the probability of the estimated
sequence of words. The LM can be defined as a context-free grammar (CFG), sto-
chastic model (n-gram) or a combination of the two. Context-free grammars are used
by simple speech recognition systems where the input sentences are often modeled by
strict grammars. CFGs allow only utterances which are explicitly covered/defined
by the grammar. Since CFGs of reasonable complexity can never foresee all the
spontaneous variations of the user’s input, n-gram language models are preferred for
the task of large vocabulary spontaneous speech recognition.

N-gram language models represent an n-th order stochastic Markov model which
describes the probability of word occurrences conditioned on the prior occurrence of
n-1 other words. The probabilities are obtained from a large speech corpus and the
resulting models are called unigram, bigram or n-gram language models depending
on their complexity. The assumption to build such an LM is that the probability of
a specific n-gram can be estimated from the frequency of its occurrence in a training
set. The simplest n-gram is the unigram language model, which means a priori
probabilities p(w) attached to each word w. p(w) describes the frequency of the
specific word N,, normalized by the total number of words:

= =,
> im1 Ni

where M is the number of different words in the training set. More generally, n-gram
language models are defined as follows:

p(w) (2.13)

n

p(W) = p(wi, ..., wn) = [ [ plwilwo, ..., wi_1), (2.14)
i=1
where the probability of the next word w; depends on the history of words so far
and wq is chosen to handle the initial condition. This factorization means that the
complexity of the language model grows exponentially with the length of the history
h;. This complexity can be reduced with the mapping ® which divides the space of
histories into equivalence classes:

p(wilhi) ~ p(w;|®(h;)). (2.15)

For trigram (n = 3), the above definition of word sequence probability becomes:
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3

p(W) =~ [ [ p (wilwi—2, wi—1), (2.16)
=1

where only the two most recent words of the history are considered.

The complexity of a language model varies widely depending on the speech do-
main and on the order/degree of the model. An important measurement of their
complexity is the perplexity, a very useful measurement to compare language models.
Simply speaking, the perplexity represents the average number of words which could
follow a specific word. The higher the perplexity the more complex the language
model. Complex language models can affect (reduce) speech recognition accuracy,
since they directly influence the size of the search space. The perplexity is derived
from the entropy of the information theory and is computed based on the average
log probability on a per word basis with the following definition:

?M*—‘

k
Z 0g2 (p(w;|hi)), (2.17)

where k denotes the total number of words and p(w;|h;) is the language model
probability. The language model perplexity is defined as 2. Table 2.1 contains
example perplexities of trigram language models for different domains.

Speech Domain Perplexity

Radiology 20
Emergency Medicin 60
Journalism 105
General English 247

Table 2.1: Trigram language model perplexities for different speech domains, Roukos
(1995).

Since speech applications continue to gain currency, several industrial stan-
dards regarding grammar content declarations have already been adopted (see W3C-
Grammar, 2004). The examples in Appendix B on page 105 compare the standard
formats ABNF and XML for a small-grammar example.
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Figure 2.3: Schematic representation of different levels of the search space. In this
hierarchy, words are connected based on language model rules, whereas HMMs are
connected as per the pronunciation dictionary. HMMSs, at the lowest level, consist of
states as shown in Figure 2.2 on page 12.
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2.3 Viterbi Search

The search space of the speech decoding process is given by a network of HMM states.
The connection roles within this network are defined at different hierarchy levels such
as the word, the HMM and the state level as shown in Figure 2.3 on page 19. Words
are connected based on language model roles, whereas each word is constructed
of HMMs defined by the pronunciation dictionary. The primary objective of the
search process is to find the optimal state sequence in this network associated with
a given speech utterance. There are several approaches to the search process such
as stack and N-best decoding as described detailed in Schukat-Talamazzini (1995).
This section gives an overview of the commonly used Viterbi search algorithm.

2.3.1 Viterbi Algorithm

The Viterbi algorithm is an application of the dynamic programming principle and
it performs the maximum likelihood decoding (see Forney, 1973). It solves problems
of unknown timescale, unknown word boundaries and unknown word sequence. The
search space can be built on a static or dynamic basis. In the case of static search
space, all allowed connections of HMMs are already defined at the beginning of the
speech recognition task, for example context-free grammars (CFGs). The context
of this search space is independent of partial results from the decoding process in
progress (for example a limited list of phrases allowed in the grammar). Dynamic
search, on the other hand, means that the search space is expanded dynamically
depending on the partly-recognized content, e.g. unigram word loop. A schematic
representation of the connected search space is shown in Figure 2.4 on page 20. In
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Figure 2.4: Schematic representation of the search space (trellis). Each node corre-
sponds to one state of the state level in Figure 2.3 on page 19; also the best path is
marked in the search space.

this representation, nodes mean states and edges show their possible connections to
each successor state.

The Viterbi algorithm provides a solution of finding the optimal state sequence
Q = (q1,492,--.,qr) or consequently the optimal word sequence W(Q,t), associated
with a given sequence of feature vectors X = (z1,z1,...,27). In the logarithmic
space this is equivalent to the computation of the best hypothesis score (highest
probability) along a single path of the state network. It is a common practice
to take logarithms of the model parameters and implement the Viterbi algorithm
without multiplications in order to avoid problems with the number representation
of computers. The steps of the Viterbi search can then be described as follows (see
Rabiner & Juang, 1993):

® preprocessing

i = In(m;), 1<i<N
a;j = In(aj;), 1<i4, j<N
bi(xy) =Iln(bi(x)), 1<i<N, 1<t<T

o initialization
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® recursion

51(3) = I (0(7) = max (81 (5) + i) +By(e)
P (j) = argmax <5t_1(i)+dij> , 2<t<T, 1<j<N
1<i<N

e termination

¢ = argmax o7 (1)
1<i<N

e backtracking

4G = V41 Qa1 t=T-1,T-2,...,1

where 7; is the initialization probability of the state 7 at time ¢, a;; is the probability
of the state transition from state i to j and b;(z;) is the emission probability of the
feature vector x in state j at time ¢t. N is the number of possible i states, 1 <i < N,
at time t from which the state j can be reached at time ¢ + 1. The quantity

0t(i) =max P(q1,q2,- - Qt—1,qt = &, T1,T2,...,T|A) (2.18)
41,42,---,qt—1

describes the best probability for the first ¢ observation vectors along a single path
which ends in state ¢ and consequently this implies for the first £ + 1 observations:

Op+1(7) = max (3¢ (2)aij) bj(w+1). (2.19)

The array 1,(j) keeps track of the argument that maximizes Equation 2.19 for each
time frame ¢ and state j in order to be able to retrieve the best state sequence during
the final backtracking step.

Apart from the backtracking step the Viterbi algorithm is equivalent to the
forward algorithm as described in Equation 2.9 (page 16), where the summation is
replaced by a maximum operation:

ar(j) = max (a1 (1)ai;) bj(wt)- (2.20)
The maximum likelihood is given by
an(T) = max ap(i)a;n (2.21)

and the direct computation of the likelihoods using log likelihoods for the recursion
formula Equation 2.20 becomes

(7)) = In(0e(5)) = max (y-1(9) + Infaij)) + In(bj(z4)), (2.22)

which is the basis of the Viterbi algorithm as shown in the recursion step above.

21



CHAPTER 2. HMM-BASED SPEECH RECOGNITION

2.3.2 Pruning

The most time-consumptive phase of the recognition process is the search process.
Managing alternative hypotheses for each time frame can be very costly in terms of
time and memory resources depending on the complexity of the search network. The
size of the Viterbi search space for HMM-based ASR usually increases non-linearly
with the vocabulary size. This is why several pruning strategies have already been
proposed to reduce the time consumption of the recognition process.

Probability-based pruning controls the beam width By of the Viterbi search
process at each time frame and retains only those hypotheses whose score is no less
than a threshold from the score of the best hypothesis. The threshold is generally set
for the entire recognition process and it must be determined over a distinct training
set. However, the number of hypotheses which can be discarded depends on the
distribution of the hypotheses’ scores. If they are close to each other only a few
of them can be pruned. Such worst case situations might force the ASR system to
perform a complete search without any significant reduction in computational effort.

Rank-based pruning avoids this problem by limiting the absolute number of al-
ternatives to a fixed value. In contrast to the beam width technique, rank pruning
controls the number of hypotheses allowed for each time step independently of their
distribution. For this reason all alternative hypotheses have to be ranked by their log
probabilities, keeping only the best N4, hypotheses. The main disadvantage of this
method is that two passes through all hypotheses are required and the ranking can
be very time costly. To improve the efficiency of the ranking procedure, usually a his-
togram of the hypotheses’ scores is computed - histogram rank pruning. As shown in
Tran et al. (1994), in large vocabulary continuous speech recognition, ranked-based
histogram pruning usually performs better than probability-based pruning. It is a
common practice to combine both probability-based and rank pruning, which allows
better results to be achieved due to memory saving and reduction of computational
time effort while maintaining an acceptable level of recognition accuracy.

These classical pruning techniques generally use constant pruning thresholds over
the entire search procedure. Both B of the probability-based pruning and Ny,q.
of the rank-based approach are predefined thresholds which have to be justified
during cross validation tests. In the classical pruning case, these thresholds are not
adjusted dynamically to fit time-variant requirements precisely. This work presents
a dynamic pruning approach which solves this problem by taking variable search
quality into consideration in order to perform the decoding most economically.

2.4 The Word Graph

The output of an HMM-based speech recognizer can be thought of as a single se-
quence of words, in a list of N-best word sequences or in a word graph of partially
overlapping word hypotheses. The word graph is an efficient data structure for
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Figure 2.5: Word graph example where word hypotheses are represented by nodes and
the corresponding acoustic scores by node weights.

representing large numbers of acoustic hypotheses compactly. The number of alter-
native word hypotheses is several orders of magnitude larger in word graphs than in
typical N-best lists.

Word graphs are directed acyclic graphs, which consist of nodes connected with
arcs and also contain time alignment information as well as acoustic and language
model scores for each hypothesized word. Therefore, the word graph is also a proper
and efficient interface between speech recognizer and linguistic processors. Speech
recognition applications, especially those with large vocabulary, can benefit from
such an efficient data structure. Their search procedure is generally performed in
two passes. The first pass is a time-synchronous Viterbi search through a lexical
tree. Context-dependent cross-word acoustic models and trigram or n-gram language
models can be applied in the first pass of the search. The first pass results in a graph
of the N-best word sequences, the word graph.

The terms word lattice and word graph were often used earlier to differentiate
between specific stages in the recognition process. The net of words generated
directly by backtracking multiple alternative N-best paths stored during the Viterbi
decoding was often referred as the word lattice. This roughly constructed word
lattice, however, might contain word hypotheses although they did not fit any time
alignment of all possible sentences which cover the duration of a speech utterance.
Many such word hypotheses of the lattice could be eliminated by converting the
word lattice to a word graph during a second pass of the search procedure, as shown
in Harper & Helzerman (1995).

Today, the terms word lattice and word graph are frequently interchanged in the
literature (see Johnson & Harper, 1999) and both are often used as synonyms to
refer to one of the following possible graph structures:
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e Mealy format is comprised of words represented by arcs and arc weights which
correspond to acoustic scores (log probabilities),

e Moore format consists of words represented by nodes and acoustic scores which
are represented by node weights.

During conversion of a Mealy format into a Moore format, each arc in the Mealy
format becomes a node of the Moore format and each node in Mealy format becomes
multiple arcs.

The present work does not differentiate between these formats by the usage of
different terms, like lattice or graph. Rather the term word graph is used everywhere
to refer to both possible graph structures. Differences in their formats are always
explained explicitly in order to maintain clarity.

Word graphs generated by acoustic recognition engines often are not compact
and should be post-processed to keep down the size of the graph. They can contain
spurious sentence hypotheses which can be pruned by using syntactic or semantic
constraints. Linguistic processors, for instance, can rule out individual sentences
which are grammatically incorrect.

The size of the word graph can be reduced very efficiently by aligning words
from all possible hypotheses. As a result of this normalization technique the word
graph is converted to the so-called consensus hypothesis (also known as sausage)
presented by Mangu et al. (1999, 2000). Finally, word graphs also form a good
basis for computing word posterior probabilities to provide a good measure of word
confidence. Details of this post-processing step are shown in Chapter 3.

2.5 Problems, Weaknesses

After giving an overview of the HMM-based speech recognizer and the description
of its main modules and their underlying algorithms we can conclude the following;:
HMM-based speech recognizers solve the task of speech recognition based on Bayes’
optimal decoding rule. However, the direct estimation of this optimal role is gen-
erally not feasible in practice, and therefore current ASR technology applies some
potentially limiting assumptions for reasons of feasibility.

One such potentially limiting assumption, for example, is that the speech signal
is stationary over time frames of about 20 milliseconds, which serve as the basis of
feature extraction steps (s. Section 2.1.1 on page 13). Another limitation is that
Bayes’ decoding rule is optimal only if the underlying acoustic and language models
are based on optimal probability distribution functions. The number of models,
however, is limited by the amount of training data available for model parameter
estimation. Moreover, speech feature vectors are not independent from each other
in contrast with the definition of the acoustic models, as normally stated.

As shown in Pfau (2000) and Fabian et al. (2001), variations in speech rate
often lead to decreased speech recognition accuracy. HMMs are generally capable
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of handling time warping by abiding in a specific state with the state transition
probability a;; as shown in Figure 2.2 on page 12. Variations in speech rate, however,
affect not only the duration of the speech units but also their spectral characteristics.
If the model parameters are trained on speech samples with an average speech ratio,
the general case, especially fast speech, might lead to remarkable degradations in
accuracy due to mismatch situations between training and test data. Improvement
in robustness against variations in speech rate can be achieved, for example, by
modeling pronunciation variants for different speech rates categories as shown in
Pfau (2000).

Reduction in the number of alternative search hypotheses during the Viterbi
search (pruning) also affects the optimal decoding role. A partial search path can
be discarded before it becomes part of the best hypothesis.

These limitations might induce a decrease in speech recognition accuracy, since
they are deviations from the optimal decoding rule. Loss in accuracy, however, can
be mitigated by applying different confidence measurement techniques as presented
later in this work.
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Chapter 3

Confidence Measurement
Techniques

This chapter’s focus is to survey the abundant literature on different confidence
measurement techniques developed through extensive research activities in the field
of speech recognition during recent decades in order to allow the assessment of
the reliability of recognition hypotheses. Classification of confidence measurement
techniques is presented in this chapter based on their algorithms and on their fields
of application. Also shown are results of evaluation carried out in the scope of
this work. Due to its outstanding performance as a confidence measure, a more
comprehensive description of the computation details of the posterior probability is
provided. Finally, limitations in confidence measurement quality and in operational
deployments are discussed.

3.1 Classification of Methods

A quite appropriate general definition of confidence measurement is: “A function
which quantifies how well a model matches some speech data; where the values of
the function must be comparable across utterances.” as given in Williams (1999).
In other words, confidence measurement (CM) is an absolute measure of hypothesis
quality and it can be applied to different levels of speech units as a basis for decid-
ing the acceptance or rejection of specific hypotheses. The performance of speech
recognizers is subject to deterioration primarily in the following two situations:

e Speech recognizers running under mismatched conditions, i.e. conditions vastly
different from those for which they were prepared during training; for example,
if trained using less-suitable acoustic training data for live situations such as
background noise, channel distortion and reverberation.
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e In the case of unexpected speech inputs, also known as out-of-vocabulary
(OOV) words, the recognizer is forced to produce incorrect hypotheses from
its vocabulary by nature.

In this section CM techniques are classified with respect to different points of view.
There are few overview papers available in the corresponding literature which cate-
gorize CM techniques into various groups such as Williams (1999) and Jiang (2005).
In this dissertation, confidence measures are categorized according to three different
points of view, namely, 1) depending on the speech unit to which they are applied,
2) according to the underlying computation methods and 3) with respect to their
utilization in different applications associated with the recognition process. Accord-
ing to the speech unit to which CM is applied, we can differentiate among confidence
measurement techniques based on subword units (e.g. phonemes), word hypotheses,
semantic concepts or entire utterances. Especially the usage of semantic concepts
with the aid of posterior scores has been shown to be useful for speech dialogs as
described in Section 3.5 on page 46. Depending on the underlying computation
methods, CM techniques can be classified roughly into two categories:

e Confidence predictor features based on acoustic and language model informa-
tion collected during decoding. Generally such features are merged to a single
probabilistic confidence decision often made by neural network (NN) classifiers
as will be shown later in Section 3.2 on page 29.

e Posterior probability based confidence measures computed either during de-
coding (as proposed e.g. in Kamppari & Hansen, 2000) or in a post-processing
step on N-best lists or word graphs (see Wessel et al., 2001). Due its prevalence
among today’s CM techniques, a more detailed description of the computation
of posterior scores as implemented in the scope of this work is presented in
Section 3.4.1 on page 34.

Another possible classification of confidence measurement techniques can be made
based on the field of applications utilizing different CM techniques. A wide range
of CM approaches is used in research and practice in order to support the following
areas:

e Rescoring and pruning: As mentioned earlier in Section 2.5 on page 24, di-
rect implementation of Bayes’ optimal decoding is generally not feasible in
practice and therefore current ASR systems apply several potentially limiting
assumptions for reasons of feasibility. Analysis of N-best hypotheses or word
graphs using CM in a post-processing step has the potential to improve perfor-
mance of the recognizer. Similarly, using CM techniques in pruning during the
search process, for example, allows further optimization of time consumption.
In the scope of this work a confidence-guided dynamic pruning technique was
developed which is described in detail in Chapter 4 on page 59.
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e Rejection techniques: This group of applications consists of tasks which are
often referred to as out-of-vocabulary detection, keyword spotting or utterance
verification. Common to all these tasks is the identification of hypothesis errors
based on different CM techniques that incorporate various in-vocabulary and
out-of-vocabulary assumptions regarding recognizer input. A short descrip-
tion of commonalities and differences along with a selection of corresponding
literature is presented in Section 3.6.2 on page 49.

e Adaptation methods of acoustic models are destined to improve recognition
performance under certain conditions which could not be considered ade-
quately (or not at all) during training of the recognizer. Unsupervised adap-
tation is possible with the aid of appropriate CMs as shown in Section 3.6.3
on page 51.

o Dialog management strategies are intended to lend more intelligence to speech-
based human-machine interaction. This is unthinkable without appropriate
confidence scores which serve as the basis of decisions made during user inter-
actions. A more practically-oriented discussion of this subject can be found in
Chapter 5 on page 79.

This work elaborates on each of the classification items above to provide a compre-
hensive description of state-of-the-art CM techniques. The following section begins
with an overview of predictor features used for the computation of confidence mea-
surement.

3.2 Confidence Predictor Features

The vast majority of publications on confidence measures deals with ingenious com-
binations of confidence predictor features which are collected during decoding. Fea-
tures are denoted as predictor features if they are appropriate to distinguish clearly
between correct and incorrect hypotheses based on their probabilistic distribution.
Jiang (2005) gives a relatively exhaustive list of predictor features which can be
originated from acoustic or language models at word, utterance or semantic levels.
A slightly enhanced list of predictor features is given as follows:

e normalized likelihood score: acoustic score of speech units (e.g. phoneme, word)
divided by the number of frames that they span

o N-best list related features

o N-best count: the percentage of times a hypothesis appears at a similar
position in the N-best list
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o N-best homogeneity: the ratio of the score of paths containing the hypoth-
esized word to the total score of the N-best list (see Zhang & Rudnicky,
2001)

e word graph related features
o hypothesis density: the number of arcs on the word graph that span the
time segment of a hypothesis (see Kemp & Schaaf, 1997)
o number of similar hypotheses with similar locations in the word-graph

o number of similar paths containing the same hypothesis in the word-graph
(see Sun et al., 2003)

o ratio of all paths passing through a specific hypothesis to all possible
paths

e acoustic stability: the measure of hypothesis occurrence at the same position in
a list of hypotheses generated for different weightings between language model
scores and acoustic model scores (see Kemp & Schaaf, 1997)

e language model related features
o back-off behavior of n-gram language models along different lengths of
word context (see Uhrik & Ward, 1997)

o language model score: the log-probability for each word in a sequence as
computed from a back-off language model in its history (see San-Segundo
et al., 2001)

e parsing related features

o position of parsed words within a semantic slot

o whether or not a word is parsed by grammar, as part of a slot (see Zhang
& Rudnicky, 2001)

e log likelihood ratio related features, e.g. the ratio of the log likelihood of the
best hypothesis to other hypotheses (see Bouwman & Boves, 2001)

o duration-related features based on HMM state, vowel, phoneme or word dura-
tion

Unfortunately, most of the predictor features are not optimal in separating correct
hypotheses from incorrect ones. Therefore it is common practice to merge a certain
combination of these predictor features into a single probabilistic confidence score in
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order to be able to make a unique decision regarding the correctness of recognition
hypotheses. The fusion of predictor features is generally done by NNs which have
to be trained for optimal decision of a specific task. However, CM performance can
be improved only when combined features are statistically independent. Overlap
between features is often quite large as reported in Kemp & Schaaf (1997) and in
this case the resulting CM quality is largely determined by the performance of the
best feature.

Wessel et al. (1999) present a comparison of several CM techniques based on
N-best lists and word graphs and conclude that posterior word probabilities clearly
outperform alternative measures such as acoustic stability or hypothesis density.
Furthermore it is shown that posterior scores estimated on word graph perform bet-
ter than those estimated on N-best lists. Falavogna et al. (2002) confirm these re-
sults after comparing posterior scores computed on word graph with several acoustic
based predictor features on three different speech corpora.

3.3 Fusion of Predictor Features

Within the scope of this work several evaluation studies have been made regarding
the impact of speech rate, especially fast speech, on recognition performance (see
Fabian et al., 2001). As shown in this section, speech rate related measures have
been found to be quite useful for CM. As reported in Fabian et al. (2001) the per-
formance of speech recognition systems can deteriorate considerably with variations
in speech rate. This is often caused by mismatched conditions when input data
during recognition are not sufficiently represented within the training corpus of the
acoustic models. Fabian et al. (2001) report significant differences in word error
rates depending on the speech rate categories slow, average and fast speech as is
shown clearly in Table 3.1 obtained by the evaluation corpus Verbmobil '96. As
we can see in the table, there is a dramatic increase in word error rate (WER) for
fast speech in comparison with other speech rates; WER for fast speech is almost
double that for slow speech. The classification of speech material into groups of
slow, average or fast speech is based on vowel rate distribution as described in detail
in Pfau (2000).

Speech Rate ‘ slow  average fast

WER [%] | 242 338 44.4

Table 3.1: Dependency of word error rate (WER) on speech rate; i.e. for slow, average
and fast speech.

The differences in recognition performance depending on speech rate are caused
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Figure 3.1: Histogram of vowel length for the different speech rates slow, average and
fast speech, for the vowel /a/ in the training set Verbmobil "96.

by large deviations in temporal and spectral characteristics of speech samples with
different speech rates, i.e. vowel length variations or displacement in position of
formant frequencies (see Kuwabara, 1997; Martinez et al., 1997). To illustrate such
speech rate dependency, Figure 3.1 shows the distribution of phoneme lengths for
slow, average and fast speech rates for the German phoneme /a/ determined on the
Verbmobil '96 corpus; and as we can see, there are significant differences in mean
values of those distributions.

Based on these findings Weber (2002) reports evaluation results achieved by the
fusion of several duration-related predictor features with features derived from the
acoustic score by means of a multi-layer perceptron. Duration based features are
computed depending on speech rates and relative vowel or phoneme lengths com-
pared to statistics generated on the training corpus. Weber (2002) concludes that
the performance of duration based features falls below that of acoustic score related
features. However, the fusion of both groups achieved better performance than the
acoustic features alone. Among the duration based features, those which performed
the best deal with frequency and amount of statistical deviation of phoneme lengths
in a word hypothesis.

Similarly to the above, Goronzy et al. (2000) propose different measures based
on phoneme durations in order to take mismatch situations between training and
testing data into account. Statistics of phone durations obtained on training data
serve as the basis for comparison with durations found by the recognizer during
recognition. Comparison results of different duration-based features are used by a
neural network as input for confidence score computation. Goronzy et al. (2000)
conclude that even though duration-based features were not found to be as good
in reducing confidence error rate (CER) as features related to acoustic scores, they
have a great advantage over score-based features: duration-related features are in-
dependent of a specific recognizer and therefore retraining of the NN classifier is
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not necessary if the recognizer is changed, whereas the usage of score-based features
would require retraining in that cases.

3.4 Posterior Probability as Confidence Measure

Posterior probability of a word hypothesis can be used directly as a measure of con-
fidence as proposed in several papers such in Weintraub et al. (1997). However, its
efficient computation can be a challenge, especially in dependency on the underly-
ing recognizer architecture (e.g. NN or HMM). For practical reasons, ASR systems
normally omit the computation of the observation probability p(X), the normaliza-
tion term in the formula of the posterior probability Equation 2.2 (page 9), because
it is constant across different hypotheses and so negligible for maximum decision.
Hypothesis scores computed in that way, however, are inadequate as confidence mea-
sure. In contrast, the posterior probability including the normalization term p(X)
is well suited to measure hypothesis reliability but precise estimation of the obser-
vation probability p(X) can be quite difficult. The mathematical formulation of the
observation probability is as follows:

p(X) = 3" p(H) p(X|H), (3.1)
VHeH

where H denotes a specific hypothesis for X, p(H) is the hypothesis probability
and p(X|H) is the probability of observing X by assuming that H is the underlying
hypothesis. The summation must be made over all H in the entire set of possible
hypotheses H. In order to make the computation of Equation 3.1 feasible for prac-
tice, approximating methods are normally applied. Kamppari & Hansen (2000), for
example, propose the utilization of a catch-all model for the computation of p(X)
within an HMM environment. This method provides reasonable performance and
it is also used in the scope of this work for the confidence-guided dynamic pruning
approach as described detailed in Chapter 4 on page 59.

As shown in Wessel et al. (2001), posterior probability can also be computed
efficiently based on word graphs in a post-processing step and thus independently
from the decoding implementation method. Word graphs are widely used in speech
recognition systems in order to represent resulting hypotheses in a very compact
way. They can also be utilized to compute the posterior probability for each hy-
pothesized word in the word graph. Mangu et al. (1999) and Wessel et al. (2001)
have shown that the posterior probability computed in this way can be used directly
as a measure of hypotheses’ confidence. Its quality can be further improved by tak-
ing time alignment information of similar word hypotheses into consideration. It is
also consistently proven that the quality of CM as posterior probability outperforms
alternative methods such as acoustic stability and hypothesis density.

For this reason, one main focus of this work is to analyze different CM techniques
based on the computation of posterior probabilities of the hypothesized words on
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word graphs. Two different computation methods are compared: on the one hand,
simple accumulation of the posterior probabilities is carried out for similar word
hypotheses which overlap in time, as proposed by Wessel et al. (2001). On the other
hand, a more complex method is applied as part of the computation of the so-called
consensus hypothesis, as proposed by Mangu et al. (1999). In order to determine the
performance of these algorithms, investigations were carried out on two evaluation
corpora for different word graph densities.

This section recapitulates the computation of the word posterior probability and
its extension for both techniques, simple accumulation and consensus hypothesis.
Evaluation results are also presented subsequently regarding the impact of word
graph density on the quality of these CM techniques.

3.4.1 Computation of Posterior Probability on Word Graph

As shown in Section 2.4 on page 22, a word graph may consist of nodes connected
with arcs and contains time alignment information as well as acoustic and language
model scores for each hypothesized word. Word graphs used in this section have the
Mealy format, which represents words by arcs and by arc weights corresponding to
acoustic and language model scores (log probabilities). The time alignment informa-
tion for each word is given by starting time 7 and ending time ¢. The word graph also
contains two special nodes: the START node, which corresponds to the beginning of
the utterance at 7 = 1, and the END node, which stands for the end of the utterance
at t =T as shown in Figure 3.2 on page 39. The posterior probability of a specific
word, p([w;T,t]), can be computed by summing up the posterior probabilities of all
sentence hypotheses containing this specific word at the given position, as described
in Wessel et al. (2001), which means the total probability of all complete paths; any
path from START node to END node in the word graph that passes through the arc
with word [w; 7, t] conditioned on the sequence of feature vector af =2x1,T2,...,2TT
can be expressed as follows:

M tm m—1
_p(xl|w Wy |Ww
p (il = Y mmt Pl lem) p Lol (3:2)
Vw{MGQ p (561)
where G is the set of all paths in the graph from START node to END node passing

through the word [w;7,t]. Such a path can be thought of as a sequence of M word
hypotheses with given time boundaries 7,,, and t,,, which can be also expressed as

w! = [wi; 71, t1], [wa; T2, tal, - - -, [war; Tar, tar),

with starting time 7 = 1, ending time tj; = T and where ¢,_1 = 7, for all n =
2,..., M. In the equation above, p(z%" |wy,) denotes the acoustic model probability
for the observation sequence within the time boundaries 7, and t,, conditioned on
word Wy, p(wy,|w 1) is the language model probability computed for the history
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w ! of word wy, along the path and in the denominator p(z]) is the observation
probability.

Note that the posterior probabilities of all word graph edges at a specific point
in time t', which also can be seen as a cut through the word graph, must always add
up to 1:

Z p(w;r,t]|z{) =1 viell... ). (3.3)
[w;7;,t]:
<t <t
As shown in Wessel et al. (2001), the computation of the word posterior proba-
bility can be carried out very efficiently using the forward-backward algorithm on the
word graph. It allows separate computation of the forward probability and backward
probability of a word hypothesis [w; 7,¢] which can be than combined to determine
the word posterior probability.
The forward probability of a specific word hypothesis, p,, ([w;7,]), is the total
probability, i.e. the sum of the posterior probabilities of all partial paths in the word
graph which start from the START node and end in word hypothesis [w; T, t]:

P ([0 T,1]) Z Hp ki jw;) p wi\wi_l), (3.4)

VwleF =1

where F is the set of all paths starting at the node with time stamp 7 = 1 and
ending at the node with ¢, = t; note: F can be also expressed as a set of word
sequences

wy = [wy; 71, L], [wa; T2, 2], o (W T, T,

where [wy,; T, tn] = [w; 7, 1].

Analogously the backward probability of a specific hypothesis p,,, ([w; 7, t]), is the
total probability of all partial paths which start with the word hypothesis [w; T, ]
and end at the END node of the word graph. p,,  can thus be computed as shown in
the following formula:

D,., ([w;T,1]) Z Hp (1'7—]|wj) (wj]w{;l), (3.5)

VwMeB j=n

where B is the set of all paths starting at the node 7, = 7 and ending at ty; = T}
note that B can also be expressed as the set of word sequences

M

Wy = [U)n;Tn,tn], [wn+1;7-n+17tn+1]7 SRR [’LUM; TMvtM],

where [wy; T, tn] = [w; T, t].

The posterior probability of the word hypothesis [w; 7,t] can be computed using
forward and backward probabilities as shown in the following formula:

35



CHAPTER 3. CONFIDENCE MEASUREMENT TECHNIQUES

p ([wi 4T = P2 ([w; T, t]) py,, ([w; 7, t])’ (3.6)

p(+7) p (@t fw)

where the acoustic probability, p(zt|w), in the denominator is necessary because it
was included twice by the computation of p,, in Equation 3.4 and also by p,, in
Equation 3.5.

In the denominator of Equation 3.6, the probability of the acoustic observation
P (:UlT) can also be thought of as the total probability of all possible paths in the
word graph and can be calculated either as the forward sum of probabilities of all
word sequences w}!, starting in the sTART node of the word graph and ending in
the END node, or as the backward sum of probabilities of all paths starting with the
END node backward to the START node. Correct calculations lead to identical results

in both cases.

Implementation Details

For the evaluations whose results are presented later in this work the word poste-
rior probabilities were computed using the forward-backward algorithm of the HTK
system. This routine works on word graphs produced by HTK but it needed some
modifications by the author in order to support the computation of word posterior
probabilities and to use them as a confidence measure. This section describes several
implementation details in order to make the theoretical background above clearer.

As far as the computation of forward probability is concerned, the word graph
is processed from the START node to the END node. In the implementation of p,
acoustic and language model scores are summed up for each arc (word hypothesis)
along all possible paths. In case paths merge into a specific node of the word graph,
scores are summed up in the logarithmic space. It is important to note that this
procedure must be performed in topological order to ensure that when processing
of a specific arc occurs, all its predecessor arcs have already been processed. For
the computation of p,, the information given by each arc in HTK word graph,
i.e. word w, time alignment [r,t] acoustic score Afuwsr,y) and language model score
ljw;rt), Was extended with a variable for the logarithm of the forward probability
Juwsrg) = 0 (p;, ([w;7,1])). The computation steps in the forward direction are as
follows:

e initialization of forward score of each word graph arc ¢

fe = flweme ) = —00  i.e. log probability 0, V v € R (3.7)
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e propagation of forward scores through the word graph

vV n € Ny set of all nodes in topological order

V ts € Ry(n) set of all successor arcs of node n

fts = @m (ftp + aay, + ﬂlts) (3-8)

Votp:

tp € Rp(n)

In Equation 3.8 fi, denotes the forward score of the successor arc ts, fy, is the
forward score of the predecessor arc t, and PRp(n) is the set of all predecessors of
node n. a., and [, are acoustic and language model scores attached to the successor
arc ts scaled by a and 8. The initialization step with Equation 3.7 (page 36) sets
all forward scores f, to —oo in the logarithmic space (in practice a large negative
number, e.g. —1.0E 4 10) which is equivalent to zero posterior probability, p 0 = 0.
fr is attached to each arc v of the set of all arcs of the word graph R. The propagation
step computes the forward score of each arc by utilization of multiple nested loops.
The outer loop, V n € 9, works on the entire set of word graph nodes 9, sorted
in topological order. The inner loop works on the set of successor arcs fRy(n) of
node n. For each node n the forward score of each successor arc f,, is computed
by contributing all predecessor arcs 2R, of the node n using Equation 3.8. This
computation step is carried out by performing the inner loop for all successor arcs
YV ots € Ry(n).

Let us take a closer look at Equation 3.8: the term f, + aa., + B, describes the
product development, the II term in Equation 3.4 (page 35), along possible paths
through a specific word hypothesis (arc) where a,, and l,, are acoustic and language
model scores of the specific arc vy, The logarithmic sum, €D, in Equation 3.8 is
equivalent to the ¥ term in Equation 3.4, to summing up the probabilities of different
paths. The operator €, is defined for the addition of scores in the logarithmic space
as

In(zy + 22+ ... +2) = @), (xi).
i=1

It must be emphasized that the logarithmic sum in Equation 3.8 only takes effect
in case of merging edges in the word graph due to the initialization of the forward
scores. The above algorithm computing the forward score has the main advantage
that once all word graph nodes have been processed the forward scores of all word
hypotheses of the entire word graph are available for further computations.

Beside the language model scaling factor § in Equation 3.8, the scaling of the
acoustic scores, «, is also proposed in Wessel et al. (2001). In computing posterior
scores, the choice of proper scaling factors is obviously crucial. This is because ad-
ditive combination of hypotheses’ scores in the logarithmic space is greatly affected
by excessively high scores. Using appropriate scaling, however, prevents logarithmic
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sums from being dominated by only a few word graph hypotheses in the large dy-
namic range of acoustic scores. Since a holds a major impact on the computation of
the forward score, it has to be estimated on a cross-validation corpus, a set distinct
from the evaluation corpus, which is described in Section 3.7.2 on page 53. The
results of empirical studies presented in Wessel et al. (2001) propose settings for the
scaling factor of a by 0.05 or 0.06, and for § a value very close to 1. Tests performed
in the scope of this work using the implementation with the HTK system confirm
that these scaling factors consistently lead to good results.

Analogously to the implementation of the forward score, in order to support the
computation of the backward score the set of information given for each hypothesis
arc in the word graph was extended with a variable for the backward score b,y =
In (p,, ([w;T,t])). The backward score is determined by processing the word graph
in the backward direction, from the END node to the START node as follows:

e initialization of backward score of each word graph arc ¢

be = blyeir t,] = —00  i.e. log probability 0, V v € R (3.9)

e propagation of backward scores through the word graph

V 1€ Mrev.top set of all nodes in reverse topological order

V t, € Ry,(n) set of all predecessor arcs of node n

be, = v@m (th + aay, + ﬁltp) (3.10)
ts ez)tass'(n)

In Equation 3.10 b,, denotes the backward score of the predecessor arc t;, by, is the
backward score of the successor arc ts and Rs(n) is the set of all successors of node
n. ay, and [y, are acoustic and language model scores attached to the predecessor
arc t, scaled by a and 3. Similar to the computation of the forward score above,
backward scores are set to —oo in the wnitialization step. During the propagation
step, backward scores are computed by utilization of nested loops. In this case,
however, the outer loop works in reverse topological order on the entire set of the
word graph nodes N;.cy,. top- For each node n, the backward score of each predecessor
arc by, is computed using Equation 3.10 by contributing all successor arcs of node
n, Rs. This computation step is carried out by performing the inner loop for all
predecessor arcs V t, € R,(n). After processing is completed, the backward score
of each word hypothesis is available for further computation of the posterior score.

Figure 3.2 on page 39 shows a simple word graph example where words are
represented by arcs and time boundaries are represented by starting and ending
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Figure 3.2: Schematic view of the computation of forward and backward scores on an
example word graph for a specific word (the) with starting time 7 and ending time ¢.
Summing up scores along the example paths is marked by operator @& whereas path
merging using the logarithmic sum is marked by operator @©,.

nodes for each arc [7,t], where the START node of the graph corresponds to the
beginning of the utterance (7 = 1) and the END node to the end of the utterance
(t =T). Figure 3.2 can be used to explain the computation of forward and backward
scores more clearly. The figure shows a schematic view of the propagation of forward
and backward scores along word graph arcs for an example word hypothesis “the”
(boldface in the word graph). All partial paths are denoted which are used for
computation in forward and backward directions. Dashed lines mark those partial
paths which are relevant for the computation of the forward score. As we can see
in the forward direction, scores are summed up along two different possible paths
starting at the START node and ending in the arc of the specific hypothesis (word
“the”). To make computation steps more clear the operator @& marks summation
of acoustic and language model scores along paths as the term f,, + aar, + Gl;, in
Equation 3.8 (page 37). Additionally, operators @y, are placed where the logarithmic
sum takes effect, namely at merging paths. Paths involved by the computation of
backward scores are plotted with dotted lines.

The complete trees of forward and backward graphs of the example word graph
from Figure 3.2 are shown in Figure 3.3 on page 40 in order to visualize the imple-
mentation of the algorithms as defined in Equation 3.8 (page 37) and Equation 3.10
(page 38). As we can see in Figure 3.3, the computation of the forward scores be-
gins at the START node of the graph and sums up all scores of all alternative forward
paths until the END node; backward scores are computed similarly in the backward
direction.

The score for the observation probability p (z]) in Equation 3.2 (page 34) cor-
responds to the total sum of all probabilities of all possible paths through the word
graph. In the logarithmic space it can be computed either by the logarithmic sum,
@,,,, of all forward scores of all arcs which end at the END node or by summing up
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Figure 3.3: Schematic view of complete forward and backward trees passed through the
entire word graph during computation of posterior scores using the forward-backward

algorithm.
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all backward scores in the logarithmic space attached to arcs starting at the START
node:

o = D (ftp) = D (b)), (3.11)
Votp: YV ts:
€ i)Ltﬁ(nEND) ts € Rs (nSTART)

where o is the score of the acoustic observations o = Inp(27), R,(ngxp) is the set of
arcs which end at the END node, i.e. predecessors of END. Analogously, Rs(ngrarr) is
the set of arcs which start at the START node, i.e. successors of START. Both terms in
Equation 3.11 should lead to identical observation scores if calculations proceeded
correctly in previous steps. This is why comparison of those results is often used to
check correctness in practice.

After forward, backward and observation scores are determined, they can be
combined to form the posterior score, the log posterior probability, which is then
used directly as the confidence score C ([w;T,t]) of a specific word hypothesis w
belonging to arc t,, of the word graph:

C ([w;T,t]) = fe, + be, — (aar, + Bly,) — o, (3.12)

where the subtraction of the term (aay, + (ly, ) is necessary for algorithmic reasons
because acoustic and language model scores of a word hypothesis were included twice
in the forward score in Equation 3.8 (page 37) and also during computation of the
backward score in Equation 3.10 (page 38).

3.4.2 Considering Time Alignment with Simple Accumulation

The experimental results presented in Wessel et al. (2001) show that the performance
of the confidence measure calculated in the previous section can be significantly
improved by summing up the posterior probabilities of all hypotheses of the same
word with overlapping time intervals. This is because word graphs usually contain
several hypotheses, other than the best hypothesis, which have slightly different
time alignment of the same word. The usage of fixed starting and ending time as
in the previous section, however, does not allow consideration of those hypotheses
in the computation of the posterior probability, and the word probability is split
among them. Figure 3.4 on page 42 shows schematically seven word graph arcs of
the same word, which belong to different sentence hypotheses but have overlapping
time intervals. This example is an excerpt of a word graph as typically produced by
HTK speech recognition system. For the computation of the best word hypothesis’
confidence score (arc ty, boldface in Figure 3.4) by considering intersection in time
boundaries of similar word hypotheses, we must sum up posterior probabilities of arcs
which have overlapping time intervals (e.g. arc t3 in Figure 3.4). This is equivalent
to the logarithmic sum of the confidence scores in the log space:
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Figure 3.4: Overlapping time intervals, 7 —t; and 735 — t2, for different arcs v; of a word
graph as typically produced by HTK ASR system. Boldface denotes arcs belonging to
the best recognition result.

Cune (w7 t) = @, C (lws7'.11). (313
v [w;Tl,tl]:
{307 .t )20

or for the example shown in Figure 3.4:

4
Csec (['UJQ, T2, tQ]) = @ln Ctia (314)
i=1

where C\, is the confidence score of arc v; according to the definition in Equation 3.12
(page 41).

It is to be mentioned that since Cye. does not necessarily fulfill the condition of
posterior probability as formulated in Equation 3.3 (page 35) and does not sum up to
unity in the normal space of probabilities, it can lead to posterior scores Cse. > 0 in
the logarithmic space. It does, however, perform significantly better on five different
evaluation corpora than the score defined in Equation 3.12 (page 41) as reported
by Wessel et al. (2001). Also evaluations carried out in the scope of this work on
two additional test corpora confirm better results in confidence error rate for the
definition of CM as in Equation 3.13 than those based on Equation 3.12 (page 41).

Wessel et al. (2001) propose two additional ways of summing up posterior prob-
abilities of word hypotheses with slightly different starting and ending time bound-
aries. On the one hand, the method known as C),,.q accumulates posterior probabil-
ities restricted to only those arcs with the same word hypotheses which intersect the
median time frame of the best hypothesis, for which the CM is actually computed.
This method also fulfills the original condition of posterior probabilities as given in
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Figure 3.5: Sample word graph and corresponding multiple alignment represented as
confusion network, presented in Mangu & Brill (1999).

Equation 3.3 (page 35). On the other hand, the method known as C),4, accumulates
posterior probabilities not only for the median time frame but for all time frames
which intersect with the best hypothesis, and the maximum of these values is chosen
from all sums as the measure of confidence.

3.4.3 Considering Time Alignment as Consensus Hypothesis

Another possibility for the computation of the posterior probability based confidence
score on word graphs is described in Mangu et al. (2000). The algorithm primarily
used for the computation of the so-called consensus hypothesis can also be applied to
generate posterior probability based confidence scores. Figure 3.5 shows an example
word graph with its corresponding multiple alignment. The approach presented in
Mangu et al. (2000) selects that word at each position in the alignment which has the
highest posterior score; the resulting hypothesis is called the consensus hypothesis
by Mangu et al. (2000). For this method, posterior scores of hypothesized words
are computed in the same way as described in Section 3.4.1 on page 34. However,
the accumulation of the confidence scores, which makes use of the time alignment
information of the word graph, differs from that described in Section 3.4.2 on page 41.
The algorithm proposed in Mangu et al. (2000) has as its primary goal to compute
the consensus hypothesis which minimizes the word error rate of recognition results
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rather than the sentence error rate. Empirical results in Mangu et al. (2000) prove
a significant lack in correlation between sentence error rate and word error rate and
the difference between optimizing for both. In order to determine the consensus
hypothesis, the word graph is converted to a compact format through the following
computation steps:

Step 1: Computation of the posterior score of each word hypothesis (arc) of the
word graph, as described in Section 3.4.1 on page 34

Step 2: Building equivalence classes, composed of all the arcs with the same
word label and identical starting and ending times (see Figure 3.6 on
page 45)

Step 3: Merging equivalence classes which contain the same word by computa-
tion of time similarity by overlapping time intervals (intra-word clus-
tering)

Step 4: Grouping equivalence classes if they correspond to different words with
so-called phonetic similarity (inter-word clustering)

For analysis carried out in the scope of this work, it is not necessary to perform
Step 4, because Step 3 already considers time alignment information of similar
word hypotheses and allows accumulation of posterior scores of the word hypotheses
with overlapping time intervals which are grouped together in common equivalence
classes. Merging equivalence classes in Step 3 is an iterative grouping process. In
each iteration step the time similarity between all pairs of classes is computed. The
pair of classes which are most similar to each other are then combined into a new
equivalence class. As a measure of similarity S between two equivalence classes,
& and &, Mangu et al. (2000) propose the following definition for the intra-word
clustering step:

S(&, 5]') = meaéc O(ti, tj)p(ti)p(tj), (3.15)
r;-eé-

where O stands for time overlap between arc v; and arc t; normalized by the sum of
their time duration (from start time to end time of the arc). In Equation 3.15, O is
weighted by the posterior probabilities of corresponding arcs to make the measure
of similarity more robust against unlikely word hypotheses.

Iteration steps are repeated until no more classes can be merged. Upon comple-
tion, all arcs with overlapping time intervals are merged to one equivalent class. For
computation of the confidence measure, posterior scores of all arcs within resulting
classes are accumulated as shown in the example in Equation 3.16 (page 45).
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Figure 3.6: Initial equivalence classes, created in the second step of the consensus
network algorithm, with inter-class time overlaps 7 — t1 and 73 — to.

3.4.4 Summary

In order to point out differences between alternative computation methods of confi-
dence scores described in Section 3.4.2 and in Section 3.4.3, let us take a closer look
at Figure 3.4 and Figure 3.6. As we can see in Figure 3.4 on page 42, the confidence
score of arc ta bold-plotted?, has overlapping time intervals with three different arcs,
namely with arcs t1, v3 and t4. As a consequence the confidence score of arc tg is
calculated as the sum of posterior scores of the arcs t1_4 as shown in Equation 3.14
(page 42). On the other hand, according to the consensus hypothesis algorithm de-
scribed in Section 3.4.3, all initial equivalence classes intersect in time mutually as
shown in Figure 3.6. Due to the ordering rules given in Mangu et al. (2000), all three
classes in Figure 3.6 can be merged during the intra-word clustering step described
in Step 3 of the consensus hypothesis algorithm. As a result the confidence score of
arc to can be computed in this case as follows:

7
Csec ([w2§ T2, t2]) = ®ln Cl‘i . (316)
i=1

Obviously, this kind of calculation differs from that defined in Equation 3.14 for
the same word graph topology and time overlap situation between word hypotheses.
This fact that both methods could produce different confidence scores for the same
word hypothesis was the motivation to compare their quality on different word graph
topologies. Results of analyses carried out in the scope of this work are described
in Section 3.7 on page 52.

!Note: to marks best hypothesis word schematically as part of the best word sequence.
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3.5 CM for Semantic Interpretation

Semantic interpretation of speech, also known as natural language understanding
(NLU), is gaining more and more attention not only as a research object but also
in practical implementation of speech applications; grammar formats supporting
semantic interpretation are already standardized as part of W3C Recommendations
W3C-SISR (2007). Speech dialog designs are converging more and more closely to
the natural form of human communication and increasingly allow the use of natural
language utterances for user input. In contrast to strictly prescribed user inputs,
e.g. words contained in severely limited instruction sets, natural language utterances
allow the user spontaneous interaction. The main advantages are increased user
acceptance and the elimination or abbreviation of a learning phase for users to
become accustomed to the speech application. The meaning of such complex natural
language user inputs is represented by semantic results in order to allow their use
in further data processing steps or also in dialog management (see Chapter 5 on
page 79 for additional details). Meaning is often defined as a combination of words
representing a semantic concept.

For speech applications, the confidence of semantic concepts must be measured
by semantic confidences just as confidence of word hypotheses is measured by word
confidences as described previously in this chapter. Sarikaya et al. (2005), for ex-
ample, present two methods for modeling semantic information in a sentence. Sta-
tistical semantic features obtained by those techniques are incorporated to word-
and concept-level posterior probability based confidence measures using a special
word alignment technique. The posterior scores are computed on the word graph in
the same way as described in Section 3.4.3; the method of converting word graphs
to confusion networks (also called as sausages) proposed by Mangu et al. (1999).
Hacioglu & Ward (2002) present a different technique for incorporating semantic
information into confidence score computation which first converts the word graph
into a concept graph and then calculates scores on the concept graph. Guillevic
et al. (2002) propose a method for robust estimation of semantic confidence scores.
The main focus of this approach is placed on generating task-independent CMs for
dialog systems. For each semantic concept different predictor features are used and
merged by a multi-layer perceptron.

Lieb et al. (2004) propose a straightforward approach to how posterior scores
computed on word graphs can be used directly for confidence measurement of se-
mantic concepts. This technique is applied to a one-stage automatic speech inter-
pretation system, ODINS as described in Thomae et al. (2003). In addition to the
best semantic result, ODINS generates alternative semantic hypotheses represented
by nested word graphs of several hierarchy levels incorporating all necessary knowl-
edge sources in one stage. The CM of a specific semantic concept is computed as
the posterior score of the corresponding sublevel word graph belonging to a specific
semantic concept.
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Figure 3.7: Nested graph of semantic concepts with an example sublevel word graph
belongs to the concept label Sty with starting time 7 and ending time t.

To make this more clear, Figure 3.7 on page 47 shows an example nested semantic
graph with one sublevel word graph for the concept Srin.. Each arc at the semantic
level corresponds to a specific semantic concept and is connected to the start and
end nodes of the corresponding sublevel word graph. For this reason Lieb et al.
(2004) propose the computation of posterior scores of semantic concepts as the
total posterior score of the underlying sublevel word graph. The computation of
posterior scores described in Section 3.4.1 on page 34 can be simply applied to the
word level of nested graphs computed using the forward-backward algorithm. At
this point Equation 3.12 (page 41) can be used to determine the posterior score of
each concept arc, e.g. the score for the semantic label [Spyg;7,t] in Figure 3.7 for
the speech fragment between time boundaries 7 and ¢, where 7 corresponds to the
start node START)y and t to the end node ENDyy of the sublevel word graph. The
observation score o in Equation 3.12 is also computed in this case on the entire graph
at the semantic level from the starting node STARTg in Figure 3.7 to the ending node
ENDg incorporating all sublevel word graphs.

As described above in Section 3.4.2 the performance of posterior scores can
be significantly improved by summing up scores of alternative hypotheses on word
graphs, taking time alignment information of similar hypotheses into account. Lieb
et al. (2004) show that this method can also be applied successfully to the semantic
scores computed on sublevel word graphs. In this case the posterior scores of those
sublevel word graphs are summed up in the logarithmic space, which belong to
similar concept arcs that intersect in time boundaries with the best hypothesis at
the semantic level.
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3.6 Utilization of Confidence Measurement

Decision of recognition quality made on the basis of reliable confidence measures can
also be helpful for other tasks than the assignment of CM to specific hypotheses,
i.e. tasks which generally have the capability to improve recognition performance
not only in terms of accuracy but also in reducing time consumption and memory
use. A dynamic pruning approach is presented in detail in Section 4 on page 59
which is based on confidence measurement. Section 5 on page 79 deals with the
utilization of CM techniques for dialog management strategies in great detail. This
section presents a survey of CM utilization techniques such as lattice rescoring and
pruning, detection of out-of-vocabulary words (OOV) or unsupervised adaptation.

3.6.1 Rescoring and Pruning

Once a hypothesis’ confidence is known it can be also used for rescoring resulting
N-best lists. The task of a speech recognizer is, generally, to find the best word
sequence for unknown speech data. Particularly when the recognizer runs under
conditions that are mismatched, i.e. not sufficiently represented within the training
material, such as fast speech, recognition performance can be improved by prop-
erly selecting one of the N-best output hypotheses. Through analysis of N-best
hypotheses, also called as N-best rescoring, the performance of the recognizer can be
improved because even the hypothesis which best matches the spoken utterance has
not necessarily been scored as the best one during search. N-best rescoring, though,
has the potential to spot it in the N-best list during a post-processing step. Fur-
thermore, N-best rescoring is suitable for integrating those knowledge sources into
the decision process, which are not available before the end of an utterance or for
which integration into the search process would be computationally very expensive.

As shown in Fabian et al. (2001) experimentally, the integration of knowledge
about the speech rate can be helpful for analysis and selection of N-best hypotheses.
The speech rate can vary considerably between different utterances from the same
speaker or even within a single utterance. Therefore a method is proposed which
compares similarities between speech rates of spoken utterances and speech rates
of hypotheses in the resulting N-best list. As part of a post-processing step, that
hypothesis is selected from the N-best list whose speech rate is most similar to
the original speech rate of the utterance. The speech rates are detected simply as
phoneme or vowel rates either on hypotheses’ contents, or to obtain the original
speech rate of the utterance by using a simple phoneme recognizer.

Word graphs typically contain arcs of very low posterior scores which are neg-
ligible for computing total posterior score of a specific hypothesis. The pruning of
such arcs can increase efficiency of computation tasks carried out on word graphs.
Mangu et al. (2000) propose a pruning technique which removes all arcs from the
word graph whose posteriors fall below a specific threshold which can be determined
empirically. Similarly Lieb (2006) proposes a pruning approach which works on
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nested word graphs of multiple hierarchy, semantic and word, in the ODINS se-
mantic decoder. This method is a straightforward implementation of the posterior
based word graph pruning method proposed in Sixtus & Ortmanns (1999), where
the pruning criterion of a specific word graph arc is the distance of its posterior score
with respect to the average posterior score of word graph arcs belonging to the best
path.

3.6.2 Rejection Techniques

As already mentioned earlier, the primary objective of rejection techniques is to
assess the quality of recognition hypotheses under different expectations regarding
user inputs and limitations in the recognizer’s vocabulary. Out-of-vocabulary (OOV)
detection, for example, has the main task of reliably spotting those recognizer inputs
which are not part of its vocabulary. In contrast, keyword potting is intended to
handle unconstrained recognizer inputs by rejecting all inputs other than a small
number of task-specific keywords (non-keyword rejection). Utterance verification,
on the other hand, deals with the rejection of incorrect hypotheses in general without
distinguishing between reasons why they are incorrect.

OOV Detection

There are different ways to detect OOV words in speech recognition tasks, for ex-
ample by modeling OOV words with a set of HMMSs, also known as filler models, or
using confidence thresholds for OOV decision. Incorporating CM in OOV detection
generally has the potential to improve detection performance. Especially the use
of posterior score (as discussed e.g. in Young, 1994b; Mengusoglu & Ris, 2005) or
normalized log likelihood scores brings significant improvement in OOV detection
as reported in Sun et al. (2003). Those methods generally apply word confidence by
determining a threshold for OOV empirically on training sets. If resulting hypothe-
ses fall below a specific threshold, those hypotheses are considered as OOV words.
Another possibility is to combine different CM approaches into a final probability
decision using an NN classifier.

In Ketabdar et al. (2007) a different, more sophisticated method is proposed
which uses a two-channel ASR technique to detect OOV words. The main idea
behind this technique is to discover unexpected words by comparing out-of-context
and in-context hypothesis posteriors generated for identical input utterances. In-
context posteriors are determined by a recognition channel using prior contextual
knowledge sources such as pronunciation dictionary and word probabilities provided
by the language model. On the other hand, out-of-context posteriors are computed
through utilization of a simple phoneme recognizer without any prior lexical in-
formation. Posteriors of both channels are then compared by the Kullback-Leibler
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divergence? and an OOV is detected if in-context posteriors significantly deviate
from out-of-context posteriors measured on phoneme level by passing through the
entire utterance.

Keyword Spotting

Keyword spotting works on unconstrained speech inputs when specific keywords are
to be separated from other, non-keywords. Due to its unconstrained nature, there is
no language model available to describe input sentences, especially to mark semantic
relations of keywords related to other words. Earlier works, such as Rose (1992),
propose keyword spotting by modeling non-keywords explicitly by means of a so-
called garbage model, also known as sink or filler models, in order to use them to
compete with keyword models during decoding of unconstrained speech input. There
is abundant literature dealing with this specific task; to mention a few examples:
Boite et al. (1993) introduces a speaker independent approach for recognition over
telephone lines using explicit garbage modeling. Junkawitsch et al. (1997) propose
a CM-based method where keywords are detected via confidence maximization. It
uses two different CM approaches: the negative logarithm of keywords’ posterior
probability and the likelihood ratio between the keyword model and an anti-model.

Utterance Verification

As stated above, the term utterance verification (UV) is understood as the process
of detecting and rejecting the least reliable hypotheses according to the motto “no
recognition is better than misrecognition” as illustrated by an example in Bouwman
& Boves (2001). This is especially true for commercial speech applications which
have to manage a wide range of dialects in user inputs while simultaneously avoiding
misrecognition, often for reasons of security or data protection. Rose et al. (1998),
for example, condition the word probability estimated by the language model upon
acoustic confidences of the elements of its n-gram history. For utterance verification,
the log likelihood ratio (LLR) as a measure of confidence has been shown to be
generally useful as reported in Lee (1997) and Charlet et al. (2001). Evaluation
results by combining LLR with other predictor features like speech rate factors or a
lexical stress measure are shown in Bouwman & Boves (2001). The likelihood ratio
testing (LRT) approach is shown in Jiang (2005), which provides good theoretical
formulation of the utilization of confidence measurement for utterance verification.
As stated in Jiang (2005), the LRT algorithm was originally motivated by the speaker
verification problem but it could be also applied successfully to UV.

2The Kullback-Leibler divergence is also known as information divergence or relative entropy
and is a measure of the difference between two probability distributions (see Kullback & Leibler,
1951).
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3.6.3 Adaptation Methods

Speech applications developed for a wide range of user groups, e.g. in the banking
or telecommunication sector, should provide acceptable performance in recognition
accuracy from the outset. Therefore they are generally trained on huge amounts
of training material gathered from a large number of different speakers who vary in
gender, age and dialect. Further improvements for specific users are only possible by
applying adaptation techniques with speech data collected from those users while
they interact with applications. Supervised adaptation methods, such as reading
huge amounts of predefined text, often cannot be used because they are non er-
gonomic, awkward and therefore not user friendly.

An interesting area of CM utilizations is that of unsupervised or semi-supervised
adaptation techniques. Decisions regarding the quality of recognition results based
on CM allow more reliable speech segments to be selected for adaptation in order to
improve the performance of recognition models automatically or semi-automatically
as reported in Kemp & Waibel (1999); Wallhoff et al. (2000); Charlet (2001); Goronzy
et al. (2000) and by many others. Kemp & Waibel (1999), for example, evaluate the
effect of the lattice-based posterior score as CM (referred as gamma CM in Kemp
& Schaaf, 1997) against perfect CM?3. It uses an interesting approach for unsuper-
vised training: first, multiple recognizers are trained based on different subsets of
the training material selected using different CM thresholds. Then the recognition
results are combined weighted by word confidence.

In Wallhoff et al. (2000) a comparison is made between efficiency of super-
vised and unsupervised adaptations using maximum likelihood linear regression and
frame-based discriminative training techniques. The CM is computed based on N-
best list word density as proposed in Willet et al. (1998).

Charlet (2001) presents an incremental unsupervised adaptation method based
on ranking of adaptation data according to their confidence scores and shows that
utilization of CM for unsupervised adaptation brings significant improvement de-
pending on the adaptation rate*. Charlet (2001) uses as CM the difference between
the log-likelihood of the first and second candidates in an N-best decoding approach
normalized by the length of the utterance, a measure proposed as quite effective in
Willet et al. (1998).

As mentioned earlier in Section 3.3 on page 31, Goronzy et al. (2000) propose the
usage of NN classifier to incorporate several confidence predictor features based on
phoneme duration and acoustic score for computing CM. In Goronzy et al. (2000) it
is also shown how the CM can be applied to a semi-supervised speaker adaptation
technique while only those utterances are used for adaptation which are accepted by
the confidence measure. Zhang et al. (2005) present an approach for semi-supervised

3The term perfect CM refers to hypotheses’ tagging, correct or false, based on known transcrip-
tion of the recognition result.

4The adaptation rate measures how important adaptation data are considered with respect to
prior data.

o1



CHAPTER 3. CONFIDENCE MEASUREMENT TECHNIQUES

training using several confidence measures such as LM-backoff-mode and posterior
probability of different levels, i.e. utterance, word and frame level.

3.7 Impact of Lattice Density, Evaluation Results

As already mentioned in the introduction, reduction of the computation time, con-
sumed by the decoding process of ASR systems is an important and topical issue in
order to optimize runtime behavior, especially for embedded speech enabled systems.
Here good results can be achieved, for example, by applying optimization techniques
to the search process and also by producing word graphs with low densities. The
latter saves time by retaining only a few alternatives during the Viterbi search which
are then sufficient for building a word graph of low density. But the question remains
how reduction in word graph density® (WGD) influences the quality of confidence
measures computed on word graphs in a post-processing step.

This section shows the results of analyses carried out by investigating the influ-
ence of word graph density on the quality of posterior probability based confidence
measures as described in Section 3.4.2 and in Section 3.4.3. In order to allow eval-
uation of both CM techniques, the HTK system was enhanced with these methods
by the author. Carrying out the implementation as presented in Section 3.4.1 on
page 36, the forward-backward algorithms working on the word graph were extended
by both accumulation techniques: the simple accumulation of similar words with in-
tersections in time alignment and the accumulation method based on the consensus
hypothesis algorithm. Investigations were performed on two different speech cor-
pora, on Verbmobil ’96 and on NaDia (see Section 3.7.2 on page 53). Prior to the
results, evaluation metrics used for analysis are discussed.

3.7.1 Evaluation Quantities

The confidence error rate (CER) is defined as the number of incorrectly tagged
hypotheses divided by the total number of recognized words, as defined in Wessel
et al. (2001). Tagging of hypotheses as correct or false is made according to whether
hypotheses’ confidence scores exceed a certain threshold or not. Those hypotheses
whose posterior scores fall below the threshold are simply tagged as incorrect whereas
all others are tagged as correct. Optimal setting of the confidence threshold was de-
termined by minimizing the CER on a cross-validation corpus which must be clearly
distinct from the evaluation corpus as shown in Section 3.7.2. This tagging strategy
can lead to different types of classification errors of incorrectly tagged hypotheses:
false acceptance (FA) and false rejection (FR).

The trade-off between FA and FR rates are depicted in form of receiver operating
characteristic curves, also called as ROC curves, which are described in great detail

5The word graph density is defined as the total number of the word graph links divided by the
number of spoken words.
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in Appendix A on page 99. The ROC curves in Figure A.2 on page 102 are generated
while varying the confidence threshold for given hypothesis confidence score distri-
butions. For each threshold the error rates FA and FR are computed and pictured
in a diagram. The false acceptance rate is defined as the percentage of incorrectly
recognized words tagged as correct (accepted) because their confidence scores are
higher than a certain confidence threshold. Analogously, the false rejection rate is
the percentage of correctly recognized words tagged as false (rejected) by the thresh-
old (see also in Falavogna et al., 2002). The ROC curve allows an exploration of
what happens to FA and FR while varying the position of the confidence threshold.
If the confidence threshold is moved toward from higher to lower values, the num-
ber of false rejections will decrease as shown in Figure A.2 on page 102. Finally, it
reaches a region where there is a remarkable decrease in false acceptance; the ROC
curve flatten out if the confidence threshold is moved to very low values.

The baseline CER, which is independent of the word graph density, is computed
on untagged recognition result sentences as the number of insertions and substi-
tutions divided by the total number of recognized words. CER is similar to the
definition of word error rate but it does not consider word deletions because the
number of deleted words cannot be influenced anymore by the tagging threshold;
they always remain deleted in hypotheses. Therefore, changes in CER caused by
different tagging thresholds are independent of deleted words. In contrast, inser-
tions and substitutions can be tagged as incorrect hypotheses because of their low
confidences which fall below a specific tagging threshold. In this case recognition
error can be reduced by correct tagging which corresponds to CER reduction. Thus
baseline CER also marks the maximum confidence error rate.

3.7.2 Experimental Setup

Evaluations performed in the scope of this work were carried out on the commonly
used speech recognition system Hidden Markov Model Toolkit (HTK) release 3.1.
Details about its modules and algorithms are given in Young (1994a). To supply
the needs of evaluations the code basis of the open source tool kit was modified
by the author in order to implement necessary algorithms. For example for the
computation of the posterior score the lattice post-processing tool HLRescore and
its component HLat, part of the HTK library, were enhanced with appropriate
methods. Also the accumulation techniques like the computation of the consensus
hypothesis was implemented in HLat. In order to support confidence tagging and
appropriate alignments in recognition results for CER computation the tool HResults
was modified accordingly.

Verbmobil Speech Corpus

One of the speech corpora was used for evaluation is the German Verbmobil "96
corpus which is described detailed in Bub & Schwinn (1996). This corpus is split
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into three data sets: training, cross-validation and test set which are strictly distinct
from each other. The test set, also called as evaluation set, contains 343 sentences,
i.e. 6428 words. For determining parameters settings empirically, e.g. scaling fac-
tors, a distinct cross-validation set was used which contains 599 sentences (i.e. 11577
words). For evaluations on the Verbmobil '96 corpus we used a bigram language
model and a dictionary with 5343 entries. The training of acoustic models was per-
formed on intra-word triphones by the use of the common parameter tying approach
and additionally by applying the method of mixzture splitting for further quality im-
provement of HMMSs as described in Lieb (2006). Resulting HMMs consist of about
25000 state-tied Gaussian mixture components. The training corpus contains about
11000 utterances recorded from about 600 speakers. The set of acoustic feature
vectors extracted from the speech signal for acoustic modeling consists of 39 com-
ponents, which are 12 mel frequency cepstral coefficients (MFCCs), the normalized
signal energy and the corresponding temporal derivations of first and second order.

NaDia Speech Corpus

The other speech corpus used for evaluations in the scope of this work is the NaDia
speech corpus which was collected for the industry-funded research project NaDia
(”Natiirlichsprachliche Dialogfithrung fiir die Nutzung komplexer Informationsdien-
ste im Automobil”). For this purpose spontaneously spoken utterances of 30 speak-
ers were recorded in a Wizard-of-Oz simulation for an airport information domain.
Also this corpus is split up in three distinct sets. The test data set contains 233
sentences, i.e. 1150 words, of 3 speakers and the cross-validation set consists of 320
utterances (1183 words) of 3 speakers. Analogously to the Verbmobil evaluation
material, for the analyses on this corpus a bigram language model and intra-word
triphone acoustic models were used. In this case the acoustic models had about
25000 state-tied mixtures and the dictionary had 640 entries. The acoustic models
were initially trained on the Verbmobil training material and than adapted on the
NaDia training set which contains 1446 utterances of 17 speakers (see Lieb, 2006).

3.7.3 Results of Simple Accumulation Method

Table 3.2 on page 55 shows confidence error rates detected for both evaluation
corpora, Verbmobil and NaDia, where confidence scores of word hypotheses were
computed by the simple accumulation method as described in Section 3.4.2. In order
to produce different word graph densities, the recognition task over all utterances
of a specific evaluation corpus was performed repeatedly using the recognition tool
HVite which is part of the HTK system. Several recognition tasks were performed
with different configuration settings varying the number of alternative hypotheses
kept during Viterbi decoding. As a result word graphs of different densities were
generated by the speech recognizer.
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Verbmobil \ NaDia

WGD CER [%] rel. CER[%] | WGD CER [%] rel. CER [%]

17.7 19.7 27.8 30.9 10.9 29.2
206.5 16.7 38.8 383.5 10.2 33.8
736 16 41.4 1170.4 10.3 33.1

Table 3.2: Confidence error rates (CER) for different word graph densities (WGDs)
for the evaluation corpora Verbmobil and NaDia, generated by the simple accumulation
method. Rel. CER is computed relative to the baseline CER of 27.3 % for the Verbmobil
corpus and of 15.4 % for NaDia corpus.

As we can see in Table 3.2, the word graph density obviously has an impact on
confidence error rate for both evaluation corpora; lower CERs correspond to higher
WGDs especially in case of the Verbmobil corpus. In other words, if the WGD
becomes very low, there is a significant leak in performance of the posterior score.
As a consequence, one can say that in practice one should be aware of generating
word graphs for the usage of posterior scores depending on speech corpora.

As per the previous definition of the baseline CER, for the Verbmobil corpus it
amounts to 27.3 %. According to Table 3.2 there is a relative CER reduction between
27.8% and 41.4 % corresponding to the absolute values 19.7% and 16 %. As far as
the NaDia corpus is concerned, the baseline confidence error rate amounts to 15.4 %.
The results in Table 3.2 show relative CER reductions between 29.2 % and 33.8 %
depending on word graph density and corresponding to the absolute CERs of 10.9 %
and 10.2%. The ROC curves in Figure 3.8 on page 56 underline the observation
that the performance of the confidence measure depends on the WGD. The diagrams
show significantly better equal error rates® for higher word graph densities than for
lower ones for both evaluation corpora.

3.7.4 Results of Consensus Hypothesis Method

Similarly to the above, Table 3.3 shows confidence error rates obtained for both eval-
uation corpora, Verbmobil and NaDia, computing confidence scores by means of the
consensus hypothesis algorithm as described in Section 3.4.3. The CER baselines
are the same as in the previous section for both speech corpora. Evaluations on the
Verbmobil corpus result in relative CER reduction between 28.9 % and 40.7 % cor-
responding to the absolute CER values of 19.4 % and 16.2 % as shown in Table 3.3.
For the NaDia corpus there is a relative CER reduction range from 27.3 % to max-

5The equal error rate is defined as the equal false rejection and false acceptance rate as described
in Appendix A on page 99.
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word graph densities (WGDs) using the simple accumulation method.
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3.7. IMPACT OF LATTICE DENSITY, EVALUATION RESULTS

Verbmobil \ NaDia

WGD CER [%] rel. CER[%] | WGD CER [%] rel. CER [%]

17.7 19.4 28.9 30.9 11.2 27,3
206.5 16.7 38.8 383.5 10.3 33.1
736 16.2 40.7 1170.4 10.1 34.4

Table 3.3: Confidence error rates (CER) results for different word graph densities
(WGDs) and for the evaluation corpora, Verbmobil and NaDia generated by the consen-
sus hypothesis method. Rel. CER is computed relative to the baseline CER of 27.3 %
for the Verbmobil corpus and of 15.4 % for NaDia corpus.

imum 34.4 % corresponding to absolute values of 11.2% and 10.1% in Table 3.3.
Figure 3.9 on page 56 shows results comparable to Figure 3.8 on page 56 and again
obvious dependence on word graph density for both ROC curves.

3.7.5 Summary

In conclusion we can say that both accumulation methods of posterior scores perform
similarly and achieve very good results as far as the reduction in confidence error
rate is concerned. However, evaluation results in this section also show a clear
dependence on word graph density for both test corpora. Obviously, higher WGDs
are more suitable for the accumulation methods and deliver lower CERs than WGDs
of low density. Regarding the computation time consumption of the two methods,
the evaluation tasks show that the time consumption of the consensus hypothesis
method is many times higher than that of the simple accumulation method. This is
because the intra-word clustering step (see Section 3.4.3) tends to consume a huge
amount of time especially in case of higher word graph densities. It seems that even
on modern PCs, it is not feasible to compute confidence scores in a way that would
fulfill real-time requirements, due to the computation complexity of O(T?) (where
T is the length of the utterance). Therefore, the best choice for practice would
be to apply the simple accumulation method for confidence score calculation in
order to obtain both the best confidence quality, by working on word graphs of high
densities, and acceptable runtime behavior. The results above could also be adopted
into practice as a way of adjusting the optimal word graph density depending on
the speech application in order to minimize confidence error rates.
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3.8 Limitations

In spite of all the research efforts put into CM development over recent decades, it
still remains a challenge to apply these CM approaches to practical applications suc-
cessfully. We still encounter serious problems and severe performance degradation
almost every time speech recognition systems are integrated into real spoken-dialog
applications following a laboratory development phase. Such difficulties stem pri-
marily from mismatched situations between assumptions made in the lab environ-
ment and real world conditions like unexpected user behavior, inconsistent acoustic
channel conditions e.g. distortion, different kinds of background noise or the low
transmission quality of mobile phones.

Even the best ASR systems currently available on the commercial market are not
in a position to provide high quality CMs which are robust enough to make reliable
decisions in all dialog situations. Especially in large vocabulary tasks, CMs often fail
to provide a solid basis for detecting OOV words as unexpected user input; at most,
they allow the implementation of rudimentary rejection techniques. In spite of these
known issues, Chapter 5 on page 79 shows in detail how different CM techniques
can be utilized successfully nonetheless for decisionmaking in dialog systems.
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Chapter 4

Confidence-Guided Pruning

Making speech recognition more efficient in computation time is still an important
and topical issue, in particular for embedded speech recognizers with limited memory
capacity and CPU power. More and more speech applications will be deployed
in embedded systems which often have only a limited computation capacity. In
order to meet users’ expectations we need to ensure acceptable runtime behavior
by minimizing system response delays. Improved pruning algorithms for automatic
speech recognition lead directly to a more efficient recognition process.

Herein lies the motivation to analyze commonly used speech recognition algo-
rithms in order to optimize their efficiency in computation time. The most time
consuming part of the recognition process is the search process. Depending on the
complexity of the search network, managing alternative hypotheses for each time
frame can be prohibitive in terms of processing time and memory resources. The
Viterbi search space size of HMM-based automatic speech recognition systems usu-
ally increases non-linearly with the vocabulary size and this is why different pruning
strategies have been already proposed to reduce the time consumption of the recog-
nition process as described in Section 2.3.2 on page 22.

Improved pruning efficiency accelerates the search process and leads to a more
time-efficient speech recognition system. Proven confidence measures based on pos-
terior score (C) or normalized log likelihood score (Cnrr) allow an assessment of
the classification correctness at phone or word level during the search process as
described in Williams & Renals (1997); Kamppari & Hansen (2000); Fabian et al.
(2003). Especially in recent years, several pruning algorithms have been introduced
concerning confidence measurement as a guide for pruning techniques (among oth-
ers, Ortmanns et al., 1997; Renals & Hochberg, 1999; Liu et al., 2001; Abdou &
Scordilis, 2003). In Abdou & Scordilis (2003) a complex look-ahead technique is
presented to manage HMM-specific thresholds of posterior confidence scores in or-
der to support the pruning procedure. This however, could result in an enormous
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management effort in the case of the thousands of triphones which are often used in
current ASR systems. The posterior score based look-ahead approach proposed in
Ortmanns et al. (1997) operates on neural network (NN) and cannot be deployed to
an HMM framework easily. All of these pruning techniques generally use constant
pruning thresholds over the entire search procedure.

In the course of this work a new dynamic pruning technique was developed which
optimizes the well-known probability-based pruning (beam width) by utilization of
confidence measurement. In this work normalized hypothesis scores are used to
guide the beam width of the pruning process dynamically, frame by frame, over
the entire utterance. Compared with classical pruning techniques, like fixed beam
pruning and histogram rank pruning, significantly better results can be achieved
regarding the time consumption of the recognizer. In this chapter a novel pruning
approach is introduced, which controls the beam width Bs.; of HMM-based Viterbi
search process framewise. The decision as to the appropriate threshold at each time
frame is based on the utilization of normalized log likelihood confidence measures
(see also in Fabian et al., 2005).

4.1 The Confidence Measure

The confidence-guided pruning approach is a combination of the widely used classical
probability-based beam pruning technique and runtime confidence measurement. As
described in Section 2.3.2 on page 22, probability-based pruning uses a constant
threshold Bg.: as the beam width of the Viterbi search process at each time frame
of the whole utterance. Both Bge of the probability-based pruning and N,q. of
the rank-based approach are predefined thresholds which have to be justified during
cross validation tests. In order to improve efficiency, however, these thresholds could
be adjusted dynamically to fit time-variant requirements by taking variable search
quality into consideration utilizing an appropriate confidence measure. As a result,
beam width B(t) is set dynamically at each time frame ¢ according to the confidence
estimation.

As discussed in Chapter 3, the best basic metric for confidence measurement is
the posterior probability; its mathematical formulation for the class ¢; is:

Cp(cilz) = p(eilw) o)

(4.1)
C,, can be thought of as the ratio of a proposed probability p(x|c;) p(c;) of a model
¢; and the observation probability p(x). The proposed probability is the product of
the acoustic model probability and the prior model probability and it reflects how
well the class ¢; fits the observation z. The observation probability p(z) can be
also called the catch-all probability since it describes how well the acoustic models
account for the acoustic observation in general.
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4.1.1 Normalized Log Likelihood Score

This work uses a CM which was developed based on a slight variation of C, and is
called the normalized log likelihood score, Cnrr. It is defined as the logarithm of
C, normalized by the prior class probability p(¢;) and can be computed using the
following formula:

Cyrr(cilz) =In (p}(:(?g!;ﬂ) : (4.2)

The observation probability in the denominator can be expressed as follows:

Ne
p(x) = p(xle;) p(ey), (4.3)
j=1

where N, is the total number of classes, p(z|c;) is the acoustic model probability
given the class ¢; and p(c;) is the prior probability of the class ¢;. Using this formula,
Cn 11 can be also formed as follows:

C clz) =1n plale) ) ’ .
~eL(cilz) (Z;V:clp(ﬂcj)p(q) (4.4)

or as:

Ne
Cner(elz) = In(p(zle)) — In Zp($|cj)p(cj) : (4.5)
=1

As far as C,, is concerned, its values range between 0 and 1. Where lower values,
close to 0, indicate low confidence since this means that there are models, other
than c¢;, which correspond to the acoustic observation x as closely ore more closely
than ¢; itself. Higher values, close to 1, on the other hand, indicate high confidence
because in such cases the proposed model ¢; best fits the acoustic observation .
Regarding the normalized log likelihood score C, its value range differs from
that of C, since the prior probability p(c;) in the numerator of Equation 4.1 was
removed and therefore the value range of the log operation becomes [—oo, In(p(¢;))].
Cnirr is expressed in the logarithmic space and can be viewed as a zero-centered
confidence score where positive scores indicate high confidence and negative scores
low, which means that the more positive C'y 1, the higher the indicated confidence.
Earlier works (e.g. Kamppari & Hansen, 2000) provide adequate results on the
good quality of Cnrr and classify it as a reliable confidence measurement. This
fact was the main motivation to utilize C 1, of the hypotheses in order to develop
a confidence-based pruning technique and apply it to the Viterbi beam search. Al-
though it is possible to compute Cnpr of each hypothesis for each time frame of the
search procedure using Equation 4.5, the resulting confidence values cannot be used
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Figure 4.1: Course of triphones’ Cn confidence scores during the utterance *Vielen
Dank!” (English: "Thank you!”).

directly to improve the effectivness of the pruning. This is because the confidence
of a specific hypothesis varies widely over time. As shown in Figure 4.1 on page 62,
Cn1r values of different triphones change during an utterance depending on which
part of the acoustic information best fits a specific hypothesis containing the most
appropriate triphone. A particular hypothesis could be pruned at a specific time
frame because of its low confidence, even if this hypothesis would become the best
at the end of the utterance.

In order to overcome such local time-variant effects, most known pruning tech-
niques work on accumulated quantities. The simple classical probability-based beam
width, for example, uses accumulated hypothesis scores as the basis for the pruning
decision. Similarly, confidence-guided pruning also uses a confidence measurement
of accumulated values of hypotheses which need to be computed step by step dur-
ing the search process. Therefore the accumulated normalized log likelihood score
Cace 1s defined based on Equation 4.5 as the difference between the accumulated
hypothesis likelihood score and the accumulated observation’s score computed for
each time frame ¢ of the utterance:

T T Nc
Cace = Zln (p(wi|er)) — Zln Zp(:c|cj)p(0j) . (4.6)
=1 =1 j=

As far as the pruning decision of a hypothesis is concerned, for each time frame
the confidence score of each active hypothesis needs to be classified as good or bad
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based on an appropriate confidence threshold. Unfortunately, the confidence score,
computed by Equation 4.6, does not allow specification of such a pruning threshold
because its value increases continuously from frame to frame due to the steadily
increasing difference between the accumulated best hypothesis score

Zln (z¢]c)

and the accumulated observation probability

T Ne
Dol [ p(aley) ple)
t=1 j=1

This is because the score of the best hypothesis is higher than the observation score
for each time frame; Equation 4.6 accumulates the differences and doing so it does
not allow assignment of a specific confidence threshold for the pruning decision.

For reasons mentioned above, a modified normalization is used for the compu-
tation of Cy.. score, namely the combined maximum of the accumulated In (p(z;))
and the best word end likelihood W pes;:

Clee Zln (x¢|er)) — max Zln (@) [Whest,t)- (4.7)

Equation 4.7 allows to generate a normalization quantity which can be used for each
time step to compute the confidence score of hypotheses. Figure 4.2 on page 64
shows a diagram as an example of normalized hypothesis score C! . of the best
hypothesis plotted at each time frame. As we can see in the diagram the curve of
the normalized score (dashed line) depends on the time frame. Especially high local
maximums appear in correlation to pauses in the utterance.

In the classical pruning case, such as probability-based beam width, an appropri-
ate constant threshold needs to be defined on a specific training set. This constant
threshold should allow effective pruning of superfluous hypotheses and on the other
hand it should also allow the best hypothesis to be retained from the beginning of
the utterance until the end. Such a constant beam width would correspond to a
horizontal line in Figure 4.2 on page 64 at a specific score level of e.g. 200, meaning
a constant distance of score 200 from the best hypothesis score. In contrast to this
the C!.. dynamic approach allows the usage of a constant threshold B relative to
the normalized score. As shown in Figure 4.2 on page 64, at each time frame only
those hypotheses are kept whose scores are no less than a certain threshold from the

score of the best hypothesis, computed as:

B(t) = set + C(Qcc( ) (48)
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Beam width, B(t) — — — Normalized best hypothesis score, C, .. (t)

Frame number

Figure 4.2: Example for the course of C/,.. and beam width B(t) during the appointment

negotiation utterance (Verbmobil speech corpus) ’Ja genau, lassen wir gleich die letzte
Woche im Mérz, primal” (English: ’That’s right, let’s keep the last week in March,
great!’). B(t) is computed with B = 50 as per Equation 4.8.

Further optimization of the confidence-guided (CG) pruning approach can be
achieved if the constant threshold B, which is set relative to the normalized score,
is not a constant value but is computed dynamically. For this purpose the pruning
threshold is varied depending on the current value of the normalized score C” .. itself
which indicates the observation quality of acoustic models. Low scores indicate
poor certainty of the momentary best hypothesis; therefore the beam width should
be increased in order to reduce the risk of pruning relevant hypotheses. Greater
C! .. scores, on the other hand, indicate good confidence of the best hypothesis and
therefore the dynamic beam width should be decreased in order to improve efficiency.

This kind of dynamic lift AB (dotted line in Figure 4.3 on page 65) com-
presses B(t) from Figure 4.2 somewhat; the result is plotted as solid line By, (%)
in Figure 4.3. To implement the dynamic lift AB(t) a modified sigmoid function
is used to allow control of the beam width between appropriate upper and lower

thresholds:

ﬂow
1 + e(aicz/lcc,t)//g )

AB(t) = Typp — (4.9)
The parameters a and 8 in Equation 4.9 can be determined using a cross evaluation
corpus. A reasonable setting for the experiments presented in this work was a =
B = 20. The results of this dynamic approach for different T3, and T}, are shown
in Section 4.2. The dynamic threshold for the pruning decision is computed in this
case as follows:

Baya(t) = AB(t) + Che(t). (4.10)
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Dynamic beam width, Bgy,(t) — — — Normalized best hypothesis score, C/,_..(t) ~——— Dynamic lift, AB(t)

Frame number

Figure 4.3: Example for dynamic beam width By, (t) during the appointment negotia-
tion utterance (Verbmobil speech corpus) 'Ja genau, lassen wir gleich die letzte Woche
im Mérz, primal’ (English: "That’s right, let’s keep the last week in March, great!’).
Also the courses of C/,. and the dynamic lift AB(t) are plotted.

acc

In order to summarize the above, the computational steps of the confidence-guided
dynamic (CGD) pruning threshold are as follows:

Step 1: Computation of C/,

acc

using Equation 4.7
Step 2: Calculation of the dynamic lift AB(t) using Equation 4.9

Step 3: Computation of the dynamic pruning threshold By, (t) as defined in
Equation 4.10 for each time frame

The dynamic pruning threshold Bgy,(t) computed in Step 3 is used directly as
the pruning threshold for the Viterbi search process. Figure 4.4 on page 66 shows
the schematic block diagram of the CGD pruning approach in order to make the
implementation details more clear. CGD pruning computes beam width Bgy, (t)
of pruning dynamically in accordance with the confidence assessment of the best
hypothesis. The A estimator is responsible for computing the dynamic lift AB(t)
for each time frame based on the confidence score of the best hypothesis C,.(¢).

The main challenge in computing C/ .. in HMM-based systems is to attain a
correct assessment of the observation probability, p(z). This is because HMM-based
systems generally do not have dedicated models for this purpose. The computation
of p(x), the catch-all score, requires the calculation of the emission of all HMMs
which could cost large amounts of time. In Kamppari & Hansen (2000) a technique
is proposed for managing this problem by reducing the catch-all model’s size in terms

of the number of Gaussian components.
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Figure 4.4: Schematic overview of the confidence-guided dynamic (CGD) pruning
method.

4.1.2 Observation Probability in HMM Networks

As described in Chapter 2, HMM-based speech recognition systems generally omit
the computation of the normalization quantity p(x) in Equation 4.2 (page 61), the
observation probability, in order to reduce computation time and memory usage
during the search process. This is reasonable if only the best hypothesis needs to
be found among all competitors. The computation of the confidence measurement
CnNLL, however, requires the observation probability as normalization quantity and
therefore it must be computed for the confidence-guided pruning approach.

The main objective of pruning in the first place is to reduce computation effort;
therefore, it can be efficient only if the additional computation effort needed for
pruning is negligible compared to the resulting savings effect in the search process.
Therefore highly efficient methods for computing of the observation probability are
very important to the realization of the CGD pruning.

Given an acoustic observation = the observation probability can be expressed as
follows:

Ne
p(x) =Y plzles) pley), (4.11)
j=1

where NN, is the total number of classes, p(z|c;) is the acoustic model probability
given the class ¢; and p(c;) is the prior probability of the class ¢;. HMM-based speech
recognition systems generally do not have dedicated models for the computation
of the observation probability p(x), and the state prior probability p(c;) is also
unknown since only prior probabilities of higher word unit levels, such as words, are
used to compute the global word sequence probability p(W|X), see Equation 2.3

(page 9).
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State Prior Probability Estimation

In the scope of this work, the class prior probability p(c;) in Equation 4.11 is esti-
mated empirically by performing the following computation steps:

Step 1: The time consumption of each class/HMM was determined by running
the Viterbi search on the Verbmobil '96 training data in order to de-
termine the best alignment down to the state level. Consumption time
was measured in the number of frames while a specific state was active
in the total data set. This procedure was carried out using the HVite
recognizer, part of the HTK toolkit. Since HVite does not provide this
information by default, it was slightly modified by the author to count
state activation time during alignment.

Step 2: The prior probability is then estimated for each class by the fraction of
the time ¢.; while the HMM ¢; was active over the total training data

set duration: ;
o
pleg) = — (4.12)
Eizcl ti
where ¢; is the activation time for class ¢ and N, is the total number of
classes.

Catch-all Model Generation

The computation of the catch-all score based on Equation 4.11 requires the calcula-
tion of the likelihoods of all model classes IV, at each time frame. Using this formula
directly would be very time costly and therefore would not allow implementation
of an efficient pruning technique. This is because the main saving effect of pruning
is to exclude unneeded hypotheses from the search and consequently to omit the
computation of likelihoods of superfluous models.

To resolve this conflict and to compute the catch-all score very efficiently, one
global catch-all model of reduced size is used (see Kamppari & Hansen, 2000). The
goal of building such a low complexity model is to find exclusively those Gaussians
which have a non-negligible effect on the computation of the observation probability.

The probability p(z|c;) in Equation 4.11 can be expressed in more detail with
additive mixture components as follows:

Ng(7)
p(z|cj) = Zwk,j Gr,j(T), (4.13)
k=1

where Ng(j) is the number of Gaussians used to represent the model for class ¢;,
wg,; is the weight for the kth Gaussian of the jth class and gy ; is the Gaussian’s
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probability for the observation z. The additive description above implies that the
number of Gaussians in the catch-all model, Ngca, can be expressed as the sum of
the number of Gaussians modeling all classes:

Ne

Ngea = Nalj), (4.14)
j=1

where N, is the number of classes.

Therefore, the global catch-all model is initialized with the pool of Gaussians
of all HMM states. The HMMs used for the experiments carried out for this work
consists of about 25000 Gaussian mixture components. The computation of p(z|c;)
for each time frame using this highly complex catch-all model would be time costly
and therefore very inefficient. In Kamppari & Hansen (2000) a method was pro-
posed which reduces the catch-all model size by approximating a smaller number of
Gaussians. The process of reduction of catch-all model size is an iterative bottom-
up clustering process. In each iteration step, two Gaussians which are most similar
to each other are found and then combined into a new one. As the measure of
similarity, the weighted Battacharyya distance is used, which is generally defined as

follows:
Diast == [ \/p1(2) pala) (4.15)

The Battacharyya distance is a measure of overlap between two probability distrib-
utions and its values range between 0 and oo corresponding to full and no overlap.
The specific implementation of Dpggy for Gaussians is as follows:

Y43\ 7t
Dpan = = (u1 — p2)” (122> (1 — p2)

1 Y1+ 2 _ _
(2] )

ool =

(4.16)

where p1 and p2 are the means of the Gaussians and ¥; and ¥, the covariance
matrices. Dpgtt is scaled to compress the acoustic space so that the entire acoustic
space is covered with acceptable resolution using weights of the Gaussians w; and

[w? + w3
Dscale = 21w1w22 . (417)

This scaling prevents a single high covariance Gaussian from absorbing neighboring
Gaussians while outliers remain unabsorbed. In HMM systems, these weights can
be computed based on the weights of the mixture distribution functions. If w; and

wa:
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we are similar then Equation 4.17 becomes 1. In case of high difference however,
w1 > wy or wi K ws, the value of Dg.qe goes to co. The scaled distance measure
between Gaussians becomes:

DBS = DBattDscale' (418)

After the distance between each pair of Gaussians is computed the pair with the low-
est distance, minimum Dpgg, is combined to a new Gaussian based on Equation 4.19,
Equation 4.20 and Equation 4.21. The weights of the most similar Gaussians are
summed up to determine the weight for the new Gaussian:

Wpeyw = W1 + W2. (419)

The mean value of the new Gaussian, fipeq, is the weighted sum of the mean values
of the parents for each dimension 1 < d < D and is computed as follows:

w1 wWo

= — _— . 4.20
:U’ne'w,d w1 + Wy Hid + w1 + Wy Had ( )

The variance of each dimension d of the new Gaussian, Y,¢,,, becomes the weighted
sum of the parent Gaussians adjusted with the mean values:

w1 w9
Yinewd = ————X14 + —————Yog
w1 + way w1 + wa
w1 wo ) (4.21)
(Mld - MQd) .

w1 + w2 wy + w2

After a new combined Gaussian is computed it is added to the pool of Gaussians
of the catch-all model and the Gaussians from which the new one was created are
removed. This iteration is repeated as long as required to achieve the desired com-
pression ratio of the acoustic space.

Due to this steps of model compression theoretical performance in acoustic mod-
eling is given up since Equation 4.1 (page 60) is slightly altered. C, is no longer
constrained to be in the range [0, 1]. Instead, it falls in the range [0,>> 1] and there-
fore in order to be able to use the altered C}, as a basis for confidence decision some
mapping mechanism, e.g. non-linear transformation, is needed for scaling. As far
as C'ypr is concerned, its score is in the log domain, where even large variations
in value range are automatically scaled to a reasonable range. Therefore, this work
utilizes the normalized log likelihood score as the basis of the confidence-based prun-
ing technique for the confidence measure in order to avoid the use of an additional
scaling mechanism.

As presented in Kamppari & Hansen (2000) and Abdou & Scordilis (2003) the
catch-all model of reduced complexity allows acceptable estimation of the observa-
tion probability, p(x), even with a compression ratio of about 95 %. Figure 4.5 shows

69



CHAPTER 4. CONFIDENCE-GUIDED PRUNING

0.8 1

0.6

0.4

----- 99.5 % Reduction

99 % Reduction
02r ~-- 95% Reduction
— 75% Reduction

Probability of Correct Acceptance

I

0 0.2 054 0f6 0.8 1
Probability of False Alarms

Figure 4.5: Relative ROC of the performance of reduced-complexity catch-all models
as presented in Abdou & Scordilis (2004).

ROC curves, the trade-off between incorrectly and correctly accepted phoneme hy-
potheses, for different catch-all model compression ratios. Only a slight performance
degradation is expressed even by a reduction in the complexity of the catch-all model
by more than 90 %. Based on these findings the evaluations for this work were also
carried out with a catch-all model of the compression ratio of 95%. The complexity
of the acoustic model could thus be reduced from about 25000 Gaussians to about
1000. As far as the implementation details are concerned, the computational effort
of estimating p(z) using the catch-all model of highly reduced complexity is negligi-
ble compared to that of using all Gaussians of all models. Therefore this catch-all
approach is applicable for the confidence-based pruning technique since its savings
for the search effort are vastly greater than the additional computational costs as
proven by the results presented in the next section.

4.2 Experiments and Results

The goal of the experiments presented in this section was to evaluate the capability of
the confidence-guided dynamic pruning approach to accelerate the search process of
an ASR system. For this purpose several tests were carried out on the Verbmobil *96
evaluation data using different pruning techniques and parameters. The results are
presented in Figure 4.6 on page 71 and Table 4.1 on page 72. All tests were performed
on all utterances of the evaluation corpus Verbmobil '96 which is described in detail
in Section 3.7.2 on page 53.
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Figure 4.6: Word error rates (WERs) of different pruning techniques, classical and
confidence-guided pruning, depending on time factor!: probability-based (PB) beam
width, probability-based rank (PBR), confidence-guided (CG) and confidence-guided
dynamic (CGD) pruning.

Figure 4.6 shows word error rates (WER) depending on the time factor! and
allows the comparison between results of confidence-guided pruning techniques with
classical pruning methods. Four different pruning techniques were evaluated, they
are as follows:

e probability-based (PB) beam width pruning is the classical approach setting
the beam width of the Viterbi search based on best hypothesis score and a
specific threshold

o probability based rank (PBR) pruning limits the maximum number of active
hypotheses, such as histogram rank pruning, in combination width PB pruning

e confidence-guided (CG) pruning based on Equation 4.8
e confidence-guided dynamic (CGD) pruning based on Equation 4.10

The curve of PB pruning in Figure 4.6 was determined by computing the WER
for the evaluation corpus using different Bge; values in a range of [80-250]. Greater
Bset values lead to lower WER but a higher time factor. The combination of beam
width and rank pruning, PBR pruning, was evaluated by keeping Bg.; at 210 and
varying Nge, the maximum number of active hypotheses is allowed, in the range
of [500-9000]. The curve of CG pruning was found using static beam width Bge

!The time factor is defined as the ratio of ASR time consumption with a particular pruning
parameter setting to ASR time consumption without any pruning.
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Pruning method; parameters WER [%] Time factor

PB; Bget = 250 33.63 0.43

PB; Bget = 150 34.40 0.19

PBR; Bser = 210, Nger = 9000 33.63 0.32
PBR; Bger = 210, Ny = 2000 34.37 0.20
CG; Bger = 200 33.63 0.50

CG; Bset =90 34.50 0.14

CGD; Typp = 110, Tjp0y = 40 33.63 0.23
CGD; Typp = 110, T}y = 70 34.43 0.07

Table 4.1: Word error rates (WERs) and the corresponding time factors! (see page 71)
of CG and CGD pruning techniques in comparison with different classical pruning
methods.

relative to the normalized score of the best hypothesis in a range of [55-200]. The
curve of CGD pruning was plotted using 7T%,,, = 110 and different Tj,,, in a range of
[20-70] (see Equation 4.9 for details).

To conclude, the CGD pruning approach outperforms all other methods signif-
icantly as shown in Figure 4.6. The time factor of the ASR using CGD pruning
could be decreased to 0.23 without increasing WER. Furthermore, if an increase of
about 1% in WER is acceptable, CGD pruning achieves a time factor of 0.07 which
corresponds to acceleration of the ASR by about 14 times (reciprocal time factor).
In comparison, the classical constant beam width pruning achieves with the same
WER increase of 1% a time factor of 0.19 (acceleration by 5 times). Further details
of the evaluation results show that remarkable improvement could be achieved in
decoding speed of the ASR system as presented in Table 4.1.

4.3 Comparison with the Adaptive Technique

In this section two dynamic pruning algorithms are compared, the confidence-guided
dynamic (CGD) pruning and the adaptive control dynamic (ACD) pruning method.
Both algorithms set the pruning threshold for the Viterbi beam search process dy-
namically for each time frame depending on search space properties. Earlier in this
chapter the CGD pruning method was presented which uses confidence measurement
to minimize the computation time effort of the Viterbi search process by reducing
the search space to an acceptable level (i.e. the number of active hypotheses). The
decision of the appropriate threshold at each time frame is based on the utilization of
confidence measurement. The other dynamic pruning approach ACD was presented
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Figure 4.7: Schematic view of the adaptive control dynamic (ACD) pruning approach.

in Van Hamme & Van Aelten (1996) and Zhang & Du (2004). This pruning method
uses adaptive control techniques to steer the pruning threshold dynamically. As will
be shown in this section, both dynamic pruning techniques are applicable in reducing
the time consumption of the recognizer whereas the novel confidence-guided pruning

approach clearly outperforms the adaptive control technique (see also in Fabian &
Ruske, 2006).

4.3.1 Adaptive Control Dynamic Pruning

One possibility to steer the dynamic beam width frame by frame is to take the advan-
tages of adaptive control algorithms into account (see Van Hamme & Van Aelten,
1996). ACD pruning is a technique which changes the pruning threshold Bge; of
the probability based pruning for the Viterbi search process at runtime to compen-
sate the variations in the search environment and to achieve the preset threshold of
maximum number of hypotheses Ng;.

Figure 4.7 shows the topology of the ACD pruning approach. This method uses a
feedback-control mechanism that contains adjustable coefficients. The ACD pruning
system consists of an inner loop and an outer loop. The inner loop contains an
ordinary feedback loop and the plant (the controlled system). In Figure 4.7 these
are the feedback controller and the pruning process. The parameters of the controller
are adjusted by the outer feedback loop, the recursive parameter estimator, which
is able to tune the parameters automatically to achieve the desired behavior of the
system (see Astrom & Wittenmark, 1995). In Figure 4.7 the input parameter of the
pruning is the beam width B(¢) and its output is the number of active hypotheses
N(t) for each time frame. Ny is the expected number of the hypotheses, a preset
value and the goal of the described adaptive mechanism is to drive N(¢) close to
the preset value Ng.;. For this reason the beam width of the pruning B(t) is varied
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dynamically for each time frame.

The pruning process is a non-linear time-variant dynamic system but for sim-
plicity it can be modeled by a Oth order linear system with slowly varying gain using
the following simple differential equation (see Zhang & Du, 2004):

N(t) = G(t)B(1), (4.22)

where G(t) is the time-variant gain reflecting the relation between the beam width
B(t) and the number of active hypotheses N(t). The controller is an integrator
which can be described with the following equation:

B(t + 1) = B(t) + a(Nset - N(t))/G(t)7 (4'23)

where « is the parameter of the controller which can adjust the response speed of
the feedback loop. The time-variant gain G(t) in Equation 4.23 can be estimated
based on the past L observations of the pruning threshold B(t) using least squares
estimation with the following formula:

G(t) _ ZiLzl N(t — Z)B(t B Z)
Sisa B2t —1)
For the dynamic pruning approach, reasonable parameter values are L = 5 and

a = 0.2 as proposed in Van Hamme & Van Aelten (1996). The computation steps
of the pruning process based on this adaptive controller are as follows:

. (4.24)

Step 1: FEstimation of the gain G(t) of the pruning process, Equation 4.24

Step 2: Computation of the pruning threshold B(t) with Equation 4.23

Since Equation 4.24 and Equation 4.23 must be calculated only once per frame, their
computation costs should not compromise pruning efficiency. To catch side effects
of the controller, especially at the beginning of an utterance, the computed pruning
threshold should be limited by maximum and minimum values (see Van Hamme &
Van Aelten, 1996).

4.3.2 CGD versus ACD Pruning

The main advantage of both CGD and ACD pruning techniques is the framewise
computation of the pruning threshold for the search process. That way both of them
are able to take time-variant characteristics of the search process into account. This
is clearly shown in Figure 4.8 on page 75 with an example sentence of the Verbmobil
evaluation set. The diagram shows the dynamic pruning threshold of ACD pruning
depending on the frames of the example utterance. In this diagram the horizontal
line at y = 0 (i.e. the x-axis) represents the best hypothesis scores for each frame.
The pruning threshold is plotted relative to that as y-value frame by frame. The
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Figure 4.8: Histogram of active hypotheses and an example for dynamic pruning thresh-
old during the appointment negotiation utterance ’Ja genau, lassen wir gleich die letzte
Woche im Mérz, primal” (English: ’That’s right, let’s keep the last week in March,
great!’).

pruning threshold curve for CGD pruning almost resembles the plotted curve of
ACD pruning so it is omitted for the sake of clarity.

There is one main difference between CGD and ACD pruning: at the beginning
of the B(t) curve of ACD pruning a kind of transient oscillation can be observed,
as clearly presented by Figure 4.8. This is caused by the integrator due to the
insufficient number of observation values for the computation of the plant’s gain
in Equation 4.24 (page 74). At this point CGD pruning holds a clear advantage
because its computation is based on confidence measurement and therefore it does
not exhibit this negative effect at the beginning of the utterance.

In addition to the pruning threshold curve, the histogram of the number of
the active hypotheses is also plotted in Figure 4.8 as the color-coded z-axis in the
background. This histogram was computed over equidistant score intervals of 4 in
the range of [0-250] from the x-axis. The color transition from white to red color (in
gray scale, from white to black) illustrates the number of active hypotheses in the
range from 1 to oo for each time frame and score interval. Gray color beneath the
color gradient represents no active hypothesis for the specified intervals.

In the histogram plot of Figure 4.8 we can see that the number of active hy-
potheses generally increases with increasing distance to the best hypothesis (x-axis).
When a preset constant pruning threshold was used (i.e. horizontal line parallel to
the x-axis e.g. by score = 250) there were many hypotheses of poor quality which
could not be pruned because they fell below the constant threshold, the maximum
score distance allowed from the best hypothesis score. In contrast to the constant
threshold, the time dependent dynamic pruning thresholds of CGD or ACD pruning
methods is clearly able to cut off more hypotheses. This is possible because the dy-
namic threshold demarcates the edge of the histogram transition to the increasing

75



CHAPTER 4. CONFIDENCE-GUIDED PRUNING

Pruning threshold computed by ACD pruning (Nse: = 3000)

200

50

0 40 80 120 160 200 240 280 320 360 400 440

Frame number

Figure 4.9: Histogram of active hypotheses after cut off by dynamic pruning threshold
for the same example utterance as Figure 4.8 on page 75 using ACD pruning technique.

number of active hypotheses framewise at different score distances from the x-axis.
As a result the number of active hypotheses can be reduced dramatically as shown
in Figure 4.9 in comparison with Figure 4.8, which means the ASR can be speeded
up and on the other hand, enormous memory savings can be realized.

4.3.3 Comparison Results

The goal of the experiments presented in this section was to compare the CGD
and ACD pruning techniques. For this purpose several tests were performed on
the Verbmobil '96 test data (see Section 3.7.2 on page 53) using different pruning
techniques. The results are presented in Figure 4.10 on page 77 and in Table 4.2
on page 78. The investigation was focused on the comparison between the CGD
pruning technique and the adaptive control approach, however, Figure 4.10 allows
comparison of results of the following pruning methods (similarly to Section 4.2):

e probability-based (PB) beam width pruning is the classical approach setting
the beam width of the Viterbi search based on best hypothesis score and a
specific threshold

e probability based rank (PBR) pruning limits the maximum number of active
hypotheses, such as histogram rank pruning, in combination width PB pruning

e confidence-guided dynamic (CGD) pruning computed based on Equation 4.10
e adaptive control dynamic (ACD) pruning applied as described in Section 4.3.1

As far as the results of the PB pruning technique are concerned, the curve in
Figure 4.10 was determined by computing the WER for the evaluation corpus using
different pruning values B¢ in a range of [80-250]. The greater pruning threshold
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Figure 4.10: Word error rates (WERs) of different pruning techniques, classical, adap-
tive and confidence-guided dynamic pruning, depending on time factor! (see page 71):
probability-based (PB) beam width, probability-based rank (PBR), adaptive control
dynamic (ACD), and confidence-guided dynamic (CGD) pruning.

value has a lower WER but a higher time factor. The combination of probability-
based and rank pruning PBR was evaluated by keeping Bse: at 210 and varying Nge;
in the range of [500-9000]. Regarding the dynamic approaches, the resulting WER
curve of the CGD pruning method was found using T,, = 110 and different 7},
in a range of [20-70]. In order to obtain results for the ACD pruning method, Ngg
was varied in the range of [300-10000].

Figure 4.10 shows that both dynamic pruning techniques outperform the static
methods significantly. The time factor of the ASR could be decreased to 0.23 without
increasing WER by using CGD or ACD pruning. Furthermore if an increase in WER
of less than 1% is acceptable, ACD pruning achieves a time factor of 0.1 which
corresponds to the acceleration of the ASR by 10 times (reciprocal time factor). Or,
compared with the best PB pruning result, ACD pruning makes the ASR 1.9 times
faster. The best result was achieved by the CGD pruning approach, namely a time
factor of 0.07 which corresponds to ASR acceleration of about 14 times, or 2.7 times
compared with the best PB pruning result. Further details of the evaluation tests
are shown in Table 4.2 on page 78.

One question remained: how is it possible to achieve better results using ACD
pruning technique with the preset value of Ng; = 3000 than with the classical rank-
based approach with Ng; = 20007 The explanation is that ACD pruning controls
the beam width of the search process to avoid exceeding the maximum number of
active hypotheses for each time frame. In contrast, the rank-based pruning needs two
passes: first the Viterbi search step is performed and only afterward is the number
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Pruning method; parameters WER [%] Time factor

PB; Bget = 250 33.63 0.43

PB; Bget = 150 34.40 0.19

PBR; Bser = 210, Nger = 9000 33.63 0.32
PBR; Bger = 210, Ny = 2000 34.37 0.20
ACD; Nyt = 8000 33.63 0.23
ACD; Nyt = 3000 34.44 0.10
CGD; Typp = 110, Tjp0y = 40 33.63 0.23
CGD; Typp = 110, T}y = 70 34.43 0.07

Table 4.2: Word error rates (WERs) and the corresponding time factors! (see page 71)
of ACD and CGD pruning techniques in comparison with different classical pruning
methods.

of the active hypotheses reduced to the preset value for the next search step. As
a result ACD pruning indeed achieves an average Nge: of 3000, but the ASR using
the classical rank-based pruning approach often has to handle 3 or 4 times more
hypotheses, which leads to increased computation time effort.

4.4 Summary

The comparison of the two dynamic pruning methods CGD and ACD pruning has
shown that both of them are applicable to reduce the computation time of the
speech recognizer. CGD as well as ACD pruning approaches perform significantly
better than classical pruning techniques. As a result, a significant improvement
in decoding speed of the ASR system could be achieved. The best results of the
confidence-guided dynamic pruning approach outperforms not only classical pruning
techniques but also ACD pruning.
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Chapter 5

Human-Machine Dialog Control

Previous chapters of this work deal with ASR core technology and different confi-
dence measurement techniques which are implemented at the core level of speech
recognition, providing an assessment of the confidence of recognition results. This
chapter’s focus is to show how confidence measures can be utilized at the dialog
level in speech-based human-machine interaction. The realization of appropriate
dialog control strategies is quite a current topic within many industrial branches
across the field of voice-enabled applications. On the other hand, dialog control ap-
proaches are well connected to the field of confidence measurement; therefore, this
work could not be considered complete without discussing current strategies and
implementation techniques.

The course of interaction in speech-based communication between human and
machine needs to be steered — sometimes in a more restricted manner, sometimes
less formal, depending on the capabilities of the specific voice application and on
the experiences of the target user group. In this context, steering means making
decisions regarding the instantaneous dialog flow, i.e. processing or skipping dialog
states or entire branches, based on information collected over the course of the dialog
so far. The quality of steering, on the other hand, depends heavily on the correctness
and reliability of ASR results. In most cases confidence scores serve as the basis for
decisionmaking but the questions are always: 1) how reliable confidence scores really
are in certain situations and 2) which additional knowledge sources could be used
in order to improve reliability of decisions at dialog level.

To start with, let us take a closer look at two main levels of the decision hierarchy
of speech-based applications which merit consideration in the context of this chapter:

o At the state level of dialogs, decisions regarding acceptance or rejection of

particular recognition results are made based on a specific confidence thresh-
old and on confidence scores of hypotheses provided directly by the speech
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recognizer. In this case local decisions are needed in order to control reprompt
strategies, always with the goal of gathering from the user exactly the infor-
mation for which the dialog state was designed.

e At the application level, the entire dialog flow and its history must be con-
sidered. The main intelligence of the application is implemented at this level,
providing global decisions from the application’s point of view. For example, in
case of repeatedly poor ASR results or too many questions at the state level,
the best global decision may be to surrender the conversation to a human
operator rather than frustrating users by causing misunderstandings.

In this chapter the primary elements of user interaction are outlined together with
their underlying dialog architectures. Possible pitfalls to speech-based interaction
are pointed out and classified. The major goal of this chapter is to describe the use
of confidence measurement in the field of dialog control. Instead of focusing on par-
ticular applications, the chapter deals with global concepts and problem definitions
which emerged from the author’s research activities and industrial experiences in
human-machine speech communication over the past decade.

5.1 Speech-Based Interaction

The section provides a general discussion of the fundamentals of human-machine
interaction in voice enabled applications. Figure 5.1 on page 81 shows a schematic
overview of dialog control architecture exemplarily with its main modules and their
communication channels. Here, each module is described briefly according to its role
in supporting interactive speech-based communication.

Dialog Manager (DM)

DM is the main controller and processing unit. It synchronizes all resources of the
underlying interactive voice response (IVR) framework and connects several knowl-
edge source, e.g. databases. It makes real-time decisions on the basis of available
outcomes of the dialog history, e.g. content of ASR results and their confidence
scores.

Application Library (AL)

AL consists of different dialog flow descriptions. In each application description
the main intelligence of the dialog is implemented with the aid of a specific dialog
description language, e.g. standard VoiceXML. To interact with the user, the dialog
manager executes the application description according to user inputs.

Automatic Speech Recognition (ASR)
The ASR module can generate simply-recognized phrases but can also contain nat-
ural language understanding (NLU) units in order to produce semantic concepts
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Figure 5.1: Schematic view of an example dialog management architecture with its
main modules and their interaction connections. These main modules are Dialog Man-
ager, Text-To-Speech (TTS) module, Application Library (AL), Search Engine (SE)
connected to several databases (DBs), Automatic Speech Recognition (ASR) module,
Grammar Manager (GM) with Grammar Library (GL).

that interpret the essence of the user’s utterance. Results at concept level are then
used by the dialog manager for making decisions independently of the exact wording
provided by the user. NLU allows robust application design since mapping between
concept hypotheses and their possible wording variants is made by appropriate gram-
mars used for ASR.

Grammar Manager (GM)

The GM supplies the dialog with grammars (language models) held in the grammar
library (GL) which are suited to the application-specific speech recognition tasks.
Regarding their generation phase, grammars can be static or dynamic. A static
grammar is prepared entirely during the set up phase of the application because
its content is independent of the exact dialog flow. Dynamic grammars, on the
other hand, cannot be generated until all information needed for their composition
is provided by the application; the content of a dynamic grammar depends partly or
entirely on information gathered during the dialog. Example grammars which are
defined by standard formats (see W3C-Grammar, 2004) are shown in Appendix B
on page 105.

Search Engine (SE)
The search engine is responsible for complex search processes in voice search ap-
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plications, especially in the field of automated management of bank accounts, or
directory assistance systems dealing with huge amounts of information stored in
databases (DBs). Such dialogs need reliable data management mechanisms in order
to make necessary information available to the dialog manager without any delays
caused by the search process.

Text-To-Speech (TTS)

The TTS module is responsible for transforming textual information produced by
the application into a speech signal which can be provided to the user as part of the
human-machine interaction. Speech generated by the application is often a mixture
of prerecorded audio files containing human voices and audio data provided by the
TTS module on a real-time basis.

The bidirectional audio link between user and application, i.e. the voice channel,
is omitted in Figure 5.1 in order to maintain clarity by focusing on those modules
which are relevant to this work. The voice channel, e.g. telephone line, is respon-
sible for the physical transfer of all acoustic information needed for communication
between user and IVR platform. Nowadays, there is an increasing tendency to-
ward replacement of classical telephone lines, analog or digital, with Internet-based
technology known as voice over IP (VoIP).

Automatic speech detection is also an important module whose reliability greatly
influences recognition accuracy as well as CM quality. Speech detection is usually
performed by the voice activity detector (VAD), which is part of the ASR system
but often independent from the speech recognition engine itself. Speech decoding is
performed only on those audio data which the VAD considers to be speech. Under
certain circumstances the VAD may fail and the decoder runs mistakenly on non-
speech audio data. This occurs most typically in noisy environments or on low
quality transmission channels if the user does not say anything but the level of
spurious sounds triggers the VAD. As a consequence, the audio data provided for
speech decoding by mistake can be interpreted as speech and result in production
of false hypotheses. In such cases the hypothesis confidence score should allow
detection of speech recognition failure afterwards in order to provide efficient error
recovery in dialog management.

The dialog management framework described above based on Figure 5.1 allows
speech-based human-machine interaction by interworking of all needed resources.
The dialog manager reserves all necessary resources, e.g. ASR or T'TS, for a specific
application, which is selected from the application library, before communication
between human and machine can start. Generally the application starts with a
welcome prompt in order indicate its presence to the user, followed by the initial
question. Throughout the dialog, the user’s answers are recognized by the ASR
module and necessary data sources are used to reach the goal of the application,
e.g. to manage the user’s bank account successfully. The following sections describe
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additional details of this communication process together with the efficient use of
confidence measurement techniques.

5.2 “Sorry, I Still Didn’t Catch That”

There are several potential failure sources which may decrease the quality of user
interaction in such a highly complex framework as that shown in Figure 5.1. The
classification of failure causes provided in this section focuses on problems which
may occur during user interaction and which lead to deviation from the optimal
dialog flow. Problems are elucidated from the perspective of inadequate interplay
between application logic and user behavior.

In order to point out problems in speech-based applications in practice, possi-
ble failure sources are examined on the basis of sample dialogs from the field of
telephone-based voice search applications, i.e. a user query for a specific telephone
number. In the first example, the dialog system interprets user utterances through
natural language understanding (NLU) and reacts appropriately as shown in a short
dialog example below.

Dialog A:

System: This is an automated inquiry service. How can I help you?

User: I need the telephone number for Technische Universitat Miinchen.
System:  Are you looking for Technische Universitdt Miinchen in Miinchen?
User: Yes.

System: The number is ... Thanks for calling, good bye.

This is an ideal case of natural user interaction and it may work only for specific
tasks, e.g. if the NLU grammar contains only a limited number of variants for certain
semantic units, but it probably does not work for huge amounts of data handled by
voice-enabled systems. In practice, the dialog flow for the same query as above is
rather feasible as the next example shows.

Dialog B:

System: This is an automated inquiry service. Please, say the city.
User: Miinchen.

System: I've got Miinchen, is that the right city?

User: Yes.
System: Which listing?
User: Technische Universitat Munchen.
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System:  Are you looking for Technische Universitat Miinchen in Miinchen?
User: Yes.
System: The number is ... Thanks for calling, good bye.

A directory assistance system which handles users’ inquiries in similar fashion to
Dialog B above is presented in detail in Yu et al. (2007). As stated in Yu et al.
(2007) a relatively large proportion of dialog failures is caused by the underlying
ASR system. Requirements for ASR systems depend highly on dialog strategies
used in a certain application; here, ASR accuracy is influenced especially strongly
by the degree of naturalness allowed for user utterances. In the ideal case, from
the user’s point of view, the user is allowed to communicate with the application
by means of a dialog just as humans naturally interact, as Dialog A shows above
exemplarily.

The decision about acceptance or rejection of a specific ASR result is made based
on its confidence score and on a certain confidence threshold. For practical reasons,
industrial automated speech recognition systems provide confidence scores in a fixed
value range, e.g. [0, 100] where the score 100 stands for highest hypothesis confidence.
Depending on the hypothesis score, speech applications decide whether ASR results
can be used as valid user input or not by means of predefined thresholds. In Dia-
log A above, which allows NLU, the semantic confidence scores of concepts in the
user utterance "I need the telephone number for Technische Universitat Minchen.”
must be very high since no further confirmation step is performed. Obviously, the
application considers the user’s utterance as recognized with certainty.

In contrast, Dialog B shows a confirmation step of the user input ”Minchen.”.
Confirmations in general are intended to increase certainty in processing user inputs.
In a dual-threshold strategy, for example, three decision results are possible depend-
ing on two different confidence thresholds: the confirmation threshold T, (the upper
confidence threshold) and the rejection threshold T, (the lower threshold), where
T. > T,. Based on these confidence thresholds, possible decision results can be:

e if the hypothesis confidence score is above T, the user input is accepted with-
out any further confirmation since recognition result is considered to be con-
fident

e if the confidence score falls below the confirmation threshold T, but above the
rejection threshold 7)., the decision is that further confirmation of user input
is needed, e.g. reprompting; and finally

e if the hypothesis score falls below T;., the user input is rejected, i.e. not under-
stood

At first glance, when the two example call flows Dialog A and Dialog B are compared,
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it is readily apparent that the second dialog takes much longer than the first NLU
dialog. This is because in the second case the application asks the user separately
for all attributes needed for DB search. In spite of the obvious loss of naturalness of
the underlying dialog design, the second dialog is a more realistic implementation
due to existing limitations in current ASR technology. The explanation is that per-
formance of CM depends significantly on vocabulary size or grammar complexity.
In the example above, all German cities need to be recognized and so the vocabu-
lary must contain several tens of thousands of entries which are often quite similar.
The successful management of this recognition task and the generation of reliable
confidence score is a demanding requirement for state-of-the-art ASR technology.
Dialog A on page 83, however, combines this requirement with recognition of Ger-
man cities embedded in arbitrary, natural formulations by the user. In this case
confidence score must be computed at a higher level, i.e. for the semantic concept of
the city. The resulting CM quality of such complex recognition tasks, however, often
leaves a lot to be desired. It is also a more realistic scenario that such a conversation
contains confirmation steps in case the application is not sure of the exact content
of the user utterance.

The accuracy of confidence-based decisions depends not only on the use of appro-
priate confidence thresholds but also on the reliability of the hypothesis confidence
score itself. The quality of confidence scores, on the other hand, is highly affected by
the content of ASR grammars which are used for the recognition tasks. Especially
the degree of coverage of possible user inputs is an important requirement for the
construction of adequate grammars. The following dialog example shows failures
in human-machine user interaction which can be avoided by the use of appropriate
grammars:

Dialog C:

System: This is an automated inquiry service. Please say the city.
User: Miinchen.

System: Did you say Miinster?

User: No, Miinchen.

System: Sorry, I didn’t catch that. Please say yes or no.

User: No.

System: Please, say the city again.

User: Miinchen.

System: I’ve got Miinchen, is that the right city?

User: Correct.
System: Sorry, I didn’t catch that. Is Miinchen the right city?
User: Yeah.

85



CHAPTER 5. HUMAN-MACHINE DIALOG CONTROL

System: Sorry, I still didn’t catch that.
It seems that we have some technical difficulties.

Please, try again later. Good bye.

Failures in the example interaction above are due to missing formulation variants
of user inputs in the grammar such as for the speech input ”"No, Miinchen.”, where
user voluntarily provides the right city again but the system is not able to handle
this complex answer by design. Similarly, the grammar may not contain the words
correct or yeah if the system expects only yes/no as user answers to the confirma-
tion question. Nevertheless, from the application’s point of view, the dialog flow
is handled correctly since the application detects bad recognition results of unex-
pected phrases correctly on the basis of appropriate confidence thresholds. It avoids
continued work on misunderstood recognition results. Grammars need to consider
out-of-vocabulary (OOV) and out-of-grammar (OOG) rates, pronunciation variants,
misspellings, hesitations by design.

5.3 Importance of Confidence Measurement

By taking all aspects and levels of human-machine speech interaction into account
the quality of confidence measurement directly involves the following items:

e dialog design to meet application target

e user acceptance

e error recovery strategies

e grammars used for recognition tasks, OOV, OOG rates

Speech dialogs should always be designed to meet the target of the application us-
ing all necessary resources of interaction with the user, especially appropriate CM
for dialog flow control. Hypothesis confidence score generated in the ASR module
depends heavily on grammar content, i.e. on grammar size and on the complexity of
wordings users are allowed to utter. Especially in voice search applications, grammar
size is often the limiting factor in reaching high quality and reliability. Therefore,
effective reduction in grammar size is always a topical issue in practice. Error re-
covery strategies, such as asking the user again for specific information that is still
missing, providing help information and reprompting, or passing the conversation
along to a human operator in a timely manner, are triggered by confidence thresh-
olds. The more reliably speech applications serve users’ needs, the more they are
accepted by the users. Unnecessary confirmation steps as well as misunderstandings
during dialog are leading cause of user frustration.
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Several papers have been published on the evaluation of different dialog manage-
ment strategies. Moller et al. (2007), for example, distinguish between five failure
categories depending on the level in the hierarchy of information processing, namely
a) goal-level error, b) task-level error, ¢) command-level error, d) concept-level error
and e) recognition-level error. All these categories describe mismatching of user
expectations and system capabilities at different levels of data processing caused by
insufficient application design.

Confidence thresholds for decisionmaking must always be determined empirically
in expensive evaluation phases using appropriate test sets. Colibro et al. (2005) pro-
pose a method which is intended to reduce dependency of confidence thresholds
on different languages, grammars and vocabularies. If application developers are al-
lowed to use universally valid thresholds for different applications, they can save cost
intensive evaluation phases by expecting comparable accuracy in rejection rates. The
CM approach presented in Colibro et al. (2005), called normalized differential con-
fidence measure (Cypc), is based on posterior probability computation on acoustic
state level. Bohus & Rudnicky (2005) present a data-driven approach for deter-
mining the relative costs of errors, e.g. misunderstandings and false rejections, and
use these costs to optimize rejection thresholds for spoken dialog systems. In other
words, the method presented in Bohus & Rudnicky (2005) determine the optimal
rejection threshold for a given trade-off between false rejection and false acceptance
automatically on evaluation data collected from live applications.

Several CM strategies have also been devised: Cavedon et al. (2005), for ex-
ample, combine confidence scores with contextual features of multiple sources to
rate possible dialog handling strategies. Confidence scores are generated during de-
coding by ASR or natural language parser as semantic confidence. San-Segundo
et al. (2001) show that predictor features for CM derived from language models
perform significantly better in spoken dialog systems than decoder-based acoustic
features. Li & Huerta (2007) propose a technique which allows confidence predic-
tion to improve early decisions for adequate dialog strategies based on knowledge
of context-dependent confidences associated with previous turns in a dialog. Li &
Huerta (2007) compare several methods along this context, for example, direct lin-
ear prediction, histogram based linear prediction or maximum entropy model based
classification. The first method predicts confidence scores for a specific context as
the linear combination of the past observed confidence scores and discrete events,
computed as follows:

Cr=> aniaXit+ > aniyY;+ By, (5.1)
i J

where X denotes the sequence of discrete events, e.g. rejection or no input; Y stands
for a sequence of confidence scores and «, and 3 are prediction coefficients. The use
of Equation 5.1 allows continuous prediction of confidence depending on time t as
the dialog evolves in real time. Using confidence prediction it is possible to monitor
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system performance automatically and intervene in time if predicted outputs do not
meet expectations.

As stated earlier in Section 3.6.3 on page 51, unsupervised adaptation is available
with the aid of appropriate CMs in order to improve quality in modeling speech
characteristics for specific tasks. This feature is already available in practice and
there are speech applications that utilize unsupervised adaptation. However, this
feature holds a major risk for real applications because if automatic (unsupervised)
adaptation is activated, considerable degradation in ASR performance cannot be
ruled out and the application may become hampered by serious usability problems.

5.3.1 Approaches to Dialog Flow Control

The degree of confidence of applications toward ASR results also depends on voice
user interface (VUI) design, which is responsible for defining roles of interaction and
hence which dialog situations are expected and allowed. When confronted with un-
expected user behavior, the application cannot handle it adequately. The repertoire
of VUI design is growing continuously with the development of underlying technical
possibilities and is slowly converging to support human-like interaction. As already
stated in the introduction to this work in Chapter 1, marginal conditions of the ap-
plication’s area of operation are to be clarified during the dialog design phase. The
entire scope of the application is to be covered with an appropriate dialog structure
in order to provide access to all necessary user tasks via the speech interface.

The degree of naturalness, for example, is a very important design aspect because
user acceptance and ergonomics demand as much naturalness as possible in order to
approach dialogs that approximate human interaction. On the other hand, however,
current ASR technology does not allow the use of natural language understanding in
every situation of human-machine interaction. Expectations for naturalness are also
highly dependent on the application’s user group and on user age and experience.
Inexperienced users require guidance through the application, with only a restricted
set of input possibilities allowed in order to avoid confusion. Mized initiative dialog
forms are able to fulfill expectations of both experienced and inexperienced users
by providing more flexibility in permissible user inputs. Mixed initiative dialogs
expect both complex and simple user inputs. In the case of simple user utterances,
the dialog asks for further details which are still missing in the user’s input but are
necessary for the application to process the dialog. Experienced users, on the other
hand, are allowed to phrase all necessary information in one complex utterance.

Generally speaking, humans are not necessarily keen on communicating with
machines; therefore, in order to avoid frustrating user experiences and to maintain
the focus on the application target, the dialogs for specific tasks should never be
prolonged. Confirmation steps are also needed for robustness and error handling, but
it must always be carefully considered which type of confirmation is best suited to the
specific task. Implicit confirmation, for example, allows a more natural dialog flow
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but is not as robust as its counterpart, explicit confirmation, which only allows much
more limited possibilities in users’ answers. An example of explicit confirmation is
shown in Dialog B on page 83, where the system explicitly requests the user to
confirm the city with yes or no. If the user confirms with yes, the dialog has a solid
basis for further data processing since it can be quite certain in confidence scores
produced for a very small yes/no vocabulary. Implicit confirmation, on the other
hand, echoes back the information recognized in the previous ASR task without
requesting any confirmation from the user. Implicit confirmation would be more
challenging as shown in the following example subdialogs.

Dialog D:

System: This is an automated inquiry service. Please, say the city.
User: Miinchen.
System: I've got Miinchen, which listing?

User: Technische Universitat Minchen.

The next subdialog shows an other example of implicit confirmation for the case if
the system failed to recognize the right city.

Dialog E:

System: This is an automated inquiry service. Please, say the city.
User: Miinchen.

System: I’'ve got Miinster, which listing?

User: No, I said Miinchen.

Although implicit confirmation does not request the user to confirm explicitly, it
must allow negative user answers in case of failures. The examples above, Dialog D
and Dialog E, show one positive and one negative user answer implied by good
and bad system results. Good VUI design can handle both cases with the use of
appropriate grammars. In comparison with explicit confirmation, however, it is
clear that ASR tasks on phrases which are strictly limited to yes or no produce
much more reliable confidence scores than complex ASR tasks performed in case of
implicit confirmation.

5.3.2 The Use of Additional Knowledge Sources

It is a well known fact that hypothesis accuracy and CM quality are highly influenced
by grammar size used for recognition tasks. The smaller the grammar, the better
the quality of ASR results that can usually be achieved. Therefore dialog design,
especially in voice search applications, focuses on the use of additional knowledge
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sources in order to reduce grammar size whenever possible. In voice search applica-
tions, e.g. directory assistance, it is possible to combine confidence scores, which are
computed in the ASR module, with additional knowledge sources such as the result
of the database search.

Depending on the way information is extracted from the database, it can be
used to reduce grammar complexity. To describe this technique, an example voice
search application is shown in Figure 5.2 on page 91. The dialog shown there asks
for search attributes separately, as ”Please, say the city.” or ”Which listing?”. As
shown in Figure 5.2 after the recognition of the first attribute, the city is used to
narrow down the number of possible listings the user may ask for which can only be
found in that unique city. Otherwise, similar to Dialog A on page 83, the ASR must
be able to recognize all possible listings in the entire country, i.e. several million. As
far as the quality of grammars is concerned in the field of voice search applications,
it is a matter of great importance to preprocess database content prior to using
them for grammars. This is because the textual representations are not optimized
for speech recognition but contain, for example, spelling errors or context dependent
abbreviations (see Yu et al., 2007). Correctness at grammar level is essential to good
results in speech recognition and confidence score computation.

A common technique in the field of voice search applications is to incorporate
search results directly into speech recognition of the user utterance formerly recorded
in previous recognition steps. This is called rerecognition and is performed in the
background by IVR systems without involving the user. State-of-the-art IVR tech-
nology is able to perform multiple recognition and search tasks without any notice-
able delays in interaction with the user. The main advantage of rerecognition is
to reduce the size of ASR grammars. This is possible by incorporating database
content through dynamic grammar generation for a specific recognition task while
using ASR results hypothesized in previous recognition steps. Figure 5.2 on page 91
shows that after listings are found in the database, new grammars are generated
and an additional rerecognition step is performed using that grammar. Changes in
grammar content can be more variants in wording for specific listings or detecting
OOV with much higher reliability which was not possible in the previous recognition
step because of much higher grammar complexity. Through the technique of rere-
cognition, the size of the grammar can be reduced efficiently and the consequence
is significant improvement in recognition accuracy and in reliability of hypothesis
confidence score.

Parallel data processing is another field of combining multiple knowledge sources
in order to improve CM quality. A technique which makes use of parallel compu-
tation of confidence scores is presented in Lopez & Mateo (2005). Each recognition
task is responsible for a particular topic in the dialog and the confidence scores gen-
erated by those recognition tasks are derived from low-level knowledge sources such
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VUI ASR GM /Search
Recognition [city grammar]
. GL
city
DB

User Input Recognition = [listing grammar] Grammar

listing listing Generation

Rerecognition [listing wordings] = Grammar
listing Generation
DB
User Input Recognition = [yes/no grammar] o
confirmation confirmation

Figure 5.2: Block diagram of an example voice search application with different levels
of data processing: voice user interface (VUI), automatic speech recognition (ASR),
grammar management (GM) and search level. VUI is the level of user interaction and
speech recognition of user utterances is carried out in the ASR level. Appropriate static
grammars for ASR tasks, e.g. city grammar or yes/no grammar, are provided by the
grammar library (GL). Dynamic grammars, on the other hand, such as listing grammar
or listing wordings, are generated in real time based on ASR results hypothesized in
previous recognition steps and database (DB) search results. Rerecognition of listings at
the ASR level is performed on recorded user input using alternative wordings provided
in a (usually) small dynamic grammar (of listing wordings).
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as acoustic and linguistic information. Confidence scores of each recognition task
are then merged by a neural network classifier, i.e. multi-layer perceptron, to deter-
mine a global decision of rejection or acceptance for the dialog manager. Similarly,
Vanhoucke (2005) presents an approach of confidence-based decision using multiple
speech recognizers in a multi-pass framework where a combined confidence score is
computed by incorporating results of the second pass of the decoding together with
a set of features derived from the first pass. The final hypothesis confidence score is
determined by the combined output of two recognizers based on a set of penalties
e.g. on the semantic agreement between the two passes.

Several open issues need to be solved in order to enhance the ergonomics and
quality of voice-enabled interactive dialogs. Future speech applications should react
to users more appropriately by detecting communication failure as soon as it occurs
and by using more sophisticated error recovery strategies. Machines should be able
to manage dialogs by incorporating several nuances of communication with users,
e.g. the user’s age or current mood. Those nuances should determine the persona
used by the application, which should adopt patterns of behavior appropriate to
the current user requirements. Users, on the other hand, also need to adapt their
expectations of machines’ real capabilities. Excessive user expectations invariable
lead to high failure rates and a frustrating user experience.
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Chapter 6

Conclusion and Outlook

The main goal of the dissertation was to demonstrate how important reliable con-
fidence measurement (CM) techniques are to modern speech-based human-machine
communication in general. Beginning with basic computational aspects and clas-
sification details at the core level of automatic speech recognition (ASR), several
utilization techniques of CM were outlined in order to enhance ASR computation
approaches and also to apply CM to higher level dialog control strategies. The thesis
focused on the description of CM techniques in the field of HMM-based automatic
speech recognition. Widely-implemented and well-proven CM approaches were pre-
sented and it was shown how they can be used successfully for speech applications in
practice. The dissertation presented a survey of the abundant literature on different
CM techniques which were developed through extensive research activities during
recent decades.

This work classified known CM techniques from different points of view, i.e. based
on the speech units to which CMs are applied, on the underlying computation meth-
ods and with respect to fields of utilization in speech applications. Underlying
computation methods of confidence predictor features were categorized based on
acoustic and/or language model information collected during decoding. The usage
of confidence predictor features was also shown by merging a certain combination
of predictor features into a single probabilistic confidence score via neural networks
in order to be able to make a unique confidence decision. Several CM utilization
techniques were described in the fields of hypothesis rescoring and pruning during
Viterbi search, rejection techniques, adaptation methods and dialog management
strategies. As a conclusion it can be stated that CM performance of merged pre-
dictor features can be improved only when combined features are statistically inde-
pendent. Overlap between features is often quite large; therefore, the resulting CM
quality is predominantly determined by the performance of the best feature.

Due to its outstanding performance as confidence measure, a more comprehensive
description of the computation details of the hypothesis posterior probability was
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provided. Methods were described which are performed during decoding and as a
post-processing step on word graphs. To sum up evaluation results for this area, it
seems that as far as the computation of CM on the acoustic level is concerned, best
performance is already achieved using posterior probability directly as a measure of
hypothesis confidence. Improved quality can be achieved by taking time alignment
information of the word graph into account. Significant further improvement in CM
can be achieved only through use of additional knowledge sources, e.g. semantic
information at a higher level of language understanding.

The major goal of the confidence-guided (CG) pruning technique, which was
developed in the scope of this work, is the utilization of confidence measurement
during the search process. The normalized log likelihood (NLL) scores of active hy-
potheses were found to be a good measure of confidence which is computed at each
time frame in real time to serve as the basis for pruning decision. The NLL score of
the best hypothesis is used together with an appropriate constant threshold to define
the beam width of the Viterbi search in the NLL space. In this process, the main
challenge is efficient estimation of observation probability, the normalization term
in the NLL formula. This is because HMM-based speech recognition environments
usually do not have any applicable models for direct estimation of the observation
probability. To solve this problem, a catch-all model was generated from the en-
tire set of acoustic models of reduced size using an iterative bottom-up clustering
process. It was shown that CG pruning achieves significantly better results than
classical pruning techniques. The time consumption of the recognizer was decreased
significantly without loss in speech recognition accuracy. Such improved efficiency
in speech decoding is generally important for embedded recognizers with limited
memory capacity and CPU power.

In addition to CG pruning with constant pruning threshold, a dynamic variant
(CGD pruning) was also presented in this work. CGD pruning makes use of a
dynamic threshold computed by taking the course of best hypothesis confidence
into consideration. That way the pruning threshold is decreased in case of high
confidence, i.e. high NLL score of the best hypothesis, and increased in case of
low confidence for each time frame. It was shown that this dynamic approach
achieves further improvement in pruning performance compared to CG pruning. In
comparison with an alternative pruning technique, which uses approaches of the field
of adaptive control, CGD pruning again shows better results. Above all, it provides
more stability in steering the dynamic course of the pruning threshold, especially
at the beginning of the utterance where the adaptive control approach is negatively
affected by transient oscillations.

Utilization of confidence measures at the dialog level was also demonstrated on
global concepts of dialog management with its underlying architectures in speech-
based human-machine interaction. The thesis discussed current strategies and im-
plementation techniques for the use of CM in live operational environments. Possi-
ble sources of problems in speech-based interaction were pointed out and classified.
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It was shown that the degree of naturalness is a highly important design aspect
for speech applications because user acceptance and ergonomics demand as much
naturalness as possible in order to approach dialogs resembling those of human in-
teractions. Especially in the field of application development, CM techniques play a
principal role and hold vast potential for future improvements, in particular at higher
levels of speech processing, i.e. as reliable semantic confidence scores. Improvements
in error recovery of interactive voice-enabled applications could be achieved by incor-
porating reliable prediction features of the user’s emotion/mood during the dialog.
If it detects a bad mood or anger, the machine could pass the conversation along to
a human operator in time to ameliorate bad user experience.

Success and acceptance of voice-enabled applications also depend on user ex-
pectations. Both sides, voice interface design and users, are currently standing at
the beginning of a learning curve. Speech applications definitely require significant
improvements but users on the other hand also need to learn what they can re-
alistically expect from a specific application. If users’ expectations are too high,
communication failures or misunderstandings are practically inevitable.

In recent years, tremendous strides have been made in further increasing the
performance of computers. There is a clear tendency to build standard computers
with multiple CPU cores and huge amounts of memory, which means that enhanced
computer architecture is becoming common in the short term. This fact also intro-
duces new possibilities in the field of speech recognition, especially its utilization in
practice. One needs to think differently in order to take full advantage of all the
possibilities provided by parallel CPU architectures. But I am sure that simultane-
ous recognition tasks will become standard practice in order to realize many new
ideas dealing with multiple knowledge sources processed in parallel, whose multiple
results are then merged in a final computation step. Especially in the field of con-
fidence measurement, novel ideas that were heretofore inconceivable due to lack of
practicable computer architecture will become feasible to further the advancement
along the long road of speech recognition development. Due to their importance for
speech applications, I expect that CM techniques will remain one of the focuses of
future research activities in spite of the remarkable improvements already achieved
in the quality and applicability in estimation of reliable confidence measures for
human-machine communication.
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Appendix A

The ROC Curve

Receiver Operating Characteristic or simple ROC' curves were developed originally
as a byproduct of research in the field of radio signals in the 1950’s. They are, how-
ever, remarkably useful in any kind of decisionmaking and also in ASR systems. In
the field of speech recognition ROC curves are widely used to plot error rates against
each other in order to find appropriate confidence thresholds for the classification of
the recognition result.

Once the recognition of a speech utterance is completed, the next important task
is to make a decision about its correctness compared with the content of the speech
input. In practice, the speech content is unknown and therefore the decision about
the correctness of the ASR result can only be made based on its confidence score and
on a specific confidence threshold. If the confidence score falls below the threshold,
the recognition result is considered as incorrectly recognized (rejected); otherwise as
correctly recognized (accepted). This simple decision rule can lead to four possible
cases which take the correctness of the decision itself into consideration as shown in
Table A.1:

e Correct rejection (CR) refers ASR Result Incorrect Correct
to the case if the recognition
result is rejected because its Rejected CR FR
confidence score falls below
the threshold and the recog- Accepted FA CA
nition result is also different

from the speech input. Table A.1: Confusion matrix of decision made

o o by confidence threshold (rejected/accepted)
e Fulse rejection (FR) signifies,  against recognition status (incorrect/correct).
in contrast to CR, the incor-

rect decision about the rejec-
tion of the recognition result even though it is consistent with the speech input.
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Figure A.1: Distribution of correct and incorrect ASR results depending on their con-
fidence scores modeled by Gaussian distribution functions. The vertical lines 77 and
T> mark confidence threshold examples. The colored areas CR, FR, FA and CA of
the confusion matrix in Table A.1 are also shown for these two examples of different
confidence thresholds.

e False acceptance (FA) means that the recognition result is accepted because its
confidence score meets or exceeds the threshold, even though the ASR result
and the speech input do not match.

e Correct acceptance (CA) signifies, in contrast to FA, the correct decision for
the acceptance of the recognition result which is also consistent with the speech
input.

These four possible cases are pictured in greater detail in Figure A.1. For these
plots the assumption was made that the distribution of confidence scores which can
be described with Gaussian distribution functions for both correct and incorrect
recognition results. The Gaussians have their mean values at different confidence
scores 11 and peo, and they also have different deviations. Correct recognition results
have a higher mean confidence score than incorrect results.

The vertical lines 77 and T, are examples of possible confidence thresholds.
The ratio between the areas CR, CA, FR and FA varies with the position of 7' on
the x-axis. The overlap between the distributions consists of false rejected (FR)
and false accepted (FA) regions. These regions correspond to those recognition
results for which the confidence threshold is not appropriate for decisionmaking and
would therefore lead to misclassifications. In other words, the overlap between the
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distribution curves makes a clear classification of the recognition results as accepted
or rejected impossible at a specific confidence threshold T

In Figure A.1 T is located exactly midway between the mean values p; and puo.
As aresult, mistakes in deciding correctness of the recognition result, FR and FA, are
almost the same as for the example distribution functions; but only approximately
so due to the different deviations of the distribution functions. The case FA Rate =
FR Rate is often referred to as equal error rate (EER).

T5 however, marks a higher confidence threshold than 77 and it allows less recog-
nition results to be accepted in general; this means lower CA and FA rates. As a
result this stricter decision rule reduces the error rate in accepting incorrect results
(FA) but on the other hand it improves the rate of decision failures in rejecting
correct results (FR).

Answering the question “Which confidence threshold fits a specific speech appli-
cation best?” is always about finding the appropriate trade-off between FR and FA
depending on operational requirements:

e Robustness against a noisy environment, for example, is very important if
the speech application operates in the telecommunication sector dealing with
mobile calls.

e Security aspects have high priority for dialogs that manage bank or stock
accounts.

o Voice user interface generally has the primary goal of achieving the highest
possible user acceptance in human-machine interaction.

These requirements often lead to stricter decision rules and as a consequence, to
higher confidence thresholds in order to avoid any misunderstanding during the
dialog or to prevent a negative outcome. The ROC curve is a very useful instrument
for finding the best solution for such operational requirements. There are two types
of ROC curves which are widely used:

e Plot of a detection rate against an error rate; in other words, in the context
of confidence decision in speech recognition, the plot of CA, on the y-axis,
against FA, on the x-axis, or analogously the plot of CR against FR.

e Plot of one error rate against another error rate which is also called a detection
error trade-off (DET) curve. In our context this means the plot of FR on the
y-axis, against FA on the x-axis, or vice versa.

Figure A.2 on page 102 shows an example ROC curve. On the vertical axis FR Rate
represents the number of false rejections in relation to the total number of correctly

recognized results:
N (rejected | correct)

E te =
It Rate N (correct)

(A1)
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FR Rate

0 FA Rate 1

Figure A.2: ROC examples; the confidence thresholds 77 and T, in Figure A.1 on
page 100 are also marked here schematically. The point of EER is also indicated as well
as the decision cases ideal and guessing as dashed and dotted lines.

On the horizontal axis FA Rate represents the number of false acceptances in relation
to the total number of incorrect results:

N (accepted | incorrect)

FA Rate = (A.2)

N (incorrect)

The ROC curves in Figure A.2 are generated while varying the confidence thresh-
old for given confidence score distributions. For each threshold the error rates of FR
and FA are computed and pictured in a diagram. The ROC curve allows an explo-
ration of what happens to FR and FA while varying the position of the confidence
threshold. Figure A.2 contains example ROC curves for three different situations of
distribution overlaps. The solid line shows the situation schematically as described
in Figure A.1 on page 100. If the confidence threshold is moved toward from higher
to lower values (75 — T1), the number of false rejections will decrease rather rapidly
at first, i.e. the ROC curve moves down steeply. Finally, it reaches a region where
there is a remarkable decrease in false acceptance; the ROC curve flattens out if the
confidence threshold is moved to very low values.

The smaller the overlap between the distribution functions, the more steeply the
ROC curve moves down or flattens out. The ideal case is a curve that adheres to
the y and x axes, shown as a dashed line in Figure A.2. On the other hand the
closer the curve is to the diagonal, the bigger the overlap and as a consequence the
less discriminative the decision can be based on a confidence threshold — similar
to guessing. The dotted line in Figure A.2 represents this guessing case when the
Gaussians from Figure A.1 on page 100 had a total overlap (u; = p2) and also the
same deviations.
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Stated more precisely, the correct way of characterizing the discriminative ca-
pability of the distribution functions is to look at the area below the ROC curve.
The closer the area is to 0.5 (diagonal case), the worse the discriminative capability
(guessing); the closer it is to 0 (ideal case), the better the discriminative capability.
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Appendix B

Grammar Examples

Industrial standards allow the specification of ASR grammars (language models),
in two forms, augmented BNF (ABNF) form or XML form (see W3C-Grammar,
2004). ABNF has its roots in the Backus-Naur form (BNF), a formal mathematical
description language originally developed to describe the syntax of the programming
language Algol 60. ABNF is a plain text representation, whereas the XML grammar
form uses elements of the Extensible Markup Language. Both representations are
semantically mappable and allow automatic transformation between the two forms.

The example below presents both standard formats ABNF and XML for a sim-
ple grammar that accepts a 4-digit number, e.g. for PIN recognition. The ABNF
format is as follows:

#ABNF 1.0 IS0-8859-1;
language en-US;
mode voice;

$digit = zero | one | two | three | four | five | six |
seven | eight | nine;
public $number= $digit <4>;

The corresponding XML grammar is:

<?xml version="1.0"7>
<grammar mode="voice'"version="1.0"encoding="I1S0-8859-1
xml:lang="en-US"xmlns="http://www.w3.0rg/2001/06/grammar">

<rule id="number"scope="public">
<item repeat="4"><ruleref uri="#digit"/></item>
</rule>
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APPENDIX B. GRAMMAR EXAMPLES

<rule id="digit">

<one-of>
<item> Zero </item>
<item> one </item>
<item> two </item>
<item> three </item>
<item> four </item>
<item> five </item>
<item> six </item>

<item> seven </item>
<item> eight </item>
<item> nine </item>
</one-of>
</rule>
</grammar>
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A

ABNF, see Backus-Naur form
acceptance of recognition results, 79
accumulation of posterior scores, 43
acoustic
channel, 58
feature, 13
extraction, 13
vector, 12
information, 92
model, 29
probability, 5, 9, 11, 13, 34, 60
modeling, 10, 11, 12
parameter, 13
score, 24, 36, 51
space, 69
stability, 30, 31, 33
adaptation methods, 29, 51
adaptive controller, 73
alternative hypotheses, 54
anti-model, 50
application
design, 87
library, 80
a priori probability, 17
arc
predecessor, 37, 38
successor, 37, 38
weight, 34

ASR, see automatic speech recognition

automatic speech recognition, 2
acceleration, 77
HMM-based, 9
modules, 5, 10

autoregressive modeling, 14
average speech rate, 31

B

background noise, 27, 58
backtracking, 21
Backus-Naur form, 105
backward

graph, 39

probability, 16, 35

score, 38

sum of probabilities, 36
bandpass filtering, 13
Bark scale, 14
baseline CER, 53
Battacharyya distance, 68
Baum-Welch training, 15
Bayes’ rule, 4, 5, 9, 24
beam width, 63
best hypothesis, 4

C

catch-all

model, 33, 67
compression ratio, 70
Gaussian components, 65
global, 68
of reduced complexity, 69
score, 65
size, 68
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probability, 60
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CER, see confidence error rate
channel distortion, 27, 58
channel reverberation, 27
CM, see confidence measurement
co-articulation effect, 11
command-level error, 87
compression ratio of models, 69, 70
computation time of decoding, 52
concept-level error, 87
concept graph, 46
confidence

error rate, 42, 52

maximization, 50

of semantic concepts, 46

of speech, 1

posterior probability based, 4

score, 3, 4

tagging, 53

threshold, 49
confidence-based decision, 85, 92
confidence-guided pruning, 62
confidence measure, 4

concept level, 46

dialog level, 79

posterior probability, 28, 33

predictor features, 28

word level, 46

word posterior probability, 36
confidence measurement, 4

and field of application, 4

classification, 27

classification of methods, 27

general definition, 27

in dialog control, 80

of semantic interpretation, 46

quality, 85, 86

techniques, 3, 27

utilization, 28, 48
confidence predictor features, 28, 29
confidence score, 2

combined, 90

computation, 41

of arcs, 41

parallel computation, 90

probabilistic, 30

semantic, 84
confirmation threshold, 84
consensus hypothesis, 24, 34, 43, 52, 55
context-free grammar, 17, 19
correct

acceptance, 100

hypothesis, 29

rejection, 99
critical-band spectral resolution, 14
cross-validation

corpus, 38, 52, 54

D

data
protection, 50
reduction, 14
data-driven approach, 87
database, 80, 82, 91
DB, see database
decision
hierarchy, 79
real-time, 80
decisionmaking, 79, 100
decoding process, 9
degree of naturalness, 84, 88
detection
error
rate, 101
trade-off curve, 101
of reliable hypotheses, 50
DFT, see discrete Fourier transformation
dialog
confirmation step, 88
control, 3, 5, 79
architecture, 80
strategy, 79
description language, 80
design, 46, 86, 88
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examples, 83
flow, 3, 79, 80, 83
natural, 88
management, 29, 46, 48
error recovery, 82
manager, 80
mixed initiative, 88
strategy, 84
diphone, 12
directory assistance, 84, 90

discrete Fourier transformation, 13

distribution overlap, 100
dual-threshold strategy, 84
dynamic

grammar, 81, 90, 91

lift, 64

pruning, 5, 48

search, 19

threshold, 64

E

EER, see equal error rates
embedded systems, 52
ending node, 39
equal
error rate, 55, 101
loudness preemphasis, 14
equivalence classes, 44
merging, 44
ergonomics, 88, 92
error
handling, 3
recovery, 86, 92
evaluation
corpus, 38, 54
quantities, 52
experimental results, 54, 70, 76
explicit confirmation, 3, 89

F

FA, see false acceptance

INDEX

false acceptance, 52, 87, 100
rate, 53, 102
false rejection, 52, 87, 99
rate, 53, 101
fast
Fourier transformation, 14
speech, 31, 48
feature
extraction, 10, 13
vectors, 5
feedback-control mechanism, 73
FFE'T, see fast Fourier transformation
filler model, 49, 50
formant frequencies, 32
forward
graph, 39
probability, 15, 35
score, 36
sum of probabilities, 36
forward-backward algorithm, 35, 47, 52
training, 15
FR, see false rejection
frustrating user, 80

G

gain, time-variant, 74
garbage model, 50
Gaussian
combined, 69
function, 5
goal-level error, 87
grammar, 17, 81
ABNF, 105
complexity, 85
content, 86
dynamic, 81, 91
examples, 105
format, standard, 81, 105
library, 91
management, 91
manager, 81
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of reduced complexity, 90 intersection in time boundaries, 41
of reduced size, 90 intra-class variance, 14
size, 86 intra-word clustering, 44, 57
static, 81 IVR, see interactive voice response
XML, 105
K
H
keyword spotting, 29, 49, 50
Hamming window, 14 knowledge source, 46, 79, 80, 89
hidden Markov model, 5, 11 Kullback-Leibler divergence, 50
three-state, 12
training, 15 L
HMI, see human-machine interface
HMM, see hidden Markov model language model, 10, 17, 19, 49, 81, 105
HMM-based ASR system, 9 back-off, 30
main modules, 10 bigram, 17
HTK, 11, 52, 53, 54, 67 complexity, 18
human-like interaction, 88 n-gram, 17
human-machine probability, 5, 9, 34
interaction, 82 score, 30, 36
interface, 1 trigram, 17
hypothesis unigram, 17
density, 30, 31, 33 language modeling, 17
detection, 50 lattice
rejection, 50 density, 52
tagged, 52 rescoring, 48
LDA, see linear discriminant analysis
I least squares estimation, 74
library
implicit confirmation, 3, 89 application, 80
in-context hypothesis, 49 grammar, 81
in-vocabulary input, 29 linear
incorrect hypothesis, 29 discriminant analysis, 14
inner loop of pruning, 73 prediction, 13, 87
instruction set, 46 linguistic
intensity-loudness conversion, 14 information, 92
inter-class variance, 14 processor, 24
inter-word clustering, 44 LLR, see log likelihood ratio
interactive voice response, 80, 82, 90 LM, see language model
interface log
human-machine, 1 likelihood ratio, 30, 50
speech, 1 probability, 24, 34
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logarithmic
space, 36, 42, 47
sum, 37, 39, 41

LP, see linear prediction

M

MAP, see maximum a posteriori training
maximum
a posteriori training, 15
decision, 33
entropy classification, 87
likelihood
decoding, 19
training, 15
measure of similarity, 44
mel
frequency
cepstral coefficients, 13
interval, 13
scaled filter bank, 13
memory use, 48
merging paths of word graph, 39
misclassification, 100
mismatched conditions, 27, 31
misrecognition, 50
mixed initiative, 88
mixture splitting, 54
ML, see maximum likelihood training
model compression, 69
multi-layer perceptron, 15, 32, 46, 92
multi-pass framework, 92

N

N-best
count, 29
decoding, 19
homogeneity, 30
hypotheses, 28
list, 23, 28, 48
post-processing, 48
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rescoring, 48
NaDia, 52, 54
natural language
parser, 87
understanding, 46, 80, 83, 84
utterance, 46
naturalness, 88
neural network, 11, 28, 31
classifier, 32, 49, 51, 92
NN, see neural network
non-linear discriminant analysis, 14
normalized
hypothesis score, 63
log likelihood score, 29, 49, 59, 61
accumulated, 62

O

observation

probability, 4, 9, 33, 35, 39, 60, 66

accumulated, 63

score computation, 41

sequence, 13, 34
ODINS semantic decoder, 49
OO0V, see out-of-vocabulary
out-of-context hypothesis, 49
out-of-grammar rate, 86
out-of-vocabulary

detection, 2, 29, 49, 58

input, 29

phrases, 2

rate, 86

word, 28, 48, 49
outer loop of pruning, 73
overlapping time intervals, 41, 44

P

parallel data processing, 90
perceptual linear prediction, 13, 14
performance of recognition, 31
perplexity, 18
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persona, 92
phoneme
duration, 30, 32
statistics, 32
lengths
statistical deviation, 32
rate, 48
recognizer, 49
PLP, see perceptual linear prediction
posterior
probability, 24, 27, 33, 35, 87
accumulation, 42
computation, 34
of word, 31
summing up, 42
score, 28, 31, 44, 46, 49, 55, 59
computation, 41
of semantic concepts, 47
of sublevel word graph, 47
performance, 47
pruning, 48
sum, 45
threshold, 52
predecessor arc, 37, 38
predictor features, 46, 50
duration-related, 32
fusion, 31
overlap, 31
prior probability, 67
probability density function, 12
pronunciation
dictionary, 19, 49
variants, 25
propagation of scores, 39
proposed probability, 60
pruning, 5, 10, 22, 28, 48
adaptive control dynamic, 73, 76
beam, 5
classical, 22
classical techniques, 60

R

confidence-guided, 71

confidence-guided dynamic, 33, 59,
65, 71, 76

dynamic, 48

dynamic threshold, 64

efficiency, 59

histogram, 5

histogram rank, 22, 60, 71, 76

look-ahead approach, 60

normalized log likelihood, 5

probability-based, 22, 60, 71, 76

threshold, 22

RASTA-PLP, 14

real-time

decision, 80
requirement, 57

receiver operating characteristic, 52
recognition-level error, 87
rejection

of hypotheses, 50

of recognition results, 79

rate, 87

technique, 29, 49

threshold, 84
optimization, 87

relative entropy, 50
reprompt strategy, 80
rescoring, 28, 48
robustness, 101

ROC curve, 52, 55, 57, 99
runtime behavior, 52, 59

S

scaling factor

of acoustic score, 37
of language model score, 37

comparison ACD versus CGD, 72, 74 search

results, 76
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network, 22
process, 5, 22
space, 19
semantic
agreement, 92
concept, 46, 80
confidence, 46
confidence, 87
scores, 84
feature, 46
information, 46
interpretation, 46
label, 47
semi-supervised
adaptation, 51
training, 52
sentence error rate, 44
sigmoid function, 64
similarity among equivalence classes, 44
similar word hypotheses, 41
simple accumulation method, 34, 52
sink model, 50
slow speech, 31
specific loudness, 13

spectral
analysis, 14
factors
distortion, 14
noise, 14
steady-state, 14
speech

application, 46, 59
characteristics, 88
communication, 1
corpus

NaDia, 54

Verbmobil ’96, 53
detection, 82
dialog design, 46
interface, 1, 2
perception, 13
processing steps, 13

INDEX

production, 13
rate, 24, 48, 50
variation, 25, 31
unit, 11, 28
context-dependent, 12
context-independent, 12
trainability, 11
word-dependent, 12
speech-based
communication, 79
interaction, 80
spontaneous
interaction, 46
speech, 1, 17
stack decoding, 19
starting node, 38
state
activation time, 67
emission probability, 13
prior probability, 67
static grammar, 81
stochastic
model, 9
modeling, 11
subword unit, 28
successor arc, 37, 38
supervised adaptation, 51

T

tagging of hypotheses, 52
target user group, 79
task-level error, 87
text-to-speech, 82
time
alignment, 33, 36, 47
consensus hypothesis, 43
simple accumulation, 41
consumption, 48, 59
factor, 71
overlap, 45
similarity, 44
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warping, 25
time-variant

effects, 62

gain, 74

topological order in word graph, 37

training
Baum-Welch, 15
material, 11, 15, 48
maximum a posteriori, 15, 16
maximum likelihood, 15
of HMMs, 15
set, b4
Viterbi, 15, 16
transmission quality, 58
triphone, 12, 62
context-dependent, 12
TTS, see text-to-speech

U

unexpected word, 49
unsupervised
adaptation, 29, 48, 51, 88
training, 51
usability problem, 88
user acceptance, 86
utterance verification, 29, 49, 50
UV, see utterance verification

vV

VAD, see voice activity detector
Verbmobil 96, 31, 52, 53
evaluation data, 70
training data, 67
Viterbi
decoding, 16, 19, 54
search, 10, 19
training, 15, 16
voice
activity detector, 82
channel, 82

over 1P, 82
search application, 82, 83
user interface, 88, 91, 101
design, 2
voice-enabled application, 79
VoiceXML, 80
vowel
duration, 30
length variation, 32
rate, 48
VUI, see voice user interface

A%

WGD, see word graph density
word
confidence, 24, 46, 49, 51
deletion, 53
density, 51
duration, 30
error rate, 44, 53, 71
graph, 4, 10, 22, 28, 48
density, 34, 52-54, 57
Mealy format, 24, 34
Moore format, 24
nested, 46
node, 38
of HTK, 36
of low density, 52
post-processing, 33
sublevel, 47
topology, 45
hypothesis, 23
confidence, 46
insertion, 53
lattice, 23
posterior probability, 35, 36
substitution, 53

X

XML grammar, 105
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