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Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. G. Rigoll

2. Univ.-Prof. Dr.-Ing. W. Hemmert

Die Dissertation wurde am 24.04.2014 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 20.10.2014
angenommen.





Acknowledgment

This thesis would not have been possible without the support of many people. First
of all, I would like to thank my supervisor Prof. Gerhard Rigoll for giving me the
opportunity to work at the Institute for Human-Machine Communication at TUM
and for the advices and support he gave me during my time at the institute. Fur-
thermore, I would like to thank Prof. Werner Hemmert for doing the second review
of this thesis. Over the years, fruitful discussions with colleagues contributed to the
success of my work. Here I would like to mention Dr. Martin Hofmann, Prof. Björn
Schuller, Felix Weninger, Florian Eyben, Dr. Martin Wöllmer, Erik Marchi, Zix-
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Abstract

The increasing progress of audio analysis methods opens possibilities for more new
applications. At the same time, recent improvements in these methods bring the
established approaches constantly closer to their performance limits, which are de-
fined by disturbing factors such as overlapping speech or noise and reverberation.
This thesis presents progress in new possibilities and addressing disturbing factors,
first, by proposing ideas for a system for the classification of acoustic scenes and
a method for acoustic gait-based person identification. Both of them are two rela-
tively new audio recognition tasks. Furthermore, improvements for two established
methods (speaker diarization and robust speech recognition) are presented. To im-
prove speaker diarization, different approaches to detect overlapping speech are pro-
posed. To increase the robustness of a speech recognition system against noise and
reverberation, an approach using memory-enhanced acoustic modelling is employed.
Together, the proposed modules represent a complete system for auditory scene ana-
lysis. Starting from a coarse classification of the scene as a whole, persons can be
identified using their step sounds or voice, followed by a transcription of the spo-
ken contents. Experimental evaluations using publicly available databases or within
public research challenges demonstrate the efficiency of the proposed methods.
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Kurzfassung

Der zunehmende Fortschritt von Methoden zur Audioanalyse eröffnet immer mehr
Möglichkeiten für neue Anwendungen. Jedoch bringen die jüngsten Verbesser-
ungen die etablierten Methoden immer näher an ihre Grenzen, welche durch Stör-
faktoren wie beispielsweise überlappende Sprache oder Störgeräusche und Nach-
hall gegeben sind. Diese Arbeit präsentiert Fortschritte bei neuartigen Anwendun-
gen und bei der Behandlung der erwähnten Störfaktoren. Zuerst werden ein Sys-
tem zur Klassifikation von akustischen Szenen und ein Verfahren zur akustischen
Gang-basierten Erkennung von Personen präsentiert. Beides sind neuartige Audio-
Erkennungsaufgaben. Anschließend werden Verbesserungen auf den zwei etablierten
Arbeitsgebieten Speaker Diarization und robuste Spracherkennung vorgestellt. Um
die Speaker Diarization zu verbessern, werden verschiedene Ansätze zur Detektion
von überlappender Sprache vorgeschlagen. Um die Robustheit eines Spracherken-
nungssystems gegenüber Störgeräuschen und Nachhall zu erhöhen, wird ein Ansatz
zur akustischen Modellierung mit erweiterter Kontextmodellierung verwendet. Ge-
meinsam stellen die vorgeschlagenen Module ein komplettes System zur akustischen
Szenenanalyse dar: Ausgehend von einer groben Klassifikation der Szene als Ganzes
können Personen mittels ihrer Schrittgeräusche oder der Stimme identifiziert werden,
gefolgt von einer Transkription der gesprochenen Inhalte. Experimentelle Auswer-
tungen mit Hilfe von frei verfügbaren Datenbanken oder im Rahmen öffentlicher
Forschungswettbewerbe demonstrieren die Wirksamkeit der vorgeschlagenen Me-
thoden.
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1

Introduction

Auditory scene analysis characterises the capabilities of humans to understand com-
plex auditory scenes [23]. In particular, the auditory scene analysis model describes
how the human brain transforms the sensory perception of sounds into a mental rep-
resentation. Different sounds are grouped (along time and frequency) to auditory
streams which represent the sound sources. A well-known example which illustrates
this method is the cocktail party effect [31]. This phenomenon describes the hu-
man ability to focus the attention on one sound source in a mixture of different
sounds, for example one voice among several voices and other sounds. The field of
computational auditory scene analysis, also referred to as machine listening, tries
to reproduce the same capabilities with computers [228]. Originally, the focus of
such systems is on audio source separation. When binaural recordings are available,
audio localisation is also an important feature. In general, such systems perform
low-level audio processing. After different audio sources have been detected and
segmented, the goal is to classify or recognise these sources on a higher semantic
level. This is where pattern recognition methods are deployed.

The present study addresses specific challenges in the field of audio pattern recog-
nition. Methods are presented which aim at recognising the contents of auditory
scenes. The focus is not on low-level processing such as source separation, but more
on the classification of different sound sources using pattern recognition methods.

In general, there are many fields of audio recognition that have been the subject
of research in the last decades. A large portion of audio analysis research is dedicated
to human speech, and one of the oldest but still most prominent fields is automatic
speech recognition (ASR) [176]. This field progressed over the last decades from
speaker-dependent recognition of isolated syllables to highly performant recognition
of conversational speech in adverse environments [178, 175, 115, 138]. Later on, re-
searchers tried to identify the speaker [40, 26] or to further analyse the speaker’s state
or trait (e. g. emotion, age or health state), a field known as computational paralin-
guistics [197]. Another prominent field of research in audio recognition is automatic
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1 Introduction

music transcription [126], which consists of the recognition of notes (pitch) [24] and
tempo [39].

Acoustic scene recognition is a newer research direction [166], and the detection
and classification of acoustic events can also be included in this field [217]. Such
systems have the goal of detecting and recognising any kind of sound (acoustic event)
in an audio recording or of classifying an acoustic scene as a whole, consisting of
different sound sources.

A related field is audio diarization, which aims at annotating an audio recording
(e. g. of a meeting) with respect to the occurring sound sources [183]. Here, a special
case is speaker diarization, where the focus is on human speech and the goal is to
detect and identify all occurring speakers in an unsupervised manner [5]. Speaker
diarization can also be seen as a variant of speaker recognition.

In all of the mentioned fields of audio recognition, pattern recognition methods
are applied to a detection or classification problem. Each of these fields of research
has different practical applications. Any computer system (e. g. mobile phones) can
make use of ASR technology as an input device. Services for automated phone
answering systems such as telephone banking use speaker recognition technology for
access control. Home automation can employ many of the techniques to equip a
smart home with the capabilities of analysing the ongoing activity.

Audio recognition methods are also used in robotics. For example, service robots
with a multimodal dialogue system can improve their understanding of the environ-
ment with techniques for speech and audio recognition [10]. One example is the
robotic companion Adaptable Ambient Living Assistant (ALIAS) [179] [54] [56], for
which some of the techniques presented in this thesis have been developed. Espe-
cially a robotic system relies on techniques such as acoustic scene recognition and
audio diarization, when it is deployed in a changing environment, where every day
new sound sources are occurring.

An exemplary acoustic scene is displayed in Figure 1.1. In this scene, different
sound sources contribute to the auditory sensation, e. g. different human activities
or sounds from machines or cars. When these sounds are emitted simultaneously,
they produce a complex mixture. The task of a listener is to recognise the individual
sound sources, consisting of a temporal and spatial localisation as well as classifi-
cation. Following these first processing steps, higher-level semantic meaning can be
derived, e. g. about the activity in the scene or the spoken content. The focus of
the present study is mainly on classifying different sound sources occurring in such
a scene.

1.1 Objectives

While all of the discussed methods for audio recognition have made progress over
the years and, in part, matured to a level which allows the application in practical
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1.1 Objectives

Figure 1.1: Sketch of an exemplary acoustic scene with different sound sources (a person
speaking or running, a machine, or a car) and a microphone.

systems, many open problems are remaining. The goal of this thesis is to address
these problems and to propose new solutions or improvements to existing solutions.

Since the field of audio signal processing is so extensive, first, a distinction is
made, in order to define what is excluded from this thesis and was not focus of the
underlying work. Most notably, all of the introduced methods work with monaural
audio signals. Thus, methods for binaural audio source separation or localisation
are not employed in this study. Although these two fields are the original dedicated
problems of computational auditory scene analysis, the focus of the present study is
on pattern recognition aspects. Different open problems of audio recognition tasks
are addressed in this thesis.

(1) Recognition of acoustic scenes and events is a relatively new field of
research. The goal of this field is to recognise acoustic scenes as a whole, where an
acoustic scene is normally represented by a somewhat longer audio recording (several
seconds to minutes). A system for acoustic scene classification should categorise the
recording into one of a set of general classes, describing the location or the activity
that is taking place. Possible classes are, for example, office, street, or supermarket.
Such acoustic scenes are characterised by many diverse single acoustic events, poten-
tially overlapping in time and frequency. This is why acoustic scene recognition is
related to the detection and classification of acoustic events, where similar method-
ologies are applied. Since these fields are relatively new, there are no established
methods. The first efforts consisted of adopting methods from other audio process-
ing tasks to these problems. Strong methods are needed that are specifically tailored
to these problems and which are capable of achieving high recognition rates. The
goal of the present study is to investigate the application of different audio features
and classifiers for the problem of acoustic scene recognition.

Furthermore, an open problem in the field of classification of individual acoustic
events is how to learn new sound classes. The goal of this thesis is to propose a
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1 Introduction

system for acoustic event classification in an indoor environment, and to develop a
method for learning new classes of acoustic events.

(2) Acoustic gait-based person identification denotes the idea of recog-
nising humans by their step sounds. This is another new emerging topic in audio
recognition. Human gait is considered as unique and it can therefore be used for
biometric verification. The step sounds are a representation of human gait and
convey characteristic information about the subject. First studies in this direction
were already performed, in which the focus was mostly on the classification of pre-
segmented footsteps from a small number of subjects. Methods are required to
recognise a large number of subjects reliably, in order to establish this field of re-
search. The objective of this thesis is to consider different methods for the problem
of acoustic gait-based person identification. The suitability of static and dynamic
classifiers, using different audio features, should be investigated. Presumably, dy-
namic methods that model the cyclic sequence of sounds during walking are expected
to deliver better results.

(3) Speaker diarization methods have advanced to a level where small con-
founding factors lead to the majority of system errors. One of these problems is
overlapping speech (i. e. when two or more speakers are speaking at the same time).
Overlapping speech leads to impure speaker models and missed speaker errors. In
order to further improve diarization systems, robust methods for the detection of
overlapping speech are desired. To overcome this problem, one goal of this thesis is
to develop methods for overlap detection.

Different approaches exploiting different characteristics of overlapping speech
are thinkable. For example, source separation methods could be used to detect
the contribution of individual speakers to a potentially overlapping speech signal.
Established audio features that are used in other audio recognition tasks should be
investigated for their suitability for overlap detection. It is also of interest whether
methods that go beyond the pure acoustic signal are capable of detecting overlap,
for example exploiting lexical information or temporal context. The influence of
successful overlap detection on a speaker diarization system should be evaluated
through methods for overlap handling.

Furthermore, most state-of-the-art diarization systems work offline (i. e. the
whole audio recording has to be present), while some applications might require
solutions capable of online processing. Therefore, another objective of this thesis is
to propose a method for online speaker diarization.

(4) Robust speech recognition describes the problem of ASR in adverse en-
vironments. Such environments are for example characterised by additive noise or
reverberation and can pose a major problem for conventional ASR systems, deteri-
orating recognition rates. Approaches for robustness can be categorised into three
groups: robust features, speech/feature enhancement, and robust acoustic mod-
elling.
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gaitbased 
identification

speaker 
diarization

robust speech 
recognition

scene 
classification

audio 
recording

person identification

overlap 
detection

Figure 1.2: Structure of a system for audio analysis that includes all techniques proposed
in this thesis.

The present study investigates methods from the third category, employing
acoustic models that are robust towards the mentioned confounding factors. The
main objective is to investigate how an acoustic model that is able to efficiently ex-
ploit context information performs in different configurations and conditions. This
includes a comparison to and a combination with different other state-of-the-art
acoustic models. The recognition performance should be studied for continuous
speech recognition in highly non-stationary noise and reverberation.

1.2 Structure of this Thesis

This study presents contributions to each of the four mentioned topics, which directly
leads to the structure of the thesis. Figure 1.2 shows the setup of a system that
combines all techniques that are used in this thesis.

Such a system could be deployed in different application scenarios, for example
for a robotic assistant or in a smart home. The first step of this system is to classify
the acoustic scene as a whole, before forwarding the distinct acoustic events to the
other processing modules. These modules contain a component for person identifica-
tion, analysing either step sounds or human speech. Speech overlap detection helps
to improve the speaker diarization module. Finally, a speech recognition module
produces a transcription of the spoken content.

Chapter 2 proposes a system for acoustic scene classification. This system
is capable of classifying recordings of acoustic scenes as a whole. A large set of
audio features is considered, and classification is performed on time windows with
a length of several seconds. Different classifiers are compared and the performance
of different audio features is analysed in detail [57]. Experiments were performed
within a public research challenge, where the proposed system was ranked in the
upper third of all participants [58]. Additionally, a method is proposed for learning
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new acoustic events within a system for acoustic event classification [70]. This
method prevails over conventional learning methods.

Chapter 3 addresses the problem of acoustic gait-based person identification.
Static classification is the first investigated method, employing a large candidate
feature set. The system performance is analysed and improved using a method for
feature analysis and selection [66]. In addition, it is shown how this system can
improve a video-based system through multimodal fusion. Second, a dynamic clas-
sifier is employed. This system detects and models separate steps of the subjects.
Modifications are proposed which improve the identification performance. All ex-
periments in this chapter were performed with a large publicly available database
that contains recordings of persons walking in a corridor.

Chapter 4 covers speaker diarization. Different methods are proposed to over-
come the problem of overlapping speech in a diarization system. Several systems for
overlap detection are presented and evaluated. Among them are methods employing
source separation, different audio features, lexical information, and a classifier that
exploits temporal context [68, 71, 63, 64]. These approaches improve the overlap
detection performance compared to other state-of-the-art methods, which in turn
leads to enhancements of a diarization system. Furthermore, a method for online
speaker diarization is proposed [62]. All experiments were performed with publicly
available databases.

Chapter 5 describes efforts towards robust speech recognition. The influence of
highly non-stationary noise and high reverberation is tackled with a classifier that
exploits long-range temporal context. This classifier represents a robust acoustic
model, and it can be combined with conventional methods. Recognition systems
based on this framework achieve large performance improvements in highly non-
stationary noise [59, 69] and in reverberant environments [72]. Experiments were
performed within the framework of public research challenges, where competitive
results were obtained.

Chapter 6 summarises the results achieved in this thesis and draws some con-
clusions. In addition, some ideas for future research are presented.
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2

Recognition of Acoustic Scenes
and Events

One of the first tasks of a system that analyses the complete content of an acoustic
scene is to classify the scene as a whole, i. e. to select a label from a coarse and
diverse set of different types of acoustic scenes. This helps to provide a first insight
into the contents of the scene. Additionally, a pre-classification of the sound sources
into different types of acoustic events can be helpful. In further processing steps,
different models suited for specific scenes can be applied, depending on the contents.

This chapter addresses these two topics: classification of acoustic scenes as a
whole and classification of individual acoustic events. First, a system is proposed
in Section 2.1 which classifies longer recordings of different acoustic scenes into one
of a set of classes. Second, an acoustic event classification system is presented in
Section 2.2. There, the specific problem of learning new acoustic events is addressed.
The chapter concludes with a short summary in Section 2.3. Section 2.1 is based on
the results published in [57, 58] and Section 2.2 builds upon the results published
in [70].

2.1 Acoustic Scene Classification

This section describes a system for acoustic scene classification using large-scale au-
dio feature extraction. From highly variable recordings, a large number of spectral,
cepstral, energy, and voicing-related audio features are extracted. Using a sliding
window approach, classification is performed on short windows. A support vector
machine (SVM) classifier is used to recognise these short segments, and a major-
ity voting scheme is employed to get a decision for longer recordings. SVMs are
compared with a nearest neighbour classifier and an approach called latent percep-
tual indexing, where SVMs achieve the best results. A feature analysis using the
t-statistic shows that mainly Mel spectra are among the most relevant features.

7



2 Recognition of Acoustic Scenes and Events

The proposed system was evaluated in the scene classification track of the chal-
lenge on detection and classification of acoustic scenes and events [75]. On the
official development set of the challenge, an accuracy of 73 % was achieved in the
best system configuration, while an accuracy of 69 % was obtained on the non-public
test set, representing state-of-the-art results.

2.1.1 Introduction

Recognising the acoustic background is known as acoustic scene classification and
belongs to the field of computational auditory scene analysis [228]. Typically, several
different (overlapping) sound sources contribute to the scene, making it a complex
interaction of different acoustic events. The goal of an appropriate system is to
analyse an audio recording of such a scene with respect to the composition of acoustic
events and to assign a coarse label from a set of classes. Distinguishing characteristics
for such classes are outdoor vs. indoor, quiet vs. lively, or different sound sources (e. g.
vehicles, machines, humans, animals), resulting in classes such as street, restaurant,
or office.

There is little prior work in this field of research. Generally, the approaches found
in the literature can be categorised into two different groups. The first method is to
regard the whole acoustic scene as one object and to model the long-term distribution
of spectral patterns, regardless of the exact order. One example is the ‘bag-of-frames’
approach that usually works with Mel-frequency cepstral coefficients (MFCCs) as
audio features and uses Gaussian mixture models (GMMs) to model the distribu-
tions [7]. The second group of methods work with higher-level representations of the
acoustic events happening at the scene. One previous study on acoustic scene classi-
fication, which can be counted among the second group of methods, investigated the
application of various spectral, energy, and voicing-related features in combination
with neural networks [142]. Effective features were selected and, together with this
choice of classifier, were successful in discriminating among five types of television
programs. In [166], a system for acoustic scene recognition is described and eval-
uated. This system uses a nearest neighbour classifier and various time-domain,
frequency-domain, and cepstral audio features. The system’s ability to recognise 17
different acoustic scenes has almost reached the level of human performance. The
system for acoustic scene recognition described in [116] uses SVMs embedded in a
hierarchical or parallel framework. High accuracy results were obtained for the task
of classifying audio clips into one of five classes. One possible direct application
of acoustic scene classification is a system as described in [193], which recognises
cyclist’s routes using scene recognition techniques.

In the scene classification track of the aforementioned challenge on detection
and classification of acoustic scenes and events, different systems for acoustic scene
recognition were evaluated and compared. The employed corpus (divided into a
development set and a non-public test set) is categorised into ten different classes of
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Figure 2.1: System overview for acoustic scene classification.

acoustic scenes. The present thesis describes a method for acoustic scene classifica-
tion that is a contribution to this challenge. A sliding window approach is used to
obtain statistical functionals of the low-level features for short segments of several
seconds. SVMs are used for classification of these short segments, and a majority
voting scheme is employed to get a decision for the whole recording. Furthermore,
the proposed approach is compared to a method based on latent perceptual index-
ing [120] and to a nearest neighbour classifier as it was used in [166].

2.1.2 System Overview

Figure 2.1 shows the workflow of the proposed system for acoustic scene classifica-
tion. An audio recording is first segmented into (potentially overlapping) windows
with a length of several seconds. In this way, the system is designed to capture
individual acoustic events in the scenes. Then, dynamic features are extracted on
the frame level and summarised into one feature vector per window through the
application of functionals. Subsequently, classification is performed with a static
classifier on the window-level and the final result for the whole recording is obtained
through majority voting. The system components are explained in more detail in
the following.

2.1.3 Feature Extraction

Prior to feature extraction, the stereo recordings are mixed down to mono. This
down-mixing causes a loss of information, while, on the other hand, it simulates real-
istic, simple conditions with devices like mobile phones that are equipped with only
one microphone. For feature extraction, the open-source toolkit openSMILE [45]

9



2 Recognition of Acoustic Scenes and Events

Table 2.1: 57 cepstral, spectral, energy, and voicing-related acoustic low-level descriptors
(LLDs) from the official openSMILE emo large.conf feature set that are employed for
acoustic scene classification.

Cepstral features (13)

MFCC 0 – 12

Spectral features (35)

Mel spectrum bins 1 – 26 (0 – 8 kHz), zero crossing rate,
25 %, 50 %, 75 %, and 90 % spectral roll-off points,
spectral flux, spectral centroid,
relative position of spectral maximum and minimum

Energy features (6)

logarithmic energy,
energy in bands from 0 – 250 Hz, 0 – 650 Hz,
250 – 650 Hz, 1 – 4 kHz, 3010 – 9123 Hz

Voicing-related features (3)

F0 (with cepstrum auto-correlation),
F0 envelope, probability of voicing

is employed. Since the recordings of the acoustic scenes contain a high number of
different sound sources of different nature, a large set of different audio features is ex-
tracted in order to acquire as much relevant information as possible. The employed
feature set is the official openSMILE emo large.conf feature set that is provided
with the toolkit. This feature set was originally designed for speech processing, but
it fits general audio analysis owing to its many spectral and further descriptors. In
previous studies on the classification of acoustic scenes and events, such as [166, 215],
similar audio features were used. All low-level descriptors (LLDs) are listed in Ta-
ble 2.1, and each of them is extracted every 10 ms from 25 ms frames. The employed
features can be grouped into cepstral, spectral, energy-related, and voicing features.
In addition to MFCCs and Mel spectra, spectral roll-off points and other spectral
features contribute to a comprehensive description of the spectrum. Furthermore,
a number of energy-related features are computed. Since the recordings in the test
data contain a considerable portion of speech and other voiced or harmonic sounds,
the set also includes a small selection of voicing-related features. From the 57 low-
level descriptors, 39 functionals are computed after adding delta and delta-delta
coefficients, resulting in a total number of 6 669 features. The functionals are listed
in Table 2.2 and include values such as mean, standard deviation, percentiles and
quartiles, linear regression functionals, or local minima/maxima related function-
als. In combination with the LLDs, the comprehensive set of functionals embodies
an extensive characterisation of the audio signal. The whole set of 6 669 features
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2.1 Acoustic Scene Classification

Table 2.2: 39 functionals in the official openSMILE emo large.conf feature set.

Statistical functionals (21)

(positive) arithmetic mean, root quadratic mean,
root quadratic, geometric, positive arithmetic mean of non-zero values,
number of non-zero values , zero crossing rate,
centroid, variance, standard deviation, skewness, kurtosis,
quartiles and inter-quartile ranges,
95 %, 99 % percentile

Regression functionals (9)

linear regression slope, offset,
corresponding approximation error (quadratic and linear),
quadratic regression coefficients a, b, and c,
corresponding approximation error (quadratic and linear)

Minima/maxima related functionals (9)

range, position of max/min,
difference min/max to arithmetic mean,
number of peaks, mean distance between peaks,
arithmetic mean of peaks,
difference mean of peaks - mean

contains a certain number of redundancies and thus serves as a good starting point
for feature selection. Finally, all features are normalised, where the statistics of the
training set are used to normalise the test set as well.

2.1.4 Window-based Classification

To better capture the non-stationary nature of the scenes, classification is performed
on smaller windows. Each recording is split into (overlapping) windows with a length
of several seconds, and the statistical functionals are computed for all LLDs in those
segments. In two previous studies of acoustic scene recognition [166, 120], a window
length of 1 s was proposed. However, the experiments performed for the present
study showed that longer windows lead to better results. These segments can capture
the different acoustic events contributing to the acoustic scenes. This windowing is
performed on the training data and on the test data. Thus, models are trained with a
larger number of training instances per class (Nw windows per recording, each for Ntr

training recordings). Classification is performed on the windowed test data. Each
of the Nw windows is separately fed to the classifier so that it recognises one part
of the scene. In order to get one decision for the whole instance, a majority voting
scheme is employed. Weighting the single classification results by their confidence
(which, in the case of SVM as classifier, is obtained by fitting the output of the SVM
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2 Recognition of Acoustic Scenes and Events

to a logistic regression model) brought no improvement and thus, the majority vote
is not weighted.

For classification, the SVM classifier [33] is used. An SVM is a non-probabilistic
discriminative classifier for a two-class problem. In its simplest, linear form, an
SVM is a hyperplane in the multi-dimensional feature space that separates two sets
of example feature vectors with the objective of a maximum margin. The working
principle of an SVM is illustrated in Figure 2.2. The output of a linear SVM is given
by the formula

f(x) = w · x− b, (2.1)

where w is the normal vector to the hyperplane, x is the input feature vector, and b
is an offset. The separating hyperplane is found through the optimisation problem

arg min
w,b

1

2
‖w‖2 (2.2)

while trying to maximise the so-called margin, which is the distance of the hyper-
plane to the nearest training data samples (which are called the support vectors).
Additionally, so-called slack variables are introduced to allow (but penalise) the
failure of an example to reach the correct margin. If the two classes are not lin-
early separable in the original feature space, the feature space can be transformed
to a higher-dimensional space. Applying a hyperplane as a decision boundary in
the higher-dimensional space leads to a nonlinear classifier in the original feature
space. This is realised using a nonlinear kernel function instead of multiplication.
The method is extended to multi-class classification by training pair-wise SVMs.
In the present experiments, the system employs SVMs with a linear kernel and a
complexity of 1.0 (this parameter trades off the width of the margin with the num-
ber of margin failures). SVMs are very well suited for the problem of this study
because of the small number of classes and the small amount of training data per
class. They are trained with the sequential minimal optimisation algorithm [170]
using the windowed training data. The implementation of the Weka toolkit [94] is
used.

For comparison, a nearest neighbour classifier is tested. Preliminary experiments
showed that nearest neighbour performed better than k-nearest neighbour. As a dis-
tance function, the Euclidean distance is used for the nearest neighbour classifier.
Since the features are normalised, this distance function gives better results com-
pared to, for example, the cosine distance.

2.1.5 Latent Perceptual Indexing

In addition to SVM and nearest neighbour, an approach for acoustic scene classifi-
cation based on latent perceptual indexing, as presented in [120], was implemented
and evaluated.
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Figure 2.2: Working principle of an SVM for a two-dimensional feature space. Adapted
from [14].

With the employed SVM or nearest neighbour approach, the contributing parts
of each acoustic scene are recognised separately due to the windowing of training
and test data. Thereby, all acoustic events are processed and classified on their own.
With a majority voting, a decision for the whole recording is made. This approach
ignores the overall composition of a sound scene to a certain extent, recognising
only the distinct sound sources, without using a higher-level decision logic. Such
a decision logic could take account of all sounds and decide on the acoustic scene
based on the mixture of single acoustic events.

Latent perceptual indexing is an approach in which the classification of an acous-
tic scene is based on the composition of the contributing sounds. Each recording
is represented as a vector in a latent perceptual space. First, a clustering (using
k-means) of all (windowed) training data is performed to obtain a number of refer-
ence clusters that is higher than the number of classes. Then, for each recording, a
bag of feature vectors is computed using the windows. The recording is transferred
into the latent space by counting the occurrence of each of the reference clusters for
this recording. The dimension of this latent space is the number of reference clus-
ters. Thus, each training and test recording is described by a vector in the latent
space. Transformed test recordings are classified using a nearest neighbour classifier
and the cosine vector similarity. Preliminary experiments showed that in the latent
space, a nearest neighbour classifier is as good as using SVMs. To obtain a more
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2 Recognition of Acoustic Scenes and Events

fine-grained representation in the latent space, smaller window sizes are used in
the latent perceptual indexing method, compared to the SVM or nearest neighbour
classifier. A more detailed description of this method is given in [120].

One disadvantage of latent perceptual indexing compared to SVMs is that it
requires more training data. In the SVM approach, classification is performed on
the window level, whereby the training data are windowed as well. Thus, in the SVM
approach, from Ntr training recordings, Ntr × Nw training instances are available.
On the contrary, the latent perceptual indexing approach represents each training
recording as a single vector in the latent space, and therefore, the number of training
instances is equal to the number of training recordings Ntr. In the experimental
validation in this study, there are only small amounts of training data, which is
probably not enough for latent perceptual indexing to work properly.

2.1.6 Experimental Evaluation

This section describes the experimental setup and results. Several experiments were
performed in order to investigate the behaviour of the system and to analyse the
contribution of different parameters and system components to the classification
performance. All implemented systems were first evaluated with the development
set of the database of acoustic scenes from the challenge on detection and classi-
fication of acoustic scenes and events. Finally, the best system configuration was
evaluated using the non-public test set of the database. For evaluation, 5-fold cross
validation was performed, which is the official protocol of the challenge. The evalu-
ation measure is the average accuracy (in %) over all folds, whereby additionally,
the 95 % confidence interval is reported. It has to be noted that, given the small
size of the dataset, the minimum significant improvement is relatively large. When
results in the order of 60 % are achieved, the improvement in accuracy has to be
roughly 12 % to be significant. Significance was evaluated using a one-sided z-test
and a p-value of 5 %.

2.1.6.1 Database

For evaluation of the system, the official dataset of the challenge on detection and
classification of acoustic scenes and events [77] was employed. Thereby, only the
data of the scene classification track were used. This dataset contains 30 second
long recordings of various acoustic scenes, categorised into ten different classes: bus,
busystreet, office, openairmarket, park, quietstreet, restaurant, supermarket, tube,
tubestation. For each of the ten classes, the database contains ten recordings, sum-
ming up to 100 recordings and 50 minutes total length. In addition, for the challenge,
the systems were evaluated with a non-public test set of the same size, containing
similar data. Sounds were recorded with a high-quality binaural recording system,
whereby the portability and subtlety of the system allowed to obtain unobstructed
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2.1 Acoustic Scene Classification

Table 2.3: Scene classification accuracies (development set) for two different feature sets
(MFCC vs. all features), using the simple feature extraction method or the window ap-
proach.

Features Simple Window

MFCC 50 % 68 %
All 60 % 73 %

Table 2.4: Scene classification accuracies (development set) for different window lengths,
keeping the window shift constant at 2 s (except for window length 1 s, where the shift is
1 s). SVMs are used as classifier, with the full feature set.

Window length [s]

1 2 3 4 5 6

Accuracy [%] 62 71 67 73 66 64

everyday recordings with relative ease. Since the recordings were performed with
binaural microphones on the ears of a person, the head-related transfer function of
that person is intrinsically incorporated.

2.1.6.2 Windowing Approach

As a first experiment, the influence of applying the windowing approach was ana-
lysed. In this experiment, all 6 669 features or only the MFCC features (MFCCs
0–12, delta and delta-delta coefficients, 39 functionals, summing up to 1 521 features)
were used in combination with an SVM classifier. Table 2.3 lists the experimental
results for these two feature sets, either using the window approach (4 s long windows
with 50 % overlap) or performing classification on the whole recordings. It can be
seen that with MFCC features and without the windowing method, an accuracy of
50 % was obtained, which can be considered a rough baseline. Segmenting training
and test data into 4 s windows and making a majority vote over single window
classification results increased the accuracy to 68 %. On top of that, adding the other
energy, spectral, and voicing-related features improved the result (not significantly)
to 73 %.

Next, the influence of varying the window length was investigated. Results (using
the whole feature set and SVM) are shown in Table 2.4. With a window shift of 2 s,
smaller window sizes led to better accuracy, whereby the best result was achieved
with a window length of 4 s. This is in contrast to findings in [166], where a window
size of 1 s was found to be optimal. One possible reason for this difference is that
in that study, more training data were used, which made it possible to apply a finer
resolution of the data. Furthermore, the database was divided into more acoustic
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2 Recognition of Acoustic Scenes and Events

Table 2.5: Results for different features, functionals, and classifiers with accuracy [%]
supplemented by the 95 % confidence interval, using the development set.

Features Functionals Classifier Accuracy [%]

All LLDs All SVM 73 ± 5
MFCC 0-12 All SVM 68 ± 5
All LLDs mean, var SVM 64 ± 9
MFCC 0-12 mean, var SVM 64 ± 9
All LLDs mean, var nearest neighbour 50 ± 12
MFCC 0-12 mean, var nearest neighbour 39 ± 6

classes, which made such a finer resolution necessary in order to distinguish between
these classes.

2.1.6.3 SVM and Nearest Neighbour Results

Different feature configurations were tested when comparing SVM and nearest neigh-
bour classifiers. In addition to using the full set of all LLDs and all functionals (6 669
features), smaller feature sets were obtained by taking only the MFCCs (1 521 fea-
tures) and/or using only mean and variance instead of all functionals (342 features
for all LLDs and 78 for MFCCs). Table 2.5 shows the results for the experiments
with different feature configurations. The best performance (73 %) was obtained
with the full feature set and SVM as classifier, while using only MFCC features
(68 %) was slightly worse. Reducing the set of functionals to only the mean and
variance of each of the LLDs led to a degradation in performance to 64 % for both
feature sets. These interesting results show that the additional features (compared
to only MFCC) are only relevant when being combined with the large set of func-
tionals. For the nearest neighbour classifier, acceptable results were only obtained
with the reduced set of functionals, resulting in an accuracy of 50 % for all LLDs
and 39 % for MFCC. Interestingly, for the nearest neighbour classifier, there was a
larger difference in the performance of MFCC vs. all LLDs. Here, the LLD seem to
introduce important information that improves the classification results.

Table 2.6 shows the confusion matrix for the best-performing system, using all
proposed features with SVM and the employed window approach. Some classes (bus,
busystreet) were recognised with 100 % accuracy, while for others (park, restaurant,
tube), scores as low as 40 % were obtained. Most confusions were made between the
classes park and quietstreet or between restaurant and supermarket. The recordings
of the classes park and quietstreet are partly very similar. Recordings of the classes
tube and tubestation contain a high variability, depending on the actual acoustic
events. Therefore, these classes were confused with several other classes.
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2.1 Acoustic Scene Classification

Table 2.6: Confusion matrix of the development data for the proposed system, achieving
an accuracy of 73 %.
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bus 10 0 0 0 0 0 0 0 0 0
busystreet 0 10 0 0 0 0 0 0 0 0
office 0 0 9 0 0 0 0 1 0 0
openairmarket 0 0 0 9 0 0 0 1 0 0
park 0 0 0 0 5 5 0 0 0 0
quietstreet 0 0 0 1 2 7 0 0 0 0
restaurant 0 0 0 2 0 0 4 4 0 0
supermarket 0 0 0 0 0 0 1 8 0 1
tube 0 1 0 0 0 0 1 2 5 1
tubestation 1 0 0 0 1 1 1 0 0 6

Table 2.7: Results for the latent perceptual indexing approach with MFCC features for
different numbers of clusters.

# clusters
10 20 50 100 200 500 1000

Accuracy [%] 32 36 44 42 43 46 44

2.1.6.4 Results for Latent Perceptual Indexing

For latent perceptual indexing, the best results were obtained with MFCC features
and all functionals. Furthermore, a smaller window size led to better results. There-
fore, 1 s windows without overlap were employed. The results for different numbers
of clusters are shown in Table 2.7.

The best result (46 ± 10 %) was obtained with 500 clusters. Generally, the
performance was similar to the nearest neighbour approach. Considering that the
classification was performed on the whole recordings instead of windowed data, the
accuracy was also comparable to the SVM system with MFCC and without the
window approach. Generally speaking, such an approach based on latent perceptual
indexing requires more training data to deliver better results.

2.1.6.5 Feature Analysis

In order to better understand the contribution of different features to the classifica-
tion result, a method for feature analysis was developed and applied to the system.
For each of the employed 6 669 features, a score was computed using a t-test. The
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Figure 2.3: Influence of number of features on the accuracy [57] (note the nonlinear scale
of the horizontal axis).

t-statistic was computed for each pair of acoustic classes and was summed up over
all pairs to obtain a single score for each feature. According to Welch’s t-test [231],
the t-statistic tij for two different classes i and j is computed as

tij =
µi − µj√
σ2
i

ni
+

σ2
j

nj

(2.3)

using the expected value µi of the considered feature’s distribution for the class i,
the corresponding standard deviation σi and the number of samples belonging to
this class ni. This score was computed for each fold, using the training data of this
fold. Summing up the scores over all folds resulted in a feature ranking. Using this
feature ranking, another set of experiments was conducted, starting with the ten
best features and gradually adding more features until the whole feature set was
used. For this analysis, SVM was chosen as a classifier. Figure 2.3 shows the results
of this experiment. Generally, with increasing number of features, the accuracy
increased constantly, with an outlier representing a local maximum at 150 features
and 65 % accuracy. This could either be a (statistically not significant) outlier, or it
could be the case that the subsequent features are worse and therefore deteriorate
the performance. The top 150 features contained mostly Mel spectra (116, whereby
lower-order components were represented more often), but also energy (14), MFCC
(14, only from the 12 th component), spectral flux (2), and position of spectral
minimum (4). Comparing these results to Table 2.5, in which MFCCs achieved
a similar performance, it can be concluded that MFCC and Mel spectra perform
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2.1 Acoustic Scene Classification

equally well in this task. Most of the functionals were equally represented in the
top 150 features. However, it stands out that 88 of them are variants of a mean
value (e. g. mean of absolute values, mean of non-zero values, quadratic mean). The
results of the feature analysis are in line with the results presented in Table 2.5,
indicating the performance gain of the employed large feature set. Already with a
comparably small feature set (MFCC or Mel spectra, with mean and variance as
functionals), a relatively good performance can be achieved. Adding more LLDs
and functionals leads to a small but substantial improvement.

2.1.6.6 Test Set

The best system configuration (all LLDs, all functionals, SVM classifier on 4 s win-
dows with 50 % overlap) achieved an accuracy of 69 ± 12 % on the non-public test
set of the employed corpus. Generally, the same tendencies can be observed as for
the development set and the system made similar confusions. This result shows that
the proposed system generalises well to a previously unseen test set. Although the
accuracy was slightly worse than on the development set (73 %), it can be concluded
that, even with such a large feature set, there is no overfitting of the system.

Detailed test set results for all systems that participated in the scene classifi-
cation track of the challenge on detection and classification of acoustic scenes and
events are publicly available [76] 1. Here, a comparison of the experimental results
of the participants in the challenge is included. Accuracies obtained with the official
challenge test set are listed in Table 2.8. The baseline system (MFCC + GMM) im-
plemented by the organisers of the challenge achieved an accuracy of 55 %. Almost
all of the challenge participants were able to beat this result. The best performing
system used features derived by recurrence quantification analysis of MFCCs which
describe the temporal dynamics of the acoustic scene. A large portion of the submit-
ted systems used various simple audio features together with SVMs for classification.
As in the system proposed in this thesis, the classification was performed on larger
windows, followed by majority voting, in many of the participating systems. Due
to the larger feature set, the proposed system achieved better results than many of
these similar systems.

2.1.7 Conclusions

In this section, a system for acoustic scene classification was presented and eval-
uated. Using large-scale audio feature extraction and SVM, an accuracy of 73 %
was obtained on the development partition (69 % on the test set) of the dataset of
acoustic scenes from the challenge on detection and classification of acoustic scenes

1http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/resultsSC.html, last accessed in April
2014
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Table 2.8: Test set results in terms of accuracy (Acc.) for all participants in the scene
classification track of the challenge on detection and classification of acoustic scenes and
events.

Features Classifier Acc. [%]

recurrence quantification analysis of MFCCs [188] SVM 76 ± 7.2
Wavelets+MFCCs [137] Treebagger 72 ± 8.4
histogram of oriented gradients of spectrum [177] SVM 69 ± 7.8
proposed: spectral, energy, voicing features SVM 69 ± 12.0
i-vector of MFCC [42] LDA 65 ± 3.1
spectral features, loudness [32] HMM 65 ± 6.9
learnt by restricted Boltzmann machine [152] SVM 60 ± 8.2
MFCC + others [157] SVM 60 ± 8.7
spectrotemporal modulations [164] SVM 58 ± 9.0
Cochleogram features [129] SVM 55 ± 4.4
baseline: MFCC [77] GMM 55 ± 10.0
normalised compression distance [159] Random Forest 17 ± 2.4

and events [77]. This is an improvement compared to using only MFCC features
(68 %).

In a detailed experimental section, the influence of different features was inves-
tigated. A substantial performance gain was achieved by adding energy, spectral,
and voicing-related features to a feature set consisting of MFCCs. This shows that
MFCCs can not capture all the relevant information that is needed to characterise
complex acoustic scenes. Furthermore, it was found that these additional audio fea-
tures are only relevant when coupled with the employed set of statistical functionals.
The approach of window-based classification followed by majority voting proved to
be highly efficient. A feature analysis showed that Mel spectra were an important
factor for the high performance. In addition, the other employed energy and spec-
tral features help to better capture the information in the acoustic scenes. Some
acoustic scenes (park, restaurant, tube, tubestation) are difficult to recognise due
to the high variability in the class and the similarity between the different classes.
Future work could apply source separation techniques such as non-negative matrix
factorization (NMF) to better handle overlapping acoustic sources.

In a system that tries to analyse an arbitrary audio recording, categorising the
acoustic scene is the first step of the processing chain. Such knowledge is helpful in
the next processing steps, since the system can now adapt to the expected acoustic
events. One example is the detection and classification of individual acoustic events.
If the acoustic scene can be classified, prior probabilities of acoustic events that might
happen can be preadjusted accordingly. In the next section, a system for acoustic
event classification is presented.
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2.2 Supervised Learning of New Sound Events

Once the type of an acoustic scene is determined, one of the next goals is to detect
and classify individual acoustic events. In this section, a system for acoustic event
classification in an office environment is presented and evaluated. Hidden Markov
models (HMMs) are used to model different acoustic event classes. A special focus
is on the system’s ability to learn new acoustic events. This problem is known as
the open-set case, in which a class of acoustic events appears that was not included
in the training phase. It is evaluated how new classes can be learnt using maximum
a posteriori (MAP) adaptation [14] or conventional training methods. Experiments
are performed with a database of acoustic events in an office environment.

In a typical office environment, many different sounds are produced either by a
human or by objects handled by humans. The detection and classification of such
acoustic events is a less explored research area, compared to the fields of speech or
speaker recognition. Examples of these acoustic events are human non-vocal sounds
such as coughing or other sounds such as keyboard typing or closing a door. Being
able to detect and identify these acoustic events helps to analyse the human activity
that takes place. Acoustic event detection and classification can also be used to
enhance automatic speech recognition. Both can be regarded as disciplines in the
area of computational auditory scene analysis [228].

A good overview of recent advances in acoustic event detection and classification
technology in an office environment is given in [216]. Several international evalu-
ation campaigns are described, in which different approaches have been deployed,
mainly using HMMs or SVMs. The classification of events, activities and relation-
ships (CLEAR) evaluation provided a testbed for different systems for the detection
and classification of acoustic events [217]. Another domain for acoustic event recog-
nition was considered in [128], where the goal was to classify acoustic events in a
kitchen environment. Small improvements over an MFCC baseline were obtained
with features derived from a temporal extension of independent component analysis,
together with GMMs or HMMs as a classifier. Other possible domains for the ap-
plication of acoustic event detection and classification are the detection of key audio
events in sports games [106] or affective video content analysis [248]. Acoustic event
detection and classification can also be part of a robot audition system as described
in [158].

Whereas most of the listed studies describe only closed-set recognition systems
in which the same classes appear during training and testing, open-set recognition is
the challenge in which previously unknown classes may appear in the test phase. In
this case, the fact that an acoustic event belongs to a previously unknown class needs
to be detected. This is known as novelty detection [8]. After detecting an acoustic
event as being novel, the problem is to add a new class to the classification system.
This problem is analogous to the enrolment of a new speaker in a speaker recognition
system. The standard approach utilised in speaker verification is to use a universal
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background model which contains training data of many different speakers and to
use MAP adaptation to derive a model for a new speaker based on limited amounts
of enrolment data [182]. However, constructing a universal background model from
many different acoustic events, which can be of very diverse nature, might not be
efficient.

This thesis presents a system that classifies acoustic events. As a classifier, this
system uses HMMs with MFCC features, whereby each class of acoustic events is
modelled by one HMM. The present study wants to concentrate on the case in
which an acoustic event appears that is not known to the system and is already
detected as novel. Two different approaches to add new classes (with limited data)
to the system are evaluated. The first approach is to simply perform a complete
expectation maximisation training cycle with the instances of the new class. The
second approach uses MAP adaptation to derive the model of a new class from
the model of one of the known classes. To evaluate the system, a small database
of distinctive acoustic events from an office environment was recorded. A possible
application scenario is a robotic platform which can learn typical sounds of its daily
environment.

In Section 2.2.1, a general system overview and a description of the methods
to learn new classes is given. The recorded database, experiments, and results are
described in Section 2.2.2, followed by some concluding remarks.

2.2.1 Acoustic Event Classification

This study tackles only the problem of classification of acoustic events and ignores
the processing step of event detection. In a silent environment, this step could
be performed using an energy-based voice activity detection (VAD) system. As a
baseline system for event classification, MFCCs are extracted as features and con-
tinuous HMMs are employed for the classification task. The system is subsequently
improved by optimising the number of HMM states using an approach based on the
Bakis length modelling method. The main part of this study addresses the prob-
lem of adding a new class to the classifier. When an acoustic event is detected as
previously unknown, it can be added to the system such that when it appears the
next time, it can be regarded as known to the system. In order to do this with an
HMM-based system, a new model needs to be created for the new class. Two possi-
bilities to achieve this are compared here. The first is to repeat the training phase
as it was done with the other classes (using expectation maximisation training). In
this approach, the parameters of all models are initialised with global statistics. As
a second possibility, MAP adaptation can be used to create a model for the new
class, leaving the other models unchanged.
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2.2.1.1 Audio Features

As acoustic features, standard MFCCs (+ energy) with delta and delta-delta coef-
ficients were used. Whereas the baseline system used 12 MFCC coefficients, pre-
liminary experiments showed that the best results could be achieved using 8 MFCC
coefficients, which, together with energy, delta, and delta-delta coefficients, leads to
a total number of 27 extracted features. The features were calculated for overlap-
ping windows of 25 ms size using 60 % overlap (which corresponds to a frame shift
of 10 ms). During feature extraction, the stereo signal was converted to mono by
averaging over both channels.

2.2.1.2 Pattern Recognition with Hidden Markov Models

An HMM is a statistical generative classifier [175]. In an HMM system, one model
is constructed for each class. This model can estimate the probability for a specific
observation of belonging to the class represented by this model. HMMs became
popular in speech recognition because of the ability to handle dynamic sequences.

An HMM can be regarded as a combination of two stochastic processes, where
the first is a state machine and the second describes the emission of observations.
Formally, an HMM can be defined as the tuple

λ = (S, V,Π, A,B), (2.4)

where S = (S1, . . . , SN) is the set of possible states in the state machine, V =
(v1, . . . , vK) are the possible observations, Π = (π1, . . . , πN) are the starting prob-
abilities for the states in the state machine, A = (aij), 1 ≤ i, j ≤ N are the state
transition probabilities, and B = (bik), 1 ≤ i ≤ N, 1 ≤ k ≤ K are the observation
probabilities bik = p(Ot = vk|qt = Si) for observation Ot given HMM state qt at time
steps 1 ≤ t ≤ T . The states of an HMM are hidden and only the observations can be
observed. Figure 2.4 shows an exemplary three-state HMM, where the black arrows
represent the state transitions and the grey arrows depict the observation probabil-
ities. With a given set of parameters λ, the probability p(O|λ) corresponds to the
probability that the HMM λ produces the observation O. A classification problem
can be solved by providing an HMM for each class k and performing maximum-
likelihood classification

k̂ = arg max
k

p(O|λk), (2.5)

choosing the model with the highest observation probability. Algorithms are avail-
able to estimate optimal model parameters given a set of training observations or to
determine the observation probability of a test observation in an efficient way [175].

Often, the discrete observation probabilities b are replaced by continuous dis-
tributions (e. g. using GMMs) in audio processing. Furthermore, it is common to
employ left-right HMMs, where no back-stepping is allowed in the state machine.
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Figure 2.4: Diagram of a three-state HMM.

2.2.1.3 Classifier

HMMs, implemented in the hidden Markov model toolkit [252], were used as a
classifier to recognise the acoustic events. Each model corresponds to one class, and
the observations were represented by audio feature vectors.

The models were designed as continuous HMMs with a left-to-right topology; the
observations were modelled by a mixture of Gaussians, defined by a mean vector,
covariance matrix, and mixture weight for each Gaussian. For each class of acoustic
events, one model was created in the training phase of the classifier.

In order to optimise the number of HMM states, an approach based on Bakis
length modelling [9] was adopted, as proposed in [55]. This methodology follows
the finding that the length of the acoustic events is not constant for all different
types of events. Each HMM should be able to adequately model the corresponding
class and therefore, the number of HMM states should be adapted to the expected
length of the acoustic events. The baseline system used the same fixed number of
states for every model (also referred to as fixed length modelling). The Bakis length
modelling method proposes to set the number of states of each model to a fraction
of the average length of the instances of the class. Here the length corresponds to
the length of the recording of the acoustic event in seconds, which can be derived
from the recorded database. In the employed variant of the Bakis length modelling
method, the number of states N(k) for a model corresponding to class k was set to

N(k) = c+ f · t̄(k), (2.6)

where t̄(k) is the average length of the recordings corresponding to class k while
c and f are an additive constant and a factor, respectively, which were optimised
heuristically. Using this method, the number of HMM states can be modelled to
better fit the class statistics.
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2.2 Supervised Learning of New Sound Events

2.2.1.4 Learning New Acoustic Events

Once an acoustic event has been detected as being novel (novelty detection is not
covered in this study), it can be added to the database of known acoustic events. Two
ways to learn a new class of acoustic events are compared. The first, conventional
way (which is referred to as train method in the following,) is to perform a normal
training cycle using expectation maximisation. The training is performed with all
classes to ensure proper model initialisation.

Another possibility to add a new class to the classifier is to use MAP adaptation.
This approach will be called adapt method in the following. The model for the new
class is not built up from scratch, but it is derived from another model using MAP
adaptation. First of all, the new, unknown acoustic event is classified as one of the
known classes, then this class is used as a starting point for MAP adaptation. The
new model is created by copying and adapting the model of the most similar class.
As adaptation data, the recorded (one or more) instances of the new class are used.

MAP adaptation (also known as Bayesian adaptation [14]) is used to adapt the
means, mixture weights, and variances of the output probabilities of the HMMs.
The mean of mixture component m is adapted as

µ̂m =
Nm

Nm + τ
µ̄m +

τ

Nm + τ
µm, (2.7)

where µ̂m is the adapted mean, µ̄m is the mean of the observed adaptation data, µm
is the old mean of the Gaussian, Nm is the occupation likelihood of the adaptation
data for mixture component m, and τ is a weighting factor. Equation (2.8) is used
to adapt the variances of the output probability distributions of the HMMs:

σ̂2
m =

Nm

Nm + τ
Em(x2) +

τ

Nm + τ
(σ2

m + µ2
m)− µ̂2

m. (2.8)

Here, σ̂2
m is the adapted variance, σ2

m is the old variance, and Em(x2) is the expected
value of the squared observation vector x2 for mixture componentm. The adaptation
of mixture weight wm for mixture m follows

ŵm = (
Nm

Nm + τ

Nm

T
+

τ

Nm + τ
wm)γ, (2.9)

where ŵm is the adapted mixture weight, wm is the original mixture weight, T is
the length of the adaptation data, and γ is a normalising factor which is needed to
ensure that all mixture weights sum up to 1.

The weighting factor τ was optimised heuristically. Smaller values of τ lead to
higher adaptation, which means (in case for the mean) that the new mean is nearer
at the mean of the adaptation data than at the old mean. If τ is set to zero, the new
model corresponds to a model trained only with the adaptation data. Conversely,
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higher values of τ lead to less adaptation. In the case of τ → ∞, the old model is
copied in order to get the new model, while neglecting the adaptation data.

2.2.2 Experimental Evaluation

This section presents the experimental validation of the proposed system.

2.2.2.1 Database

For testing purposes, a database of non-overlapping acoustic events was recorded
with a pair of microphones of a robotic platform in a silent office environment.
During the recording process, an automatic energy-based VAD algorithm was used
to detect and segment the acoustic events. Thus, the database contains segmented
recordings of acoustic events. 15 different classes of acoustic events from an office
environment were chosen to be included in the database. These classes include
ambient sound events and command-oriented social signals as well as gestures that
are intended to provide a scene analysis system with a better understanding of
its environment. Two special acoustic events that were included in the database
are speech for normal speech and garbage for all sounds that appeared during the
recording that are not included in any of the other classes. Table 2.9 shows the
15 different classes, their frequency in the database, and the average length of the
recordings (which is needed for the optimisation of HMM state numbers). The
average recording length includes a short phase of silence at the beginning and at
the end of each recording. The recorded database is not intended to be used for a
very generalised recognition system. For example, it will not be able to recognise
all kinds of closing doors. The database is rather intended to be a small sample of
very specific sounds from a small environment. In total, the database is made up of
506 single acoustic events.

2.2.2.2 Baseline Results

For the baseline system, 12 MFCC features were calculated during feature extrac-
tion. Together with the energy and their delta and delta-delta coefficients, this sums
up to a total of 39 features. The baseline system used fixed length modelling (with
6 HMM states for each class) to determine the number of HMM states.

In order to get reliable results, a 5-fold stratified cross validation was applied.
Therefore, the instances of each class in the database were randomly divided into five
subsets and the experiments were conducted five times, whereby each time another
one of the subsets was used for testing. Each time, the remaining four subsets were
used to train the models. The final classification result was obtained by averaging
over the results of the five single experiments. Table 2.10 shows the confusion matrix
for the baseline system. Eight out of the 15 total classes were recognised with 100 %
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2.2 Supervised Learning of New Sound Events

Table 2.9: Overview of the 15 classes of different acoustic events in the database, their
frequency, and the average length of the recordings in seconds. The total number of
acoustic events in the database is 506, with an average length of 1.69 s.

Class # files avg. length [s]

chair rolling 22 1.68
chair squeak 24 1.16
clap 36 1.27
cough 51 1.56
door closing 21 1.42
finger snap 30 1.13
garbage 25 1.96
glass placement 51 1.26
key laydown 16 1.25
key rattle 41 2.43
keyboard 39 1.43
paper rustle 42 2.30
paper tear 44 1.38
speech 36 2.69
steps 28 2.03

accuracy. The total accuracy was 95.9 %, which corresponds to an error rate of
4.1 %.

2.2.2.3 Results for Optimisation of HMM State Numbers

Starting with the baseline system, the number of HMM states was optimised using
Equation (2.6). The optimal parameters turned out to be f = 2.5 and c = 4. The
application of these parameters (which corresponds to state numbers between 7 and
11) led to an error rate of 3.2 %, which is a relative improvement of 23.7 % compared
to the baseline system. Finally, the number of MFCC coefficients was surveyed and
the best result was achieved with eight coefficients (27 features in total) with an
error rate of 2.8 %. The results of the baseline system and the optimisations are
summarised in Table 2.11.

2.2.2.4 Results for Learning New Classes

To evaluate how good a new class can be learnt by the system, the experimental
setup as described in the following was used. The described experiment was repeated
15 times, whereby each time, one of the acoustic event classes was used as the ‘new’
class.

Using the structure of the improved baseline system, the models were trained
using all but one of the classes, whereby the same amount of training data was used
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2 Recognition of Acoustic Scenes and Events

Table 2.10: Confusion matrix for the baseline recognition system. Many of the classes are
recognised without errors.
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a 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 0 0 34 0 0 2 0 0 0 0 0 0 0 0 0 5.6
d 0 0 0 51 0 0 0 0 0 0 0 0 0 0 0 0
e 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 1 0 28 0 0 0 0 0 0 1 0 0 6.7
g 0 1 0 0 0 0 20 0 0 0 1 0 0 1 2 20
h 0 1 1 0 0 0 0 49 0 0 0 0 0 0 0 4
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j 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0
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m 0 0 0 0 0 1 0 0 0 0 1 2 40 0 0 9.1
n 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0
o 0 0 0 0 2 0 0 0 0 0 0 0 0 0 26 7.2

Table 2.11: Summary of the recognition results of the baseline system and its improve-
ments. Using a separate number of states for each HMM and adjusting the number of
MFCC components reduced the error rate by roughly one third compared to the baseline.

System setup Error rate [%]

baseline 4.1
improved state numbers 3.2
improved state numbers + MFCC 2.8

as for the baseline system. Then, the new class was added to the system using one
of the two methods described in Section 2.2.1.4 (complete retraining or adaptation).
One, two or three instances of the unknown class were used to create the new model.
The remaining data of the new class were used for testing. A 5-fold cross validation
was used to have each instance (of the ‘old’ classes) in the test set once. In addition,
this experiment was repeated several times, whereby each time different instances of
the new class were used to create the new model. The final average results are shown
in Table 2.12. These results show that when using the train method, the average
error rate for the newly added class was very high when the model was created from
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2.2 Supervised Learning of New Sound Events

Table 2.12: Error rates [%] for learning a new class using either full training (train) or
MAP adaptation (adapt) to create the model of the new class. Either one, two, or three
instances of the new class are used, whereby each time, error rates are reported for the
new class (new) as well as for the other classes (rest).

1 instance 2 instances 3 instances

new rest new rest new rest

train 85.4 3.0 57.7 3.0 35.6 3.1
adapt 33.9 4.6 25.6 4.4 21.4 4.3

only one instance of the class, but, not surprising, it decreases very strongly when
more instances are used. For the adapt method, using only one instance of the new
class already delivered results that were much better than for the train method.
Here, the performance increased as well when more instances of the new class were
used, but not so strongly as with the first method. The classification results for the
other classes should not be neglected. With the train method, the effect of adding
a new class on the classification performance of the previously known classes was
almost neglectable. This was not the case when MAP adaptation was used. In this
case, the error rate for the previously known classes increased slightly. Looking at
the detailed results shows that this was due to confusion of the class that was taken
as a base for MAP adaptation with the new class.

2.2.3 Conclusions

This section presented a system for acoustic event classification based on HMMs.
The system was tested with a database of acoustic events recorded in an office
environment. Then, the case of open-set recognition was considered. When an
acoustic event is detected as being previously unknown, the question was how it can
be added to the system as a new class. Two approaches were compared, using full
expectation maximisation training or MAP adaptation. The results showed that
when using full training, the accuracy for the new class was not acceptable when
only one instance of this class was used to train the model of this new class. However,
using two or three instances improved the results. The classification performance of
the other classes was not affected by adding a new class. As another approach to
add a new class, MAP adaptation was evaluated. With only very few instances of a
new class, MAP adaptation outperformed full training regarding the error rate for
the new class. The error rate for the other classes was affected slightly negatively
by adding a new class. Thus, it can be concluded that the proposed method is very
efficient for learning new acoustic events in the case that only small amounts of
training data are available.
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2.3 Chapter Summary

This chapter presented the first processing steps in a system that analyses the con-
tents of an acoustic scene. The first step is to categorise the acoustic scene (as a
whole) into one class. A method for classifying the acoustic scene of longer audio
recordings (30 seconds in the case of the present study) was introduced. Using a
large set of cepstral, spectral, energy, and voicing-related audio features together
with a set of statistical functionals, a description of the acoustic scene is created on
the window-level. The windows (with a length of several seconds) are classified sep-
arately and a majority voting is employed to find a decision for the whole scene. In
the experimental evaluation with the scene classification database of the challenge
on detection and classification of acoustic scenes and events, the system achieved
excellent results that beat many other participating systems. The second part of
the chapter focussed on acoustic event classification, dealing with the special case
of learning new acoustic events. An HMM-based system for acoustic event classi-
fication was implemented and evaluated with a database of acoustic events in an
office environment. Two different methods for learning a new acoustic event were
compared, whereby the proposed method achieved substantially better results.

With the developed methods, an acoustic scene can be categorised into one
among a set of classes, and the appearing acoustic events can be classified. The
result is the basis for further analysis of the audio sources. In the present study, a
special focus is on human activity. The most prevalent sound produced by humans
is the human voice, whereby the next goals of the system are to identify the speaker
and to recognise the spoken contents, which will be the focus of later chapters in
this thesis. Another example of sounds produced by humans are footsteps. Footstep
sounds can also carry important information. The following chapter focuses on
analysing footstep sounds in order to identify the walking person.
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Acoustic Gait-based Person
Identification

This chapter presents contributions and solutions in the field of person identification
from step sounds. Two different approaches for acoustic gait-based person identifi-
cation are presented.

3.1 Introduction

Recognising people by the way they walk (also known as gait recognition or gait-
based person identification) is a relatively new field of research. Person identification
can be found in many practical applications and is implemented in public places (e. g.
shopping malls or train stations) or smart homes [114]. Approaches for biometric
person identification can be categorised into physiological and behavioural methods.
The most common methods for physiological biometrics use iris [259] or fingerprint
patterns [148]. Behavioural approaches, in contrast, use voice (as illustrated in
Chapter 4 of this thesis), gait [34], or other characteristics. Early research has
already demonstrated that gait can be seen as a biometric feature [151] and that
it can be used to identify humans [35]. Most of the previously proposed methods
for gait-based person identification work in the visual domain, where this topic has
been an active field of research for the last decade [134]. Acoustic information,
however, can also be used for gait recognition. Here one has to differentiate between
active and passive systems. Active systems emit ultra-sonic sounds and estimate
gait signatures from the reflections [160, 257]. On the other hand, passive systems
(which are the focus of this thesis) directly measure the step sounds emitted by a
person walking. Even though the focus on this modality (using passive systems) has
so far been significantly less, results are promising.

While in the visual domain gait identification systems can rely on analysing
the silhouette [229], the task is much more difficult for systems working only with
audio information. The relevant information that can be exploited by such systems
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consists not only of the sounds of the steps, but also of the sounds of clothing on
moving arms and legs. These sounds are influenced by the gait pattern of the person,
making them suitable to be used for person identification. Furthermore, the sounds
produced during walking are highly dependent on factors such as the type of floor,
shoes, and clothing. A user study from Mäkela et al. [143] evaluated the potential
of humans to recognise others by their walking sounds. After a training phase,
twelve subjects were able to identify their co-workers by their walking sounds with
an accuracy of 66 %. This result indicates that walking sounds convey characteristic
information about the subject and can thus be used for person identification.

Potential applications of gait-based person identification using audio information
are indoor surveillance scenarios as well as access control systems. Such an audio-
based system can be used to enhance visual surveillance and facilitate multimodal
approaches. Unlike video-based person identification, acoustic systems also work in
the darkness, require less expensive hardware and often lower sensor density, and are
less obtrusive. Acoustic gait-based person identification is also known as acoustic
gait recognition.

3.1.1 Contributions

In this chapter, two different methods for acoustic gait-based person identification
are proposed. First, a system is presented employing a static classifier. A large
candidate feature set adopted from speech processing is employed, and features
that are relevant for the addressed problem are selected systematically. Support
vector machines (SVMs) are used for classification, and features are ranked and
selected using a wrapper approach. In addition, it is shown how audio features can
improve a conventional video-based system through multimodal fusion. Second, a
person identification system using a dynamic classifier is presented. This system
extracts cepstral features from the recorded audio signals and uses hidden Markov
models (HMMs) for dynamic classification. A cyclic model topology is employed
to represent individual gait cycles. This topology allows the system to model and
detect individual steps, leading to very promising identification rates.

All experiments were performed with audio data from the TUM gait from audio,
image and depth (GAID) database, which contains recordings of a large number
(> 300) of subjects. Furthermore, the database features three different variations
(normal walking, walking with a backpack, and walking with shoe covers), which
allows for realistic experiments.

Next follows a discussion of related work. After introducing the employed
database in Section 3.2, two identification systems are presented. First, a system
based on a static classifier is proposed in Section 3.3, followed by a system that uses
a dynamic classifier in Section 3.4. The chapter concludes with a short summary in
Section 3.5. Sections 3.3 and 3.4 are based on the results published in [66] and [67],
respectively.
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3.1.2 Related Work

The most widespread approach for video-based gait recognition is the gait energy im-
age (GEI) [95], which is a simple silhouette-based method. It can be combined with
face recognition [103] or with depth information [102] to improve the recognition per-
formance. Furthermore, model-based approaches have been proposed for visual gait
recognition [249]. Besides using video or audio information, other methods to iden-
tify walking persons include using acoustic Doppler sonar [119] or pressure sensors
in the floor [253]. For example, the authors of the study presented in [212] com-
bined different classifiers to improve identification performance using footstep data
obtained with a pressure-sensitive floor. The potential application of a biometric
verification system exploiting footstep signals for a smart home environment is de-
scribed in [187]. In [15], similar methods are used for detecting footsteps, employing
information from acoustic and seismic sensors for this problem.

Using audio information is a relatively new approach for the task of gait-based
person identification. In [201], footstep sounds were detected in a database of various
environmental sounds. A system for person identification using footstep detection
was introduced by Shoji et al. in [202]. This system used Mel-cepstrum analysis,
walking intervals, and the degree of similarity of spectral envelope for classification,
together with a method based on k-means clustering. The system was tested with a
database of five persons. This study was extended in [112] by adding psychoacoustic
features such as loudness, sharpness, fluctuation strength, and roughness. Finally,
in [113], dynamic time warping was used for classification and the database was
extended to contain ten persons. The system achieves almost 100 % perfect classifi-
cation rates (using ten persons). This can, however, be attributed to the simplified
task of classifying pre-segmented footsteps and to the small number of subjects in
the database. A similar task is addressed in the recently published study by Altaf et
al. [3], in which a database of segmented footstep sounds from ten persons is used.
Instead of extracting spectral features, the shape and properties of a footstep sound
are examined in a temporal energy domain. Furthermore, the person-dependent
asymetry between left and right footsteps is used as a feature for identification; for
each footstep, the system is given the information whether it was produced by the
left or the right foot. As a result, an identification accuracy above 90 % is achieved
when a large number of footsteps are used during testing. In the case that only
data from three consecutive footsteps are available, which is more comparable to
the study presented in this thesis, an accuracy of 45 % is obtained. In [38], a system
for person identification based on walking sounds is presented. Employing mainly
spectral features and static classifiers, classification rates range from 33.5 % to 97.5 %
using a database with 15 subjects. The system presented in [2] recognises people
walking on a staircase by exploiting the fact that the number of steps is known.
Inter-peak distances and peak height are used as features.
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The weakness of all previous studies about acoustic gait-based person identifi-
cation is the fact that only small databases have been employed, which are overly
prototypical and mostly contain no more than ten subjects. In addition, very of-
ten, classification is performed using pre-segmented footsteps, which requires an
additional preprocessing step that cannot trivially be solved.

Compared to the discussed previous studies on acoustic gait recognition, this
thesis introduces a larger number of features and a much larger database. To recap,
in the mentioned studies, the employed audio features include gait frequency, spec-
tral envelope, linear predictive coding coefficients, MFCCs, and loudness. In [2],
inter-peak distances and peak height were used as audio features. In [215], acoustic
features from the speech domain are used for the classification of acoustic events,
which is similar to the problem in the present study, since the authors of the men-
tioned study also try to adopt features which were originally developed for speech
processing to another audio recognition task. Another study about feature selec-
tion for acoustic event detection is [260], where the discriminant capability of each
feature (candidate features are MFCCs and log frequency filter bank parameters) is
quantified according to the approximated Bayesian accuracy. In the present study,
similar features and methods for feature selection are considered for the problem of
acoustic gait-based person identification.

3.2 The TUM GAID Database

The freely available1 TUM gait from audio, image and depth (GAID) database [104]
is used for the experiments in this study. This database was recorded with the
goal of providing a possibility to evaluate and compare multimodal gait recognition
systems. Therefore, data were recorded with a colour and depth sensor, as well as
with a four-channel microphone array. Thus, a typical colour video stream, a depth
stream, and an audio stream are simultaneously available. The database contains
recordings of 305 subjects walking perpendicular to the recording device in a 3.5 m
wide hallway corridor with a solid floor. In each recorded sequence, the subject walks
for roughly 4 m, typically performing between 1.5 and 2.5 gait cycles (each of them
consisting of two steps). Most of the sequences have a length of approximately two
to three seconds. Three variations were recorded for each subject: normal walking
(N ), walking with a backpack (B), and walking with shoe covers (S). The backpack
constitutes a significant variation in gait pattern and sound, and the shoe covers
pose a considerable change in acoustic condition. Figure 3.1 shows screenshots of
the three different walking conditions for one subject. There are six recordings of
the N setup and two each of the B and S setups for each subject. This sums
up to a total number of 3 050 recordings. All instances of the same condition were
recorded directly after each other for each subject, meaning that the same shoes and

1www.mmk.ei.tum.de/tumgaid, last accessed in April 2014
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(a) Normal recording (b) Backpack recording (c) Shoe cover recording

Figure 3.1: Screenshots of three recordings in the TUM GAID database.

clothes were used, which corresponds to a re-identification scenario. The metadata
distribution of the database is well-balanced with a female proportion of 39 % and
ages ranging from 18 to 55 years (average 24.8 years and standard deviation 6.3
years). More than half of the subjects were wearing sneakers while other commonly-
used types of shoes are boots and loafers.

Furthermore, the TUM GAID database contains recordings produced at different
dates in time (with three months in between) for a small number of subjects. These
are, however, not used within the present study, but would allow for performing
identification experiments independent of the type of shoes and clothes.

Figure 3.2 shows the spectrograms of four exemplary recordings in the database.
The spectrograms reveal a lot of static background noise, which is due to the record-
ing environment. Figure 3.2 (a) shows a normal recording of one subject, where
each walking step is characterised by two successive sounds, whereby the first sound
has stronger low-frequency components and the second sound has stronger high-
frequency components. With a backpack (Figure 3.2 (b)), the steps get softer and
other audible sounds are added by the backpack. When the subject wears shoe
covers (Figure 3.2 (c)), more and longer high-frequency components are introduced,
which are the rustle-like sounds of the shoe covers. For reference, Figure 3.2 (d)
shows the spectrogram of another subject with sounds between the steps, which are
the result of the legs of the trousers rubbing against each other.

To allow for a proper scientific evaluation and to prevent overfitting on the test
data, the database is divided into a development set and a test set. The two sets
are person-disjunct and contain 150 and 155 subjects, respectively. The partition of
the database is shown in Table 3.1. Both for the development and for the test set,
the first four N recordings of each subject are envisaged for the enrolment process.
The other two N recordings as well as the B and S recordings are used to perform
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(a) Normal recording
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(b) Backpack recording
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(c) Shoe cover recording
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(d) Normal recording of another subject

Figure 3.2: Spectrograms of four recordings in the TUM GAID database [66].

the identification experiments. This means that models are learnt only using the
N recordings, while the B and S conditions constitute previously unseen variations
during the identification experiments and are therefore expected to deteriorate the
identification performance.

3.3 Acoustic Gait-based Person Identification us-

ing SVM

In this study, several acoustic features are examined for their suitability for acoustic
gait recognition. The candidate features are established in audio processing tasks
like speech recognition, emotion recognition or acoustic event classification. Fur-
thermore, the feature set also includes features which have been used in previous
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Table 3.1: Partition of the TUM GAID database.

Development Test
(150 subj.) (155 subj.)

N 1 – N 4 enrolment enrolment
N 5 – N 6 identification identification
B1 – B2 identification identification
S1 – S2 identification identification

studies of acoustic gait-based person identification. The size of the feature set is
reduced using a wrapper-based feature selection technique. This, at the same time,
increases the identification accuracy. For classification, SVMs are employed.

3.3.1 Candidate Features

The TUM GAID database provides audio signals with four audio channels recorded
with a sampling rate of 16 kHz. Before the feature extraction step, the recordings
were converted to mono by averaging over the four individual channels. In order to
provide a first well reproducible and transparent baseline system, a brute-force large-
scale feature extraction approach was used by employing the open-source toolkit
openSMILE [45].

The employed audio feature set is based on the baseline audio features provided
for the 2011 Audio/Visual Emotion Challenge [196] and it contains a number of
energy, spectral, and cepstral features. Compared to that feature set, the voicing
related features were omitted, as it was found that these are not relevant for the
problem of gait recognition. The employed features are of supra-segmental nature.
This means that the acoustic descriptors such as energy and spectral entropy (which
are sampled at a fixed rate) are summarised over a recording (of variable length) into
a single feature vector of constant length. This is achieved by applying functionals
to the acoustic low-level descriptors (LLDs). Thereby, each functional maps each
LLD signal into a single value for the given segment. Examples for functionals are
mean, standard deviation, higher order statistical moments, and quartiles.

The set of LLDs and the functionals are listed in Table 3.2 and Table 3.3, re-
spectively. All 25 LLDs were computed every 10 ms, where a window size of 60 ms
was applied for the MFCCs and loudness features while all other features were com-
puted based on windows with a length of 25 ms. Features that were analysed in
previous studies about acoustic gait-based person identification [112, 113] such as
the loudness, psychoacoustic sharpness or MFCCs are included in the tested feature
set. In addition, the feature set provides a substantial amount of further acoustic
information. Furthermore, for each LLD, first order delta coefficients (equivalent to
the first derivative) were computed. The final feature set was made up of 25 LLDs

37



3 Acoustic Gait-based Person Identification

Table 3.2: 25 energy and spectral-related acoustic low-level descriptors (LLDs).

Energy-related features (3)

loudness (auditory model based),
energy in bands from 250 Hz – 650 Hz, 1 kHz – 4 kHz,

Spectral features (12)

zero crossing rate,
25 %, 50 %, 75 %, and 90 % spectral roll-off points,
spectral flux, entropy, variance, skewness, kurtosis,
psychoacoustic sharpness, harmonicity,

Cepstral features (10)

MFCCs 1 – 10

× 42 functionals and 25 delta coefficients × 23 functionals, summing up to 1 625
features in total per recording.

3.3.2 Classification

SVMs with a linear Kernel function (as implemented in the Weka toolkit [94]) were
applied as a classifier. A short introduction to SVMs is given in Section 2.1.4 of this
thesis. Sequential minimal optimisation [170] (complexity 1.0) was used for training.
The multi-class classification problem was handled by constructing pairwise SVMs.
SVMs are discriminative classifiers which do not require large amounts of training
data. This makes them especially suited for the problem considered in this study.

3.3.3 Baseline Results

Results for the candidate feature groups and their combinations (using the devel-
opment set) are shown in Table 3.4. Altogether, the best results were obtained in
the normal (N ) setup. Carrying a backpack (B setup) leads to a different walking
pattern as well as to additional sounds and therefore to a decreased identification
performance. Using shoe covers (S setup) completely changes the characteristics of
the footstep sounds. All results in the S setup were however still better than the
chance level (0.7 % accuracy).

The best single feature group, consisting of the MFCCs, led to an average ac-
curacy of 23.1 %. Energy features (which constitute the smallest feature group
with only three features) achieved the worst performance. Looking at the different
combinations of the feature groups, it can be concluded that MFCCs and spectral
features do not complement each other very well since there is no significant improve-
ment when combining those two feature groups (significance was evaluated using a
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3.3 Acoustic Gait-based Person Identification using SVM

Table 3.3: Set of all 42 functionals used for audio feature extraction. Only the statistical
functionals are applied to delta coefficients, whereby the mean is only computed for positive
values.

Statistical functionals (23)

(positive) arithmetic mean, root quadratic mean,
standard deviation, flatness, skewness, kurtosis,
quartiles, inter-quartile ranges,
1 %, 99 % percentile, percentile range 1 % – 99 %,
percentage of frames contour is above: minimum + 25 %, 50 %,
and 90 % of the range, percentage of frames contour is rising,
maximum, mean, minimum segment length,
standard deviation of segment length

Regression functionals (4)

linear regression slope and corresponding approximation error (linear),
quadratic regression coefficient and approximation error (linear)

Local minima/maxima related functionals (9)

mean and standard deviation of rising and
falling slopes (minimum to maximum),
mean and standard deviation of inter maxima distances,
amplitude mean of maxima, amplitude mean of minima,
amplitude range of maxima

Other (6)

Linear Predictive Coding gain/coefficients 1 – 5

one-sided z-test). The best result was obtained by combining MFCCs with energy
features, with an average accuracy of 28.1 %. This result is significantly better than
with only MFCCs (significant with p < 0.01) and even better than the combination
of all three feature groups.

3.3.4 Feature Analysis

In order to reduce the size of the feature set and to identify the relevant descrip-
tors, an automatic wrapper-based [127] selection technique is applied. In general,
wrapper-based means that the classifier is evaluated during the process of feature
selection (e. g. in order to optimise the feature set).

A simplified version of sequential forward selection [174] was used for feature
analysis. The classifier was trained and evaluated on theN setup of the development
set for each of the N = 1 625 candidate features (including all the delta coefficients

39



3 Acoustic Gait-based Person Identification

Table 3.4: Results on the development set (150 subjects), using different combinations
of feature groups, the best 400 features as determined by the described feature selection
technique, and the best acoustic low-level descriptors (the three energy features, spectral
kurtosis, flux, and skewness as well as MFCC 1). Shown is the identification accuracy for
the three setups N (normal walking), B (backpack), and S (shoe covers) together with
the average (Avg.).

Condition
Features N B S Avg.

MFCC 41.7 22.3 5.3 23.1
energy 29.3 17.0 5.0 17.1
spectral 41.0 20.7 4.0 21.9
MFCC + energy 49.7 28.7 6.0 28.1
MFCC + spectral 44.0 26.3 4.7 25.0
energy + spectral 43.0 24.7 4.3 24.0
MFCC + energy + spectral 48.3 29.0 4.3 27.2
best 400 features 57.7 30.7 3.3 30.6
best LLDs 43.7 29.7 4.3 25.9

and functionals). For each of the features in the feature set F = f1, f2, ..., fN , the
accuracy a(fn) was computed as

a(fn) =
1

T

T∑
t=1

δ
(

arg max
c

P (xt|m(c, fn))− l(t)
)

(3.1)

where xt, t = 1, . . . , T are the instances of the development set, l(t) denotes the
true label for instance t, δ(·) is the Kronecker delta function, and m(c, fn) is the
model of the classifier for class c, built using only feature fn. In this experiment,
accuracies a(fn) between 0 % and 7 % were achieved, with a mean of 1.8 %. The
features were sorted according to their classification accuracy a(fn). Then, starting
with the single best feature, more and more features were added to the feature set
according to their ranking until the whole feature set was used. Figure 3.3 shows
the results of this experiment on the development set. The best result was obtained
using 400 out of the total 1 625 features. This result is also included in Table 3.4.
Out of these 400 features, 89 are derived from MFCCs, 90 from energy features and
221 from spectral features. This composition suggests that in all of the three feature
groups, there are relevant features. While an accuracy of 48.3 % was achieved with
all 1 625 features in the N setup, this accuracy was raised by 19 % relative to 57.7 %
with the 400 best features. This improvement is significant (p < 0.05). For the B
setup, there was a non-significant improvement to 30.7 %, while the performance

40



3.3 Acoustic Gait-based Person Identification using SVM

1 20 50 80 150 300 450 700 1000 1300 1600
0

10

20

30

40

48.3
50

57.7
60

number of features

id
e

n
ti
fi
c
a

ti
o

n
 a

c
c
u

ra
c
y

Figure 3.3: Identification accuracy on the N (normal) setup of the development set for
different numbers of features. More features were added according to their identification
accuracy as a single feature [66] (note the nonlinear scale of the horizontal axis).

in the S setup underwent a slight (non-significant) decrease to 3.3 %, compared to
using all features.

The employed low-level features and functionals were further analysed in the
following. In order to understand the relevance of each feature, a single score was
obtained for each low-level descriptor and for each of the functionals. For each
low-level descriptor, the average of a(fn) over the top 50 % performing functionals
was computed. Analogously, for each of the functionals, the average accuracy was
computed for the top low-level descriptors for this functional. The features which
got the highest scores are the three energy features, spectral kurtosis, flux, and
skewness as well as the first MFCC coefficient. These are also the features which are
among the most common in the feature set of the best 400 features as determined
by the simplified sequential forward selection technique. When only these LLDs
were used (together with all delta coefficients and functionals, summing up to 455
features in total), an average accuracy of 25.9 % was obtained with the development
set (cf. Table 3.4). Since these features have been ranked and selected independently
of each other, it is understandable that the result is slightly worse than the baseline
result of 27.2 % when using all features. Among the functionals, the best scores were
achieved by the means (arithmetic and root quadratic), the standard deviation, the
quartiles and quartile ranges, and the percentiles and percentile ranges. Similarly as
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Table 3.5: Results on the test set (155 subjects), using different combinations of feature
groups, the best 400 features as determined by the described feature selection technique,
and the best acoustic low-level descriptors (the three energy features, spectral kurtosis,
flux, and skewness as well as MFCC 1). Shown is the identification accuracy for the three
setups N (normal walking), B (backpack), and S (shoe covers) together with the average
(Avg.).

Condition
Features N B S Avg.

MFCC 42.3 21.9 7.4 23.9
energy 24.2 17.7 3.6 15.2
spectral 33.2 10.0 1.9 15.1
MFCC + energy 46.5 25.5 7.4 26.5
MFCC + spectral 43.6 24.8 3.6 24.0
energy + spectral 37.1 22.9 3.2 21.1
MFCC + energy + spectral 44.5 27.4 4.8 25.6
best 400 features 51.9 28.4 4.2 28.2
best LLDs 38.1 21.6 4.5 21.4

with the best scored features, these functionals were also among the most common
functionals in the best 400 features.

Table 3.5 shows the results for the experiments using the test set containing 155
subjects. In general, the same trends can be observed as on the development set.
The combination of MFCCs and energy features was better than the combination of
all three feature groups. Using the best 400 features which were selected as described
in Section 3.3.4, the best result was achieved with an average identification accuracy
of 28.2 %. This is a 10 % relative improvement compared to using the whole feature
set.

3.3.5 Multimodal Fusion

Although gait-based person identification using audio features cannot yet reach
the performance of video systems, it has the potential of improving such a sys-
tem through multimodal fusion. Since the TUM GAID database provides video,
depth, and audio data, it is perfectly suited to perform experiments for multimodal
fusion. Therefore, in the following, results are shown for the separate modalities
(video, depth, audio2) as well as for all possible combinations.

A detailed description of the employed methods for video and depth feature
extraction as well as for classification is given in [104]. From the video data, the

2Thanks to Martin Hofmann for providing the features and recognition results for the video
and depth modalities.
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Table 3.6: Multimodal fusion results on the test set (155 subjects), for all combinations of
audio, video, and depth features. Shown is the identification accuracy for the three setups
N (normal walking), B (backpack), and S (shoe covers) together with the average (Avg.).

Condition
Modality N B S Avg.

video 99.1 27.1 52.6 59.6
depth 99.0 40.3 96.1 78.5
audio 44.5 27.4 4.8 25.6
video + depth 99.4 51.3 94.8 81.8
video + audio 99.4 45.2 44.2 62.9
depth + audio 99.0 52.3 95.5 82.3
video + depth + audio 99.4 59.4 94.5 84.4

gait energy image (GEI) [95] is extracted. The GEI averages the information (in
the form of silhouettes) of each frame within a complete gait cycle. The depth
gradient histogram energy image, which is motivated by the concept of histograms
of oriented gradients [37], is used for feature extraction from depth data. It is
similar to the GEI, but, instead of only processing simple silhouettes, it makes use
of the edges and depth gradients within the silhouettes. In this way, it exploits
the available depth information. The video and depth features are processed by
principal component analysis and linear discriminant analysis (LDA) before being
fed to a 1-nearest neighbour classifier with a cosine distance measure. For simplicity,
the baseline audio system (using the whole audio feature set) was selected for the
fusion experiments.

For combining multiple modalities, score-level fusion was applied. The video
and depth scores were represented by the normalised cosine distances, and the audio
scores were obtained from the pairwise voting of the multiclass SVM (majority scores
are normalised and transformed to distances). Scores were combined with the sum
rule (i. e. added together), and the scores of video, depth, and audio features were
weighted in the ratio 2:4:1. Finally, classification was performed with a nearest
neighbour classifier using these fusion scores.

The experimental results of all possible combinations of multimodal fusion are
listed in Table 3.6. First, it can be seen that, unsurprisingly, the video and depth
modalities achieved much better results than the system with only audio features.
However, in situations where the video system struggled, such as the backpack
condition (27.1 %), the audio system was able to keep up (27.4 %). Furthermore, the
performance in the backpack condition was significantly improved by combining the
three modalities, compared to the single-modality results. Moreover, the best overall
result (averaged over all recording conditions) was also obtained by combining all
three modalities. This shows that gait-based person identification using only audio
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features is a much more challenging task than with video or depth information;
however, it has the potential to improve the overall system performance when all
modalities are combined.

3.3.6 Conclusions

In this section, an extensive feature analysis for acoustic gait-based person iden-
tification was presented. Using the development set of the TUM GAID database,
suitable features were analysed and selected from a large candidate feature set. Out
of all 1 625 features, a subset of 400 features was selected with a wrapper-based
feature selection technique, which led to the best recognition results while at the
same time reducing the system complexity. This feature set contains features from
all three tested feature groups (energy, spectral, and cepstral). When features were
examined independently of each other, the three energy features, spectral kurtosis,
flux, and skewness as well as the first MFCC coefficient were found to be relevant
for acoustic gait-based person identification. The best results were achieved on the
normal recordings (N condition), while wearing a backpack (B) or shoe covers (S)
influenced the identification accuracy in a negative way. Furthermore, it was shown
how audio features are capable of improving a video-based gait recognition system
through multimodal fusion.

3.4 Acoustic Gait-based Person Identification us-

ing HMMs

A system for static classification of walking persons was presented in the last section.
While a certain amount of dynamics was modelled in the features, this system is
not capable of a dynamic classification of gait sequences. The contribution of this
section is a system for acoustic gait-based person identification using a dynamic
classifier. HMMs are a dynamic classifier (an introduction is given in Section 2.2.1.2
of this thesis) that is capable of modelling the dynamic behaviour of step sounds.
In [236], cyclic HMMs were applied for animal sound classification. The cyclic model
topology proved to be efficient for modelling the repetitive structure of these sounds.
The system proposed in this thesis uses Mel-frequency cepstral coefficients (MFCCs)
as audio features and HMMs with a cyclic topology for classification, in order to
model the dynamics of gait patterns. With the cyclic topology, one pass through the
model corresponds to half a gait cycle (containing one step). Thus, it is expected
that the system is capable of detecting the individual steps in a recording and using
them for person identification. Experiments were conducted using the TUM GAID
database. The experimental results show that the developed system achieves large
improvements in the recognition rates compared to the static classification system
presented in the last section.
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3.4.1 System Description

The proposed system uses HMMs for classification. Each individual subject is mod-
elled by one HMM. While the starting point of the system was to employ settings
from simple word-based speech recognition methods, the system properties were
modified and improved to fit to the problem of acoustic gait recognition. In the
experimental section, it is shown how these modifications improved the system per-
formance.

3.4.1.1 Audio Features

Section 3.3 explored the suitability of different audio features for the addressed
problem. Adding and selecting relevant features improved the average identification
accuracy from 23.9 % (only MFCCs) to 28.2 %. In the present section, the focus
is not on the front-end processing but rather on the back-end recognition system.
Therefore the front-end is kept fixed to using only MFCCs. MFCC features are
extracted in the standard configuration: MFCCs 0 − 12 including their delta and
delta-delta coefficients, computed every 10 ms from a 25 ms Hamming window,
resulting in 39 features in total. While the database provides four-channel audio
recordings, features are extracted from monaural recordings, which are obtained by
averaging over the four channels. In addition, slight improvements were obtained by
processing the audio features with principal component analysis, without reducing
the number of components. Here, the transformations are computed only on the
enrolment data and applied on both the enrolment and identification data.

Figure 3.4 shows the spectrograms and corresponding first MFCC coefficients for
two exemplary recordings (N setup) of two different subjects. The spectrograms
reveal a considerable static background noise, which is due to the recording environ-
ment. Several spectral peaks can be identified which correspond to the footsteps and
the sounds between the steps, which are mostly made by the legs of the trousers
rubbing against each other. In the plot of the MFCCs, the temporal position of
the steps are marked. The behaviour of the MFCCs indicates that these features
are useful to detect the position of the steps and to distinguish between different
persons.

3.4.1.2 HMM Identification System

The starting point in this work is a simple HMM system that can be compared
to a whole-word recognition system (each subject representing one word) in speech
recognition. Each subject in the dataset is represented by one HMM. The models
are designed with a linear left-right topology. With such a model topology, the
HMM has to pass through all of its states sequentially without skipping a state.
Before introducing an appropriate step modelling method, which is described later,
each recording containing several steps is modelled by one pass through an HMM.
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Figure 3.4: Spectrograms (top) and corresponding first MFCC coefficients (bottom), each
for a normal-type recording of two different subjects. The temporal position of footsteps
is marked with a vertical line.

As a result, rather large numbers of states (generally more than ten) are required
to be able to model the dynamic sequence of sounds during walking.

In a standard HMM system, the observations are modelled with a mixture of
Gaussians. However, the first experiments showed that better results are obtained
with HMMs having a single Gaussian state model, as the amount of training data is
very small and hence probably not sufficient to train a more fine-grained distribution
of the features. Another reason could be that a higher number of components leads
to overfitting, modelling also the noise in the recordings.

During decoding, a grammar controls the possible recognition output. The sim-
plest employed grammar follows the basic HMM system setup where exactly one
pass through a model is allowed for each recording. A multi-step grammar was
introduced to let the system automatically segment the recording; any number of
repetitions of the same model (subject) are allowed.

In order to train the HMMs to model the individual steps, an approach using
a cyclic HMM topology was employed as described in the following. In the basic
HMM system, each recording (containing several gait cycles) is modelled by one
pass through the HMM. The strategy of representing each gait cycle separately by
one pass through all states of the HMM is better suited to model the observations.
The two halves of each gait cycle can be considered to be equivalent (although in
fact, there is a person-dependent asymetry [156]), and therefore, the system was
designed to model half a gait cycle (containing one step) by each HMM. In this
way, one pass through the HMM models the sounds of one step and adjacent sounds
(produced by the arms and legs). This method of step modelling was implemented
in the system configuration and training in the following way: the state transition
matrix of each HMM has a left-right topology, and jumps from the last state to the
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Table 3.7: HMM results on the development set (150 subjects) for different systems. Shown
is the identification accuracy for the three setups N (normal walking), B (backpack), and
S (shoe covers) together with the average (Avg.).

Condition
System N B S Avg.

basic HMM 53.3 30.7 7.0 28.2
+ multi-step decoding 56.3 31.3 7.3 31.6
+ principal component analysis 57.7 34.3 9.7 33.9
+ step modelling 69.7 44.7 9.3 41.2

first state are allowed. Models were trained with embedded re-estimation, where
the number of steps was known from the transcription of the training data. As a
result, the position of the steps in the training data are automatically estimated
during model training. Together with the introduced multi-step decoding grammar,
the developed system is capable of detecting, segmenting, and recognising the steps
occurring in the recordings.

3.4.2 Experimental Evaluation

Person identification experiments were performed wi th the TUM GAID database
that was described in Section 3.2. The system was designed and tuned using the
development set of the database. Finally, the test set was employed to evaluate
the best system configuration. For all systems evaluated using the development
set, 15 HMM states appeared to be the optimal configuration. In addition, the best
results were obtained with six training iterations. For each system setup, experimen-
tal results (identification accuracy) are reported separately for the three different
recording conditions (normal, backpack, and shoe covers). Furthermore, the average
accuracy over these three conditions is given.

3.4.2.1 Development Set

Table 3.7 shows the results for different system configurations on the development
set. The basic HMM system without explicit modelling of separate steps is the first
evaluated system. In the normal recording condition, slightly more than half of the
test samples were classified correctly. An accuracy of 28.2 % was obtained when
averaging over the three different conditions, which serves as a baseline for further
experiments.

The first step towards the improved recognition system was the introduction of
a decoding grammar which allows the recognition of multiple sequential instances
of the same subject in the recordings. This modification improved the average
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Table 3.8: HMM results on the test set (155 subjects) for different systems, compared
to previous studies. Shown is the identification accuracy for the three setups N (normal
walking), B (backpack), and S (shoe covers) together with the average (Avg.).

Condition
Accuracy [%] N B S Avg.

video (GEI) [104] 99.4 27.1 52.6 59.7

baseline SVM 44.5 27.4 4.8 25.6
SVM + feat. sel. 51.9 28.4 4.2 28.2

basic HMM 41.0 24.2 7.1 24.1
improved HMM 65.5 36.5 9.0 37.0

accuracy to 31.6 % (mostly due to improvements in theN setup). Applying principal
component analysis to the features improved the accuracy for all three recording
conditions. Finally, training the system to model each step by one pass through an
HMM led to the largest improvement in accuracy. In the normal walking condition,
more than two thirds of the samples were then identified correctly. The accuracy in
the backpack walking condition was also greatly improved, whereas the performance
in the shoe cover condition remained largely unaffected. While the improvements
obtained with the multi-step grammar and principal component analysis are not
significant, improved step modelling led to a significant improvement (compared to
the basic HMM) in the N , and B conditions and for the average accuracy (evaluated
with a one-tailed z-test with a significance level of p = 0.05).

The system’s ability to correctly detect the individual steps was examined with
a simple analysis. To this end, the best-performing developed system (last row in
Table 3.7) was used. For the test samples of the normal walking conditions, the
number of steps detected by the system was observed. The average number of steps
in these test recordings is 5.3, while the system predicted 4.3 steps on average. For
correctly identified subjects, the average number of predicted steps was 5.0, while
for incorrectly identified subjects it was 3.5. This shows that when the subjects are
identified correctly, the step segmentation works very well.

3.4.2.2 Test Set

Table 3.8 shows the results on the test set for the baseline system and the best system
configuration. For comparison, results from previous studies on the same dataset
are listed, including a video processing method as well as the results obtained with
SVMs as presented in Section 3.3. The first row shows results of a state-of-the-
art gait recognition method working with video data, namely the GEI [104]. This
method achieves almost perfect results in the normal walking condition, while espe-
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cially the backpack and the shoe variation constitute a real difficulty for the system
(59.7 % on average). However, these results have to be interpreted carefully, since
the GEI utilises mainly the appearance (the silhouette of a person) and not the
behaviour (the gait pattern). A first audio-domain baseline system used a large set
of different audio features (1 625 static features per recording) and SVMs for classi-
fication (second row), as presented in Section 3.3. Naturally, the task is much more
difficult when dealing only with audio data (average accuracy 25.6 %). However, this
system can compete with the GEI in the backpack recording variation. The SVM
system was improved by employing a feature selection technique to choose relevant
features for the task, obtaining an average identification accuracy of 28.2 %. Now,
with the basic HMM setup, the resulting accuracy of 24.1 % is comparable to the
baseline SVM system. The methods introduced in this study (primarily modelling
each step separately during model training and decoding) were able to bring a large
improvement, reaching 37.0 %. In the N and B recording conditions, the accuracy
was improved significantly (compared to the baseline SVM) by more than one third.
The accuracy of the video processing method (GEI) in the backpack recording con-
dition was surpassed by 26 % relatively. Compared to the previous best-performing
audio system (the SVM system including feature selection) the average accuracy
was improved by 24 % relatively (significant in all recording conditions).

3.4.3 Conclusions

This section introduced a model-based system for recognising people from walking
sounds. The system used HMMs in a cyclic topology to automatically segment
the recordings according to separate steps. Experiments were conducted using the
TUM GAID database. The results showed that a basic HMM system (without
explicit modelling of separate steps) achieved a similar performance as the SVM
system presented in the first part of this chapter. Improving the system with the
methods introduced in this thesis resulted in large performance gains in identification
accuracy. With this system, the gait cycles are properly modelled using cyclic
HMMs. One pass through the model covers the sound of one step and adjacent
sounds, which are mainly produced by the person’s arms and legs. Thus, it is clear
that the backpack or shoe cover variation influence the identification performance
in a negative way. However, when identification experiments were carried out with
the same walking style and shoe type as the model was trained with (the normal
walking condition), almost two thirds of the subjects were identified correctly from
the test set containing 155 individuals. While this demonstrates the capability and
potential of the developed system, it has to be noted that this setup corresponds to
a re-identification scenario, in which, for example, a person can be recognised just
a few moments after he/she was enrolled in the system.
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3.5 Chapter Summary

The goal of this chapter was to present a system that is capable of identifying
humans from step sounds. Two different methods were proposed and evaluated
with a database of more than 300 subjects.

Moderate identification accuracies were obtained with a static classifier, whereby
the relevance of different audio features for this task was investigated. Large im-
provements were obtained by employing a dynamic classifier in the form of an HMM
system that models the distinct gait cycles. The 155 subjects from the test set of
the TUM GAID database were identified correctly in almost two thirds of the trials
in the normal walking condition, which corresponds to a re-identification scenario
where the external conditions (including shoes and clothes) remain unchanged. Fur-
ther improvements are expected when the number of subjects is decreased or when
the top five ranked subjects are looked at. In addition, it has to be noted that
the test trials contain only a small number of steps (typically three to five). The
identification performance can also be improved when more steps are considered [3].
Thus, it can be concluded that the proposed methods take big steps in the direction
of a system that is good enough to be used in a practical application, such as a
smart home.

Given the challenging but application-friendly enrolment of only four examples
per walking subject and in order to improve the robustness of the system, adopting
approaches from speaker recognition such as creation of models through adaption
from a background model [182] could be a promising strategy in the future. Fur-
thermore, the system’s robustness to variations should be addressed. This includes
better coping with the backpack and shoe cover recording conditions. In addition,
the TUM GAID database contains a set of subjects with recordings made on two
different dates in time (with three months in between). Therewith, the influence
of changing types of shoes and clothes as well as possibly higher variation of the
walking style on the system performance can be evaluated. In order to improve
the system in this direction, approaches to address session variability known from
speaker recognition (such as joint factor analysis [121]) could be tested, as well
as methods for model adaptation or feature transformation adopted from speech
recognition systems.
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4

Speaker Diarization

The topic of this chapter is speaker diarization, a variant of speaker recognition
in which no prior knowledge of the speakers is available. This study particularly
addresses the problem of overlapping speech. Different methods for detecting and
handling overlapping speech in a speaker diarization system are proposed. Overlap
means that two or more speakers are speaking at the same time, which happens
very often in natural conversational speech. Furthermore, an algorithm for speaker
diarization capable of online processing is presented.

4.1 Introduction

Speaker diarization is the task of answering the question ‘Who speaks when?’ [220,
5, 149]. It can be regarded as a subdomain of the problem of audio diarization [183].
General audio diarization systems aim segmenting an audio recording into homoge-
nous regions and to attribute them to the contributing sources. These sources
can include speakers, but also music, background noise from the acoustic scene, or
other sound sources. Speaker diarization systems, however, mostly deal with human
speech with the goal of detecting all different speakers in an audio stream. The gen-
eral problem is that, in contrast to traditional speaker recognition systems [124], the
contributing speakers are initially unknown. Furthermore, an additional challenge
is that the number of speakers is also regarded as unknown. Therefore, the system
needs to identify the speakers and assign audio segments to them in an unsuper-
vised manner. Figure 4.1 shows the workflow of a diarization system. An audio
stream with an unknown number of previously unknown speakers is segmented into
speaker-homogenous regions, and these regions are clustered together to represent
individual speakers.

Applications of speaker diarization systems can be found in many fields of re-
search of audio processing. Audio indexing and retrieval [144] aims at a thorough
analysis of audio documents (e. g. broadcast recordings), resulting in a transcription
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Figure 4.1: Workflow of a speaker diarization process.

of the spoken content, speaker segmentation and clustering, identification of known
speakers, topic classification, and story segmentation. Speaker diarization is an im-
portant component here, helping to structure the audio document with regard to the
individual speakers. Such an analysis of an audio document provides possibilities
to summarise and browse the contents. For example, an automatic summary and
analysis of a meeting recorded can be produced by such a system.

The task of rich transcription has been the subject of comparative evaluation
campaigns of the National Institute of Standards and Technology (NIST)1, in which
speaker diarization has been evaluated several times. Such studies help to compare
different approaches and methods by providing standardised evaluation databases
and protocols. As a result, the state of the art is advanced by the efforts of differ-
ent research groups. While initially the NIST rich transcription evaluations were
carried out using broadcast news and telephone recordings, later, the domain of
meeting speech was addressed. In all of those domains, different persons contribute
to the discussion. Telephone conversations demonstrate the most simple scenario,
in which normally only two speakers are involved. Broadcast news recordings are
characterised by a well-structured setup. However, background music or other sound
sources complicate the diarization process. Meeting recordings contain highly nat-
ural and spontaneous speech and additionally, various interfering sounds produced
by the meeting participants. Audio-visual analysis of meeting recordings has also
been the subject of several research projects, such as the Augmented Multi-party
Interaction (AMI) project [27].

Another application of speaker diarization is to use it as a preprocessing step to
speaker adaptation for speech recognition. Compared to speaker-independent speech
recognition systems, training speaker-dependent models or adapting the speaker-in-
dependent models to the specific speaker’s characteristics can greatly improve the
recognition performance [135]. With speaker-adaptive training [4], speaker-depen-
dent models can be applied in a speaker-independent recognition system. A feature

1http://www.itl.nist.gov/iad/mig/tests/rt/, last accessed in April 2014
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transformation is estimated for each speaker in batch processing. For the speakers in
the test set, this transformation has to be estimated from adaptation or test data.
This is where speaker diarization plays an important role. A speaker diarization
system can segment and cluster unstructured test data to group adaptation data by
individual speakers [205].

The field of speaker diarization has increasingly gained popularity in recent years.
Initiated by the NIST rich transcription evaluations mentioned above and by ef-
forts in the field of meeting analysis, the state of the art has progressed to a point
where small problems can severely degrade the system performance. Open issues
include linguistic influences on speaker diarization [22], the problem of overlapping
speech [109], or methods capable of online processing [145].

In this chapter, first an introduction to the field of speaker diarization is given by
outlining established approaches and methods, presenting commonly used databases,
and explaining evaluation measures in Section 4.2. Following this, Sections 4.3
and 4.4 address the issues of detecting and handling overlapping speech, respectively.
Finally, a method for online speaker diarization is presented in Section 4.5, before
concluding this chapter.

The different approaches for overlap detection presented in this work are based
on previously published results. Section 4.3.4 is based on [68], Sections 4.3.5 and 4.4
are based on [71], Section 4.3.6 is based on [63], and Section 4.3.7 is based on [64].
Finally, Section 4.5 is based on [62].

4.2 Fundamentals and Methods

This section gives an introduction to the field of speaker diarization by describing
state-of-the-art methods, evaluation techniques, and available databases, as well as
some of the remaining open questions in speaker diarization technology.

4.2.1 Speaker Diarization Methods

An early study in the direction of speaker diarization was carried out by Chen and
Gopalakrishnan [30]. The objective of their system was to detect change points in
broadcast news recordings and to cluster the resulting segments. Both tasks can
be accomplished using the Bayesian information criterion [199], which finds suitable
change points and appropriate speaker clusters for merging. Most diarization sys-
tems are based on the same principle. An overview of different systems is given in [5].
Figure 4.2 shows the structure of such a typical diarization system. First, preprocess-
ing takes place. Most often, this step consists of voice activity detection (VAD) [247],
which aims at detecting all regions in the audio recording containing human speech.
Additionally, methods for filtering noise are commonly applied in the preprocessing
step. In the following feature extraction step, audio features that are suitable for
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Figure 4.2: Structure of a speaker diarization system.

processing in the later steps are computed. Most widespread features are MFCCs,
while some studies propose to include other features, such as prosodic or other long-
term features [50]. Prosodic features can capture speaker-specific information about
intonation, timing or loudness. Furthermore, when multi-channel audio recordings
are available, spatial features exploiting the inter-channel time differences can be
taken into account [162]. On the other hand, most diarization systems work with
features extracted from single-channel audio. For that reason, typically, delay-and-
sum beamforming is applied to convert the multi-channel recordings to a single
channel [247]. In the case that the preprocessing steps (e. g. VAD) use the same
features as the actual diarization process, the order of preprocessing and feature ex-
traction is changed. The segmentation step that follows the feature extraction aims
at dividing the audio recording into speaker-homogenous regions (cf. Figure 4.1). In
its simplest form, the initial segmentation directly uses the speech segments resulting
from the VAD module. Other variants include uniform initialisation, whereby the
recording is segmented into small segments of equal length [5]. The most important
part of a diarization system is the next step, clustering. As a result of the clustering
step, segments that belong to the same speaker are grouped together, as can also be
seen in Figure 4.1. In bottom-up diarization approaches (e. g. [247, 154]), agglom-
erative hierarchical clustering [41] is used to successively merge the closest clusters
until an optimal number of clusters is reached. Here, the choice of initial clusters has
a strong influence on the system performance. Each cluster is usually represented
by a Gaussian mixture model (GMM) and closest clusters are found by appropriate
distance metrics. After each clustering step, a new model is trained for the merged
cluster and the audio data are re-segmented with the new models. A stopping
criterion is then evaluated in order to decide whether the optimal number of clus-
ters has already been reached. Alternatively, top-down approaches (e. g. [48, 147])
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start by grouping all segments into one cluster. Gradually, more and more speaker
clusters are created, again, until an optimal number of clusters is reached. The
study presented in [43] investigates the differences between top-down and bottom-
up diarization systems, leading to the conclusion that bottom-up systems produce
more discriminative speaker models while top-down systems are less vulnerable to
nuisance variation.

There are several toolkits available with different implementations of methods
for speaker diarization. For example, the LIUM SpkDiarization toolkit [190] is op-
timised for radio or television shows and uses a bottom-up clustering component
employing agglomerative hierarchical clustering with the Bayesian information cri-
terion. This toolkit was developed for the French ESTER2 evaluation campaign
in 2008 [52], where it obtained the best results in the task of speaker diarization.
The SHoUT toolkit [110] developed by Marijn Huijbregts also contains methods for
speaker diarization. Another widely used toolkit that contains implementations of
speaker diarization algorithms is the ALIZE/LIA RAL toolkit [131]. The speaker
diarization experiments in the present thesis have been performed with a system
based on the latter.

4.2.2 The Diarization Error Rate

The performance of a speaker diarization system can be measured by the diarization
error rate (DER),

DER =

∑
all segs

dur(seg) ·
(

max
(
Nref (seg), Nsys(seg)

)
−Ncorr(seg)

)
∑

all segs

dur(seg) ·Nref (seg)
, (4.1)

which counts the fraction of speaker time that is not attributed correctly to a
speaker [155]. The terms Nref , Nsys, and Ncorr represent the numbers of speak-
ers in a segment, as transcribed in the reference, hypothesised by the system, and
correctly detected by the system, respectively, while dur(seg) is the duration of a
segment. In the denominator, the length of all speech segments is added up, while
overlapping speech is not ignored: segments with more than one active speaker are
weighted by the respective number of speakers. The numerator counts all errors
of the system, which can be divided into three groups: missed speaker times, false
alarms, and speaker errors. Missed speaker times and false alarms can often be
traced back to the VAD component, which either detected too few or too many
speech segments. Additionally, in the case that the system detects only one speaker
during a segment of overlapping speech (and most state-of-the-art diarization sys-
tems can actually detect only one speaker at a time), a missed speaker error is
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observed, since any overlapping speakers are not detected. Speaker errors are made
when the system misclassifies a speaker. To account for imprecise human anno-
tation, normally, a ‘forgiveness’ collar of 0.25 seconds (in both directions) is used
around segment boundaries. Since speaker diarization is an unsupervised recog-
nition process, the detected speaker identities cannot directly be compared to the
reference speaker identities. An optimum one-to-one mapping from detected speak-
ers to reference speakers is computed, minimising the DER. Thus, detecting the
correct number of distinct speakers is a very important challenge for the system.

4.2.3 Databases

Databases which are commonly used for the evaluation of speaker diarization sys-
tems can primarily be divided into three categories: telephone conversations, broad-
cast recordings, and meeting recordings. This distribution results directly from the
different applications. Over the years, the subject of research became more difficult
by transitioning from telephone conversations over broadcast recordings to meet-
ing speech. The NIST rich transcription evaluation project was already mentioned.
From 2002 to 2009, nine rich transcription evaluation campaigns were conducted by
the NIST. Most of them also included a speaker diarization task, whereby appro-
priate evaluation data were always provided, each time in English language. The
first speaker diarization evaluations were carried out with broadcast news and con-
versational telephone speech, and later on, the focus was set on meeting speech.
Furthermore, the NIST conducted speaker recognition evaluations. The employed
databases have also found use for speaker diarization systems. For example in [6],
two-speaker telephone dialogues from the NIST 2005 speaker recognition evaluation
were used to test a diarization system. Other corpora that are used for speaker di-
arization include the 1996 HUB-4 broadcast news corpus [53], which was employed
for example in [163] for online speaker diarization. In the Augmented Multi-party
Interaction (AMI) project, the AMI meeting corpus [27] was created. This corpus
contains audio-visual recordings of meetings and was used for multimodal meeting
analysis, including speaker diarization. Recently, the ETAPE corpus was provided
in the context of the ETAPE evaluation campaign, featuring speaker diarization
as well as a multiple speaker (overlap) detection task [90]. This database con-
sists of French radio and television broadcast data. The recently released Sheffield
Wargames Corpus [46] contains recordings of native English speakers speaking nat-
urally while playing a table-top game. This database contains particularly large
amounts of overlapping speech.

4.2.4 Open Issues

While the state of the art in speaker diarization has made substantial progress in re-
cent years, a number of open issues and possible directions for research persist. One
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of these open problems is the impact of linguistic content on speaker diarization,
which influences the clustering step. The goal of the clustering process in a diariza-
tion system is to converge to different clusters for individual speakers, whereas one
typical malfunction is to create clusters for other acoustic classes. In this way, the
resulting clusters represent the spoken content instead of the speakers. In [22], the
influence of linguistic content on speaker diarization performance is examined. It is
shown that bottom-up diarization systems are more error-prone to linguistic con-
tent compared to top-down systems. The clusters produced by the top-down system
are better normalised against phone variations. Following this study, a method for
addressing the problem of linguistic influence is presented in [21]. In analogy to
speaker-adaptive training in speech recognition, phone-adaptive training is used to
reduce the influence of phonetic variation within speaker clusters. Other studies ad-
dressing the linguistic information in diarization systems are presented in [29, 261].
Additional open problems for the clustering component of a diarization system are
proper methods for cluster initialisation or cluster purification.

Another critical issue, which will be addressed in detail in this thesis, is the
presence of overlapping speech. Several studies show that overlapping speech con-
stitutes a major source of error for most speaker diarization systems [47, 108]. In
the clustering process, impure speaker models are created which include speech from
multiple speakers, since all speech material is aggregated in the clusters. These cor-
rupt models will eventually lead to higher error rates in the segmentation process.
In addition, typical diarization systems can recognise only one speaker at a time.
This means that all segments of overlapping speech will count towards the missed
speaker error, because at most one speaker can be detected correctly. Properly de-
tecting and handling overlapping speech can bring large improvements to diarization
systems. In the next section, several solutions to this problem are presented.

Section 4.5 of this chapter introduces an approach for online speaker diariza-
tion. Most current systems work in offline mode, which means that the full audio
recording has to be present before the diarization process can be started. For several
applications (e. g. a dialogue system that needs to react to the speakers), an online
diarization system is required. The goal of such a system is to analyse an ongoing
audio stream, keep track of the number of speakers, and to create new models as
new speakers appear.

4.3 Detection of Overlapping Speech

Overlapping speech is a severe problem for many speech processing applications [204,
203]. For example, it is a problem for speech recognition systems for conversational
speech [25]. In general, overlap can degrade the performance of any speech process-
ing system that assumes only one speaker to be active. The presence of overlapping
speech is especially a difficult problem for speaker diarization systems. Overlap
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appears particularly in spontaneous conversational speech, which is the regular do-
main for speaker diarization systems. State-of-the-art diarization systems are mostly
capable of detecting only a single active speaker, which leads to missed speaker er-
rors. In addition, overlapping speech results in corrupt speaker models during the
clustering process.

The earliest prior studies on this topic analysed the general influence of overlap-
ping speech on diarization performance [109, 47, 161]. A more detailed analysis of
the influence of different system components on the diarization performance is given
in [108]. Using a diarization system where several parts are replaced by ‘oracle’ com-
ponents resulted in a quantitative analysis of the contribution to the DER of errors
made by different parts of the system. The contribution of overlap to the DER due
to missed speaker errors is relatively easy to determine. In a single-speaker diariza-
tion system, the amount of overlapping speech in the evaluation data will directly
translate into missed speaker errors: in every segment of overlapping speech, only
one speaker is detected. Therefore, any overlapping speakers are missed. The study
presented in [108] used two different datasets for evaluation, both containing record-
ings from NIST rich transcription evaluations. In those experiments, the proportion
of missed speaker errors due to overlapping speech was 21.21 % and 18.08 % of the
total DER, for the two evaluation sets, respectively. By appropriately detecting
these segments and adding labels for the overlapping speakers, these errors could be
mitigated.

The other spot where overlap leads to system errors is speaker modelling. The
clustering part of a diarization system assigns each speech segment in a recording to
one of the clusters. Using the allocated speech data, the speaker models are trained.
All segments of overlapping speech will thus lead to corrupt speaker models, this
again leads to a degraded speaker classification performance. The exact influence
of this effect on the DER is difficult to quantify. In [206], a diarization experiment
was performed where optimal speaker models were trained using data from only
one speaker per model. This corresponds to a supervised speaker identification
experiment or to the case where the clustering step works perfectly, resulting in
100 % pure clusters. Furthermore, this means that no overlapping speech is included
during model training. Compared to the baseline DER of 28.09 % (using data from
previous NIST rich transcription evaluations), the result of this experiment was a
DER reduction to 17.29 %. A part of this improvement could be obtained in a real
system by detecting and excluding overlap segments prior to the clustering step. In
addition, labelling all overlap segments using the reference transcription (by adding
labels for the overlapping speakers) reduced the DER to 5.87 %. Again, these results
illustrate the potential of an overlap detection system to improve diarization systems.

Two strategies for handling overlapping speech can easily be derived from the two
mentioned problems that are posed by overlapping speech. First, detected segments
of overlapping speech should be removed prior to the clustering step. After iterative
model training and refining, the overlap segments should be put back into the system
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Figure 4.3: Different types of overlapping speech between the speakers A and B. Top:
turn-taking, bottom: interruption.

and multiple speaker labels should be assigned to these segments in order to detect
all overlapping speakers. The successful detection of overlap thus has the potential
to improve the robustness of a speaker diarization system under realistic conditions.
Accordingly, there is an increasing effort within the community (a discussion on
related work follows in Section 4.3.2) to develop systems that detect and handle
overlapping speech appropriately. New algorithms are needed to reliably detect
segments of overlap. Overlap detection is an unsolved problem and the focus of this
thesis.

Another application of an overlap detection system, besides speaker diarization,
is conflict detection. In [123], conversational features for conflict detection are de-
rived from an overlap detection system, assuming that conflicts in conversations
can be predicted by conversational overlap patterns between opposing groups. Go-
ing in the same direction, it could be possible to use information from an overlap
detection system to characterise speakers, for example whether they participate in
the conversation more aggressively or rather more passively. Furthermore, there is
related, prior work in speaker recognition [210], in which overlap detection is used
as a preprocessing step for speaker recognition.

4.3.1 Overlapping Speech in Human Conversations

In spontaneous, conversational speech, it happens very often that two or more speak-
ers are speaking simultaneously [203]. A straightforward method of categorising seg-
ments of overlapping speech (from two speakers) takes into account the neighbouring
speakers. Figure 4.3 shows two different types of overlapping speech. In cases where
the speaker preceding and following an overlap segment is the same (lower part of
Figure 4.3), this overlap segment might be a short interruption or backchannel utter-
ance (such as ‘uh-huh’ or ‘mm-hmm’) from the second speaker, or a failed attempt
to steal the speaking turn. The other case is when the speakers before and after
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an overlap segment are the same two speakers that are active during the overlap
segment (upper part of Figure 4.3). In this situation, the second speaker took over
the speaking turn from the first speaker. It could further be differentiated whether
the first speaker was able to finish his speaking turn (making this situation almost
like a normal speaker turn change), or whether the first speaker was interrupted in
the middle of his speaker turn.

Studies in the literature report different numbers for the proportion of overlap-
ping speech, which depend on the examined databases and especially depend on
the style of conversation (e. g. multi-party discussion, interview, or dialogue). The
numbers range from 5 % [136] to over 50 % [218]. Another analysis in [96] found that
overlapping speech made up up to 40 % of inter-speaker intervals in three databases
of conversational speech.

In [1], a detailed analysis of overlapping speech in political interviews is given.
The authors analysed a corpus consisting of television shows in which a politician
is interviewed by three journalists and a chairman. On average, the database con-
tained three to four overlaps per minute and the global duration of overlap was
relatively low (below 5 % of the data). Segments of overlap contained 2.5 words
on average. The study introduced four categories of overlapping speech, which
were classified as being either intrusive or non-intrusive: complementary (intrusive),
backchannel (non-intrusive), turn stealing (intrusive), and anticipated turn taking
(non-intrusive). The ‘complementary’ tag was introduced for overlaps which aim at
complementing the main speaker’s utterance. Backchannel and turn stealing over-
laps each made up around one third of all overlap segments, while the other two
types shared the rest of the overlap segments. The authors furthermore proposed
measures to characterise speakers, depending on their speaking pattern concerning
overlapping speech. These measures categorise speakers as either being more ac-
tive/aggressive or more passive, with respect to the occurrence of overlap. With a
system for detecting overlapping speech and identifying the involved speakers, such
an analysis could be performed automatically, without the need of a time-consuming
annotation of the data. Alternatively, prior knowledge about the involved speakers
could be used to improve an overlap detection system.

The authors of [82] analysed different turn-taking cues, where overlap plays an
important role. Backchannels and interruptions, along with turn switches, are dis-
tinguished as different categories of turn-taking phenomena. The authors examined
the durational distribution of overlapping speech segments. They found that in the
employed database, 60 % of the overlap segments had 200 ms or less of simultaneous
speech.

Recent studies try to further analyse the nature of overlapping speech, revealing
results about properties such as the duration and when it is likely to happen. These
studies show that the occurrence of overlapping speech depends on many factors.
In [81], backchannel utterances were further classified into eleven categories, where
the most important distinctions are (a), whether the words convey acknowledgement
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or agreement and (b), whether they introduce the beginning or end of a discourse
segment. In the study presented in [118], backchannels were compared with agree-
ments and it was found that backchannels are shorter in duration, have lower pitch
and intensity, and are more likely to end with a rising intonation. In [132], the dy-
namics of overlap were analysed. The authors show that the durations of intervals
of overlap are approximately log-normally distributed and that overlapping speakers
tend to end speaking simultaneously less frequently than they start. The study pre-
sented in [240] investigates how onsets of overlapping speech are timed with respect
to syllable boundaries. In [12], it was found that overlapping speakers tend to use
different frequency bands. The authors of [83] found that interruptions (which are
one type of overlapping speech) are likely to occur during or after speech with cer-
tain acoustic/prosodic properties. Such studies reveal important information about
the nature of overlap (e. g. acoustic properties) that can be exploited to improve
overlap detection systems.

4.3.2 Related Work on Overlap Detection and Handling

Independent of the actual overlap detection system, most studies reported in the
literature use very similar approaches for handling detected overlap segments in
the diarization system. One of the first proposed systems for overlap detection
and handling uses a two-way strategy to process overlapping speech in a diarization
system, namely, overlap exclusion and overlap labelling [16]. Most of the later studies
also rely on these two steps. Overlap exclusion (the first step) means that detected
overlap is excluded from the model creation phase. This ensures that the resulting
speaker models are not corrupted by overlapping speech, whereby the quality of
the speaker models is improved. Referring back to Figure 4.2, this technique is
applied prior to the iterative procedure of segmentation and clustering. The second
step (overlap labelling, also known as overlap attribution) is executed during the
final segmentation step of the diarization system and has the goal of attributing the
overlap segments to a speaker. To begin with, all detected overlap is re-introduced
into the system prior to this final segmentation. This means that the decoding
and segmentation is also performed for the overlap segments, leading to a detected
speaker for these segments. In addition, the system is forced to detect a second
speaker in these segments. In one variant, the neighbouring speakers (before and
after the segment) are assigned to an overlap segment [107]. This may result in only
one speaker being assigned to the segment. This method is based on the assumption
that overlap is mostly the result of one speaker interrupting the other, and in this
case, every overlap segment has two neighbouring speakers. One the other hand, the
most straightforward strategy to detect two speakers is to choose those two with the
highest posterior probabilities, as determined in the segmentation process [16]. This
approach was predominantly used in the subsequent studies about overlap handling
for speaker diarization (e. g. [254]). All approaches for overlap labelling assume
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that at most two speakers are active at the same time. Of course, this depends
on the actual application of the diarization system, and sometimes, more than two
speakers may be active at the same time. However, in meeting recordings, which is
the primary domain for speaker diarization systems, this assumption is true for the
majority of overlapping speech (around 80 % of the time) [16]. With this strategy
of attributing overlap to two speakers, every falsely detected overlap segment will
lead to a false alarm contributing to the DER. Therefore, it is especially important
to tune the overlap detection system towards a low false detection rate.

While there are not many different approaches for the handling of overlapping
speech in diarization systems, more research was done towards improving the actual
overlap detection systems. The first system for detection and handling of overlap in
speaker diarization was presented in [16]. A hidden Markov model (HMM) system
with three classes (nonspeech, speech, and overlapping speech) employing mainly
spectral audio features was used to detect overlap. This system can be regarded as
an extended VAD system, where the additional class of overlapping speech is added.
It is a model-based system, using a statistical model for the three classes, trained
on a separate training set. The processed audio recording is segmented using these
models, leading to the detection of overlap segments. These overlap segments are
subsequently processed by the diarization system using the methods described in
the previous paragraph. Huijbregts et al. [107] report another model-based over-
lap detection approach. In their system, however, the overlap model is not trained
on held-out data, but using data localised around speaker turns, assuming over-
lap to be present frequently around speaker turns. The three-class HMM system
framework has prevailed and was used by most subsequent studies on overlap de-
tection. What is subject of most research studies is the selection of appropriate
audio features that are used to model overlapping speech. As already mentioned,
the first system for overlap detection employed spectral audio features within the
HMM framework [16]. In addition to MFCCs, root mean square energy, and linear
predictive coding residual energy, the output of the diarization system was used in
the form of the diarization posterior entropy, computed from the posterior proba-
bilities of the diarization system. This study was extended in [17] and [18] which
assessed the use of new features, including spectral flatness, the harmonic energy ra-
tio, modulation spectrogram features, kurtosis, zero-crossing rate, and harmonicity.
From a larger set of candidate features, these features had been selected as being
most relevant for overlap detection. In these studies, significant improvements in
the DER were achieved on a subset of the AMI corpus [27].

More recently, other features have been investigated for overlap detection. Pro-
sodic features [254] were able to improve the performance of an HMM-based overlap
detection system. The features were selected from a set containing pitch, inten-
sity, and four formant features, together with long-term statistical characteristics
extracted from 500 ms windows. An alternative approach which uses the output of
a voice activity detection component and the silence distribution to detect overlap
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was reported in [251]. This study was extended by exploiting long-term conver-
sational features for overlap detection [250]. In [226], a system using convolutive
non-negative sparse coding (CNSC) for overlap detection was first presented. The
present thesis extends the techniques used therein.

The addition of multiple microphones opens more possibilities for overlap detec-
tion. Using personal close-talking microphones in a meeting room, overlap detection
can be performed as a post-processing step after the segmentation of each individual
microphone signal into speech and nonspeech – for example using cross-correlation
analysis [168]. Recent work by Zelenák et al. [255, 256] reports an HMM system
for overlap detection, using spatial/localisation features in addition to conventional
acoustic features. The cross-correlation between signals of microphone pairs is ex-
ploited to derive spatial features, which are processed in the HMM system. Sig-
nificant improvements in overlap detection performance are reported. The present
study, however, concentrates on a single distant microphone with no localisation
features available. This restriction to a single microphone makes the problem more
challenging but at the same time, solutions become more versatile. The performance
of each approach described above is modest at best and further work is needed to
improve overlap detection performance.

4.3.3 Experimental Framework

4.3.3.1 Database

For all experiments on overlap detection reported in this thesis, the same database
of audio recordings is employed, namely the AMI corpus of meeting recordings.
This database was developed as part of the AMI project2, aiming at improving
meetings in order to be more productive by developing meeting browsers that allow
users to find important information quickly. Thus, one goal of the project was to
automatically analyse audio-visual meeting recordings. In the course of the project,
a comprehensive database of meeting recordings was produced in different recording
sites [27]. In total, this publicly available data set3 consists of 100 hours of meeting
recordings. These meetings were either occurring naturally or emanated from a
scenario with the participants (mostly four persons) playing different roles according
to a script.

A subset of ten recordings from the AMI corpus was used for the evaluation of
the systems proposed in this study. The same subset was already used in previous
studies by other authors [18]. As a consequence, the present results can directly be
compared to the results of that study. For system development (e. g. for parameter
tuning), six different recordings were used. Finally, for model training, a selection
of 40 meeting recordings were employed. All employed meeting recordings are listed

2http://www.amiproject.org, last accessed in April 2014
3https://www.idiap.ch/dataset/ami, last accessed in April 2014
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Table 4.1: Meeting recordings from the AMI evaluation corpus used for training, develop-
ment, and testing.

Training set

EN2001b EN2002a EN2002c ES2005a ES2005b ES2006d ES2007b ES2008c
ES2010a ES2010d ES2013d ES2014a ES2015a IB4003 IB4004 IB4010
IN1013 IS1000c IS1002b IS1002d IS1003c IS1003d IS1004a IS1005b
IS1009a IS1009b IS1009c TS3003c TS3004b TS3005c TS3007a TS3007b
TS3008c TS3009a TS3010d TS3011a TS3011c TS3011d TS3012a TS3012d

Development set

EN2009c ES2014c IB4002 IN1016 IS1009d TS3009d

Test set

EN2003a EN2009b ES2008a ES2015d IN1008 IN1012 IS1002c IS1003b
IS1008b TS3009c

Table 4.2: Confusion matrix for a detection problem with positive (P) and negative (N)
examples. The confusions are called true-positive (TP), false-negative (FN), false-positive
(FP), and true-negative (TN).

Prediction
P N

L
a
b

e
l

P TP FN
N FP TN

in Table 4.1. The composition of recordings was selected to contain meetings from
different recording sites. The length of the recordings in the test set varies between 17
and 57 minutes, and in total, the length of the test set is more than six hours. In all
cases, only the single-channel far-field microphone recordings were considered. This
is the most challenging scenario, but also the most realistic. The test set contains
13 % of nonspeech (with respect to the full duration) and 19 % of overlapping speech,
with the rest (68 %) being single-speaker speech.

4.3.3.2 System Evaluation

The primary criteria for evaluating overlap detection systems employed in this study
are precision and recall. These measures can be computed from the correct and
wrong decisions of the system, as illustrated in Table 4.2. In a detection problem as
in overlap detection, the decisions of the system can be categorised as true-positive
(TP), false-positive (FP), false-negative (FN) or true-negative (TN), depending on
the prediction of the system and the actual ground truth label. In the example
of overlap detection, the positive label corresponds to overlapping speech, while
negative equals single-speaker speech or nonspeech, and the system decisions are
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counted frame-wise. The recall (Rec), also known as true-positive rate or sensitivity,
is defined as

Rec =
TP

TP + FN
, (4.2)

which is equal to the fraction of overlap frames that are correctly detected as overlap
by the system. The precision (Pre) is defined as

Pre =
TP

TP + FP
(4.3)

and corresponds to the fraction of all positively detected frames that are actually
overlap. In addition, the overlap detection error (Err) is introduced,

Err =
FP + FN

TP + FN
= 1− 2 · Rec +

Rec

Pre
, (4.4)

which counts all errors made by the system as a fraction of all overlap frames. It is
also possible to compute the error directly from the precision and recall values.

The overlap detection error can be interpreted in the following way. In the case
of overlap handling, each TP decision of the system will reduce the DER (through a
decreased missed speaker error) while each FP decision increases the DER (through
an increased false alarm error). Therefore, in order to improve a diarization system
through overlap labelling, the goal of the overlap detection system is to maximise the
number of TP decisions while minimising the FP decisions. This can be combined
in the objective function

max (TP− FP), (4.5)

which corresponds to
max (P− FN− FP). (4.6)

Since the amount of overlap P is constant, this can be simplified to

max
(
− (FN + FP)

)
(4.7)

or
min (FN + FP) (4.8)

which corresponds to the sum of wrong decisions made by the system. This term
is set in relation to the amount of overlap P = TP + FN, resulting in the overlap
detection error

min
FN + FP

P
= min Err. (4.9)

Thus, tuning the detection system to minimise this error enhances the potential
improvement through overlap labelling. By normalising the error with the amount
of overlap, it can directly be interpreted as the potential improvement in DER.
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Through overlap detection and labelling, the missed speaker part of the DER is
reduced, and thus, the error Err can directly be used to estimate the possible DER
improvement. For example, an error of Err = 90 % means that the missed speaker
part of the DER could be reduced to 90 % of its original value (a 10 % improvement).
For the application of overlap exclusion, however, as much overlap as possible should
be detected and excluded, which leads to the objective of achieving high recall
performance.

Results for precision, recall and error are always reported in % in this study.
Where possible, the experimental sections also provide figures plotting precision
against recall, similar to a receiver operating characteristic curve. This is the case
when the employed classifier uses a tunable parameter to control the trade-off be-
tween precision and recall, such as a threshold. In the following sections, different
methods for detecting overlapping speech are presented and evaluated.

4.3.4 Overlap Detection using a Source Separation Method

This section presents a method for the application of convolutive non-negative sparse
coding (CNSC) to the problem of overlap detection in the context of conference
meetings and speaker diarization. CNSC is a signal separation technique based on
non-negative matrix factorization (NMF), with the goal of decomposing a mixed
signal into its bases and base activations. This technique is used here to project
a mixed speaker signal onto separate speaker bases and hence to detect intervals
of overlapping speech. While the decomposition of meeting recordings into speaker
bases and activations was already introduced in a previous study [226], the novelty
in this study is the suggestion of new overlap features which are derived from the
speaker activations. Instead of using these features in an HMM system, however, a
threshold-based overlap classifier is employed first. In a later section of this thesis,
these features will be used in the HMM framework. The system is assessed using a
subset of the AMI meeting corpus. Results are reported which are comparable to
the state of the art, demonstrating the potential of this new approach to overlap
detection. An analysis of system performance highlights the necessity of further
work to address weaknesses in detecting particularly short segments of overlapping
speech.

4.3.4.1 Convolutive Non-Negative Sparse Coding

The method of non-negative sparse coding (NSC) [133, 105] is an approach to rep-
resent a non-negative matrix as a linear combination of lower rank bases. The
imposition of non-negative constraints allows only additive combinations in the rep-
resentation. NSC can be seen as the combination of NMF and sparse coding, which
is achieved by adding sparsity conditions to the update rules of NMF.
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With NSC, a non-negative matrix X ∈ R≥0
M×N is represented as

X ≈ WH (4.10)

where W ∈ R≥0
M×R and H ∈ R≥0

R×N form the bases and base activations, respectively.
These are learnt with the objective function of minimising the regularised least
square error between the original matrix and the recomposition X̂ = WH:

(Ŵ , Ĥ) = arg min
W,H

‖X −WH‖2
F + λ

∑
ij

Hij, (4.11)

where λ is a regularisation parameter that controls the sparsity of the resulting
representation and ‖ · ‖F denotes the Frobenius norm. This formulation, however,
is not able to capture the correlation between adjacent frames in the data matrix
X that is inherent in speech signals. A convolutive variant, known as CNSC [208]
addresses this issue. The CNSC decomposition takes the form

X ≈
P−1∑
p=0

Wp

p→
H , (4.12)

where P is the convolution range. The operators
p→. and

p←. are column shift oper-
ators which shift p columns of the matrix to the right and left, respectively.

The learning of bases and activations together according to Equation (4.11)
is an optimisation problem that is solved by iteratively updating W and H until
convergence using the following update rules [230]:

Wp = Wp �
X

p→
H

T

X̂
p→
H

T
(4.13)

H(p) = H �
W T
p

p←
X

W T
p

p←

X̂ +λI

(4.14)

H =
1

P

P−1∑
p=0

H(p), (4.15)

where I is an R×N identity matrix, � is the Hadamard product, and the division
of matrices is performed element-wise. After each update of W , its columns are
normalised to unit vectors. This is an essential step in sparse coding since it en-
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sures that W does not grow in an uncontrolled manner, and it encourages a sparse
representation.

4.3.4.2 CNSC-based Overlap Detection

This section describes how the CNSC algorithm is applied to detect overlapping
speech. CNSC bases are learnt for individual speakers such that an interval of over-
lapping speech can be decomposed into its underlying speaker components. This
leads to a natural solution for the overlap detection problem. In this section, first,
the CNSC-based decomposition of speech signals is described, followed by the in-
troduction of a new frame-level approach to overlap detection.

CNSC bases W are learnt for each speaker in an audio document using spectral
magnitude features extracted from segments of pure (non-overlapping) speech. The
base patterns of each speaker s = 1, . . . , S are then concatenated together to create
a global basis WG,

WG = [W1, . . . ,WS], (4.16)

which includes the spectral patterns of all speakers. Spectral magnitude features
across the whole audio document, including overlapping segments, are then decom-
posed at the frame level according to Equation (4.11) with WG kept fixed and only
H being updated to minimise the optimisation criterion.

The activations for any given frame and any given speaker therefore serve as an
indication of that speaker’s activity. While the activations H and corresponding
bases W could be used to reconstruct or separate each speaker’s contribution to the
audio recording, the proposed system uses the activations H directly to detect each
speaker’s activity and hence segments of overlapping speech.

The sum of a speaker’s activations is strongly correlated to the signal energy
from that speaker since the bases W are normalised. Therefore, this sum is a good
indicator of that speaker’s activity. The energy for speaker s during frame t is
estimated according to:

Et(s) =
∑
i∈Is

Hit (4.17)

where Is represents the speaker-specific rows in H or the activations for speaker s.

Figure 4.4 (top) illustrates the CNSC activation energy against time for two
speakers during a short interval from an exemplary meeting recording, where the
speaker energy is calculated according to Equation (4.17). Ground-truth reference
speaker activities are indicated beneath using the same line profile for corresponding
speakers. It is seen that the CNSC activation energies are a suitable indicator
of speaker activity: both speakers have high activation energy in the overlapping
segment between 2 and 3 seconds.

In order to obtain overlap features from the activations, the speaker activation
energies calculated as per Equation (4.17) are smoothed with a moving average filter
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Figure 4.4: An illustration of the correlation between ground-truth speaker activity (bot-
tom) and CNSC activation energies (top) for two speakers in a conversation containing an
interval of overlapping speech [68].

and used to implement a frame-based overlap detector. It is based on the energy
ratio ER for frame t, estimated as follows:

ERt =
Et(ŝ2)

Et(ŝ1)
(4.18)

where ŝi denotes the speaker with the ith highest energy. The energy ratio reflects
the difference in activation energy for the two speakers who are deemed to be most
active in the given frame. For overlapping segments the ratio is expected to be
closer to unity, while for non-overlapping segments the ratio should be closer to
zero. Since overlapping speech segments typically have more energy (they contain
speech from multiple speakers), the total energy ETt is estimated by summing up
Equation (4.17) across all speakers and filtering out frames with low total energy.
All frames with an energy ratio ERt and total energy ETt greater than empirically
optimised thresholds δER and δET are deemed to contain overlapping speech.

In a previous study [226], the variance of speaker activation energy differences
in a frame was used as a measure for detecting overlap. However, the energy ratio
measure gives much better results when used in conjunction with the total energy
threshold introduced in this thesis.
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4.3.4.3 Experimental Evaluation

This section reports an assessment of the introduced overlap detection system using
a subset of the AMI meeting corpus [27]. For training, tuning, and testing, the
collection of meeting recordings as described in Section 4.3.3.1 was used.

In a practical speaker diarization scenario there are no speaker specific training
data other than those within the audio recording itself. Consequently, the diarization
system hypothesis itself must be used to estimate regions of clean speech for each
speaker. Due to diarization errors, this speech material is not entirely pure, but
is the only information available with which to learn speaker-specific base matrices
for CNSC overlap detection. Any derived results are therefore dependent on the
performance of the underlying speaker diarization system and the extraction of
generalised results is thus troublesome.

In such scenarios it is typical to use oracle references to marginalise the impact
of system elements that are not under direct observation and thus to minimise their
influence on observed results. This approach was adopted here; the reference tran-
scription was used to identify intervals of pure speech for each speaker. Accordingly,
results presented in this section are independent of errors in an automatically derived
speaker segmentation or diarization output and therefore the assessment focuses on
CNSC alone. While such an approach does not necessarily give a reliable estimate
of performance under practical conditions, it is noted that in a previous study [226],
there was little difference in overlap detection performance between using reference
segmentations and those obtained with a real speaker diarization system.

The parameters of the CNSC algorithm were tuned on a small, artificial two-
speaker test set in which overlapping speech was manually created and controlled in
order to better understand system behaviour and the influence of different parametri-
sations. These parameters were subsequently re-optimised on the AMI development
data. The algorithm is applied to magnitude spectra computed on 40 ms windows
with a window shift of 20 ms. CNSC speaker activations are calculated with speaker
bases of dimension R = 35, a convolutional range of P = 4, and a sparseness param-
eter of λ = 0.05. The relatively large windows capture more discriminative speaker
features whereas the use of small numbers of bases leads to more effective modelling
and avoids overfitting.

Overlap detection performance was assessed using precision and recall statistics
calculated at the frame level, as described in Section 4.3.3.2. Given that overlap
detection can be applied in different processing steps of a typical speaker diarization
system (overlap exclusion during clustering and overlap labelling during segmenta-
tion), different operating points with different precision and recall values are bene-
ficial. Therefore, in addition to precise figures, the dynamic influence of the energy
threshold δET on the trade-off between precision and recall is also shown. A higher
threshold identifies less overlap yielding lower recall but higher precision.
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Figure 4.5: Overlap detection performance using CNSC features, in terms of precision
and recall on the evaluation dataset [68]. For comparison, results of prior studies using
CNSC [226] or HMM [18] are also shown.

The energy ratio threshold was tuned on the development set and fixed to
δER = 0.5 across all audio recordings. The threshold for the total energy δET
was set dynamically for each audio recording and according to a fraction tET of the
mean energy over the entire recording. Figure 4.5 shows the overlap detection per-
formance in terms of precision and recall as a function of tET (solid profile), revealing
considerably better performance than a previous system using CNSC (dashed pro-
file) [226]. The new energy ratio and total energy features thus yield a notable
improvement in system performance. Boakye et al. [18] report experiments using
the same evaluation set, with precision/recall values of 55 %/40 % and 64 %/24 %.
The system proposed in the present study achieved similar values of 55 %/31 % and
64 %/23 %. The two sets of results are also depicted in Figure 4.5 as triangles and
crosses, respectively. The CNSC system achieved comparable performance without
a duration model that is implicitly inherent in the HMM-based approaches.

In order to better understand the performance and weaknesses of the presented
overlap detection system, the results were analysed as a function of overlap segment
duration. For this study, the first operating point with precision/recall of 55/31 %
was chosen. Figure 4.6 shows four histogram plots for the test set which illustrate
overlap detection performance in terms of detected and missed overlap (top right
and bottom left) as well as recall (bottom right). For comparison, a reference overlap
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Figure 4.6: Weighted length histograms for reference overlap segments, detected overlap,
missed overlap, and recall [68].

histogram is also presented (top left). Note that the distribution of overlap segment
durations show the total contribution (in seconds) to the corpus for each bin (not the
number of segments with the respective length, as would be the case in a conventional
histogram). The plots show that the largest contribution to overlap comes from
shorter segments with durations between 0.5 and 1.5 seconds. However, there is a
surprising number of longer overlap segments with durations in excess of 4 seconds.
The missed overlap and recall histograms show that short segments, which are the
most frequent, were the least well detected. The results show that a significant
penalty will be incurred if those short segments are not detected reliably. Future
work should therefore focus on improving detection of shorter segments.

4.3.4.4 Conclusions

This section reported advances in applying CNSC to the detection of overlapping
speech in the context of conference meetings and speaker diarization. CNSC is used
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to separate a potentially overlapping speech signal into single-speaker signals. It was
shown how the resulting CNSC base activations can be applied to detect overlapping
speech segments.

The new CNSC approach yields overlap detection results which are comparable
to a state-of-the-art HMM overlap detection system, when evaluated on the AMI
meeting corpus. Compared to the HMM, a rather simple classifier is employed,
which does not depend on any training data. Optimised parametrisations as well
as new energy ratio and total energy features resulted in significantly better per-
formance than previous work. This supports the potential for CNSC-based overlap
detection. A new analysis of overlap detection performance highlights the need for
continued work to improve overlap detection particularly for shorter segments of be-
tween 0.25 and 2 seconds in duration. A large part of these short overlap segments
are backchannel utterances, in which one speaker speaks in the middle of a longer
utterance of another speaker. However, very often it is not the case that there is
a real acoustic overlap between these two speakers. Therefore, these segments can
not be detected by overlap detection systems which rely only on acoustic features.

The study presented in the next section aims to integrate the CNSC-based over-
lap features into an HMM overlap detection framework to exploit the benefits of
duration modelling. This approach is expected to improve overlap detection perfor-
mance for overlapping segments of particularly short and long duration.

4.3.5 Audio Features for Overlap Detection

This section reports the combination of features derived through CNSC and new
energy, spectral, and voicing-related features within a conventional HMM system.
While in the previous section, new CNSC-based features for overlap detection were
presented and tested with a threshold classifier, these are now combined with the
duration modelling ability of an HMM system, using a tandem HMM setup.

The contributions of this section are two-fold: first, it reports the use of CNSC
base activations within an HMM framework, which inherently includes duration
modelling. Second, it introduces new energy, spectral, and voicing-related features
which are well-suited for overlap detection.

4.3.5.1 HMM Overlap Detection System

As a classification framework, a standard HMM-based overlap detection system
was applied, as first presented in [16]. Speech, nonspeech, and overlapping speech
were each modelled by a three-state HMM. A short introduction to HMMs is given
in 2.2.1.2. Observations were modelled by a multivariate GMM with diagonal co-
variance matrices. Due to unbalanced training data, the mixtures of the speech
model had 256 components, while those of the nonspeech and overlap models had 64
components each. The models were trained with an iterative mixture splitting tech-
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nique with successive re-estimation. The decoding grammar forbid self-transitions
and transitions from nonspeech to overlapping speech. In order to trade off false-
positive detections versus false-negatives, different operating points were tested. The
log-likelihood transition penalty from speech to overlapping speech is the parameter
that was tuned to obtain these operating points. This parameter is also referred
to as overlap insertion penalty (OIP). A higher OIP leads to fewer false-positive
detections which translates to higher precision, but also lower recall.

4.3.5.2 CNSC-based Features

This section investigates the application of the CNSC-based features (as introduced
in Section 4.3.4) within the HMM framework. To recapitulate, CNSC is used to
decompose the mixed signal into speaker bases and activations. From the activa-
tions, an energy term Et(s) is derived for each speaker s in all audio frames t, using
Equation (4.17). Overlap detection features are then computed from the speaker
energies. The first feature is the energy ratio ERt, which is estimated according to
Equation (4.18). In addition, the total energy ETt is used, which is estimated by
summing up the energies Et(s) of all speakers s ∈ S:

ETt =
∑
s∈S

Et(s). (4.19)

To mitigate variations in energy across different recordings, the average over all
speech frames in the respective recording is subtracted from ETt, resulting in the
normalised total energy ETnt:

ETnt = ETt −
r

|Jsp|
∑
t∈Tsp

ETt, (4.20)

where r is a regularisation factor tuned on held-out development data, and Jsp
denotes the set of all speech frames in the recording. The latter is determined
by the VAD component of the employed diarization system. Whereas the system
presented in Section 4.3.4 investigated the thresholding of the normalised energy
ratio ERt and total energy ETt to detect overlap, this section reports their use as
features in an HMM-based overlap detection system.

4.3.5.3 Additional Features and Feature Selection

As already mentioned, in addition to the two CNSC-based features described above,
the system proposed in this section also considers new energy, spectral, and voicing-
related features which are well-suited to overlap detection. These audio features are a
part of the set that was provided for the 2011 Audio/Visual Emotion Challenge [196]
and can be extracted using the open source toolkit openSMILE [45]. The 35 candi-
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date features, including CNSC and baseline MFCC features, are listed in Table 4.3.
Originally, this feature set was designed for speech emotion recognition. It contains
MFCCs, and additionally, several energy-related features are included, such as the
loudness or the energy in different frequency bands. Other spectral features (e. g.
roll-off points, flux, skewness, kurtosis, or harmonicity) provide a comprehensive de-
scription of spectral properties. To model the human voice, several voicing-related
features (e. g. fundamental frequency f0, probability of voicing, jitter, or shimmer)
are included. Together, these features cover a broad range of properties of speech
signals. It is therefore expected that among them, there are several audio features
which are especially suited for overlap detection. In addition, this feature set in-
cludes many features which have previously been used for overlap detection. First
of all, MFCCs can be considered a baseline in speech and audio processing. Fur-
thermore, the application for overlap detection of features such as spectral kurtosis
and harmonicity or zero-crossing rate was already investigated in [18]. All features
are computed every 20 ms with window sizes between 25 ms and 60 ms, as indicated
in Table 4.3.

A feature selection approach based on the Kullback-Leibler divergence, similar
to that reported by Zhou et al. [258], was used to identify the features that are
most relevant for overlap detection. The discriminant value df of each feature f was
computed according to

df = D(pf || qf ), (4.21)

where D(· || ·) is the Kullback-Leibler divergence, pf is the distribution of feature f
for overlap frames, and qf is the distribution over all frames. The Kullback-Leibler
divergence of two probability distributions p and q is computed as

D(p || q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (4.22)

Under the assumption of Gaussian distributed features with mean µ and variance
σ2, Equation (4.22) can be computed as [167]:

D(p || q) = log
σq
σp

+
σ2
p + (µp − µq)2

2σ2
q

− 1

2
. (4.23)

The resulting Kullback-Leibler divergence scores for all features are displayed in
Table 4.3, which shows that a small selection is particularly well-suited to over-
lap detection. Scores for loudness, the two energy features, spectral flux, kurtosis,
harmonicity, probability of voicing, jitter, shimmer, and the two CNSC features
(illustrated in boldface in Table 4.3) are all higher than those for MFCC features.
The energy-related features achieved the highest scores, which is expected to some
extent, since the signal energy should be a good indicator of overlap. Jitter is a
measure of fluctuations in fundamental frequency, while shimmer is a measure of
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Table 4.3: Candidate features with window sizes [ms] and score of the Kullback-Leibler
divergence based feature selection on the training set. Selected features are indicated in
boldface.

Feature Win. size Score

Energy & spectral (27)

MFCC 1 – 12 60 0.01 – 0.06
loudness (auditory model based) 60 0.29
zero crossing rate 25 0.04
energy in band 250 – 650 Hz 25 0.98
energy in band 1 kHz – 4 kHz 25 1.15
25 % spectral roll-off point 25 0.03
50 % spectral roll-off point 25 0.02
75 % spectral roll-off point 25 0.02
90 % spectral roll-off point 25 0.01
spectral flux 25 0.43
spectral entropy 25 0.02
spectral variance 25 0.00
spectral skewness 25 0.02
spectral kurtosis 25 0.06
psychoacoustic sharpness 25 0.00
spectral harmonicity 25 0.09

Voicing-related (6)

f0 (subharmonic summation followed by
Viterbi smoothing)

60 0.03

probability of voicing 60 0.18
jitter 60 0.08
shimmer (local) 60 0.11
jitter (delta: ‘jitter of jitter’) 60 0.02
logarithmic harmonic-to-noise ratio 60 0.01

CNSC-based (2)

energy ratio 40 0.05
CNSC energy 40 0.28
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amplitude variability. It is thus of no surprise that they are also good indicators of
overlap.

The set of selected energy, spectral, and voicing-related features is called ESV
features in the following. All of these features were used together with MFCCs as
additional inputs to an HMM overlap classifier. The feature set was augmented with
first order regression coefficients. All features were normalised to have zero mean
and unity variance, using the statistics of the training data only.

4.3.5.4 Experimental Evaluation

CNSC bases for each speaker were learnt from the standard diarization system
output (which is regarded as pure speech). For this purpose, the top-down LIA-
EURECOM speaker diarization system described in [20] was used. This means that
the speaker bases were not always extracted from pure, non-overlapping speech of
only a single speaker, but may also have contained overlapping speech and material
from other speakers. However, it was found that this is no relevant degradation
compared to using only clean speech in an oracle-style experiment, as was done for
the experiments described in Section 4.3.4. The parametrisation of CNSC decom-
position was the same as in Section 4.3.4. The factor r in Equation (4.20) was tuned
on the development data and set to r = 1.2.

Overlap detection performance was assessed using averaged frame-level precision
(Pre) and recall (Rec) statistics. In addition, the overlap detection error (Err) is
reported, which is defined as the sum of false alarm and missed overlap times divided
by the reference overlap time, as expressed in (4.4). This measure is a good indicator
for the possible improvement in DER through overlap handling.

For the first experiment, only MFCCs were used as features. Then, the selected
ESV features were added. Finally, this feature set was augmented by the CNSC
overlap features. Each of these systems was evaluated for two different operating
points, using different values of OIP. Table 4.4 shows overlap detection results for
each of the different system setups. In addition, results from previous studies are
shown for comparison. This includes another study in which the same test set was
used for the experiments [18], as well as results from Section 4.3.4 in the present
thesis. Results for an HMM-based system with MFCCs and other features, reported
in [18], are illustrated in the first row for high recall (left) and high precision (right)
setups. These results are slightly better than those for the CNSC-only system.
However, it can be seen that it is difficult to obtain high precision results, even at
the cost of lower recall. The last three rows of Table 4.4 show the results for the
system described in this section. First, using only baseline MFCC features, then
the same system with additional ESV features, and finally with additional CNSC
features. In all cases, for the high recall setup, the parametrisation OIP = 100 was
employed, whereas for the high precision setup OIP = 0. The results for MFCCs
were slightly worse than the ones presented in [18]. This is not surprising since in
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Table 4.4: Overlap detection results on the test set, comparing previously published results
as well as results from Section 4.3.4 with the proposed HMM system with various features.
For each of the proposed systems, two different precision (Pre) vs. recall (Rec) operating
points with their respective overlap detection error (Err) are shown, depending on the
OIP.

System Pre Rec Err Pre Rec Err

MFCC [18] 55.0 40.0 92.7 64.0 24.0 89.5
CNSC 55.0 31.0 94.4 64.0 23.0 89.9

M
F

C
C

E
S
V

C
N

S
C

OIP
0 100

3 - - 45.2 50.1 110.8 54.3 25.8 96.0
3 3 - 60.9 24.0 91.4 85.7 13.2 89.0
3 3 3 65.8 31.5 84.9 81.6 22.9 82.3

that study, there are also other features employed in addition to MFCCs. In the
case of OIP = 0, it can be seen that the overlap detection error Err was above 100 %,
which was caused by the low precision, since there are many false-positive detections.
Adding ESV features led to a substantial improvement in precision and error over
the MFCC baseline but a drop in recall. The inclusion of CNSC features brought
further substantial improvements to recall performance which was then comparable
to previous work [18] but with better precision and also the lowest error.

The results presented in this section show that the inclusion of more audio fea-
tures in addition to MFCCs is capable of improving the overlap detection perfor-
mance of an HMM system. Furthermore, features derived from CNSC decomposition
lead to an additional improvement.

4.3.6 Overlap Detection using Lexical Information

Almost all of the prior studies in overlap detection focus on the use of acoustic cues.
This includes audio features such as MFCCs, prosodic information, or, as intro-
duced in the previous sections, features based on CNSC or other energy, spectral, or
voicing-based features. While backchannel utterances such as ‘yeah’ or ‘mm-hmm’
are very frequent in spontaneous, overlapping speech [81], they do not necessarily
overlap acoustically with competing speech. In Section 4.3.4, the system analysis
showed that especially short overlap segments, such as those from backchannel ut-
terances, are particularly difficult to detect using acoustic features on their own.
New approaches, exploiting different cues are thus required.

This section introduces the application of lexical information, in which an ana-
lysis of the spoken content is used to improve overlap detection. Using language
models for single-speaker speech and overlap, an overlap score is created for every
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spoken word and used as an additional feature within the HMM framework. The
motivation to use lexical features for overlap detection stems from the hypothesis
that some words are more likely to occur during overlap than others, and that thus,
spoken words can be used to detect overlap. This is intuitively the case for floor
grabbers, backchannels, and interruptions, for example.

The lexical or linguistic content of a speech signal has previously been used
for example for speech emotion recognition [194] or for speaker diarization [21].
This section considers the use of such higher-level information for overlap detection.
The spoken content of the audio signal is one such source of information. Central
to the idea is the use of language models to detect backchannel words and other
language characteristics which typify instances of overlap. In particular, this section
presents a new approach to overlap detection using lexical features, which uses
language models to characterise the spoken content in overlapping and single-speaker
speech. The language models are used to assign scores to each word in a dictionary
and thus to estimate the probability that the lexical content reflects overlapping
speech. Using the output of an automatic speech recognition (ASR) system, these
scores are estimated for an unknown audio segment. The resulting scores are used
within a conventional HMM framework to detect overlap. Experiments conducted
on the AMI corpus illustrate that the proposed lexical features lead to improved
performance.

4.3.6.1 System Overview

An overview of the proposed system is illustrated in Figure 4.7. It shows the in-
tegration of the new lexical features into an HMM-based overlap detection system
with baseline features. Unigram language models are learnt for single-speaker and
overlapping speech using independent training data and ground-truth, word-level
transcriptions. Test data are processed with an ASR system to produce a com-
parable word-level transcription. This transcription is used together with the two
language models to estimate a score which reflects the relative likelihood that the
signal contains speech from a single, or more than one speaker. The score is com-
bined with the baseline features and used in an HMM detection system (tandem
system setup) which classifies the signal as either nonspeech, speech (from a single
speaker), or overlap. The HMM system is the same as described in Section 4.3.5.1.

4.3.6.2 Lexical Cues for Overlap Detection

In this study, language models are used to characterise the distribution of words
during non-overlapping and overlapping speech. Generally, a language model is
used to assign a probability to a sequence of words p(w1, ..., wm). Of practical use
are N -gram language models, in which the probability for a word depends on the last
N−1 words. In speech recognition, it is common to use bigram or trigram language
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Figure 4.7: System overview for the overlap detection system using lexical information [63].

models. In contrast, a unigram language model describes only the probability of a
single word p(w). Such unigram language models p(w|cw = sp) and p(w|cw = ol)
for speech and overlap (as the word class cw) are computed using training data for
single-speaker and overlapping speech, respectively. In practice, however, to permit
the automatic recognition of only a single word at a time, only the longest spoken
word per overlap interval is taken into account.

The detection of overlap using lexical content is therefore equivalent to deter-
mining the probability of overlap p(cw = ol|w) for any given word. With Bayes’
theorem, this can be expressed as:

p(cw = ol|w) =
p(w|cw = ol) · p(cw = ol)

p(w)
. (4.24)

Since the prior probability p(cw = ol) is independent of the word and p(w) is approxi-
mated by the language model probability for single-speaker speech p(w|cw = sp),
Equation (4.24) can be reduced to

p(cw = ol|w) ∼ p(w|cw = ol)

p(w|cw = sp)
. (4.25)

Using log-likelihoods, the probability of overlap slex(w) is finally expressed as:

slex(w) = log
(
p(cw = ol|w)

)
∼ log

(
p(w|cw = ol)

)
− log

(
p(w|cw = sp)

)
. (4.26)

Equation (4.26) reflects the relative likelihood of speech of a single speaker com-
pared to multiple speakers. The value slex(w) can be computed for every word in the
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Figure 4.8: Distribution of overlap scores for backchannel words (a) and other words (b).

training set. A ground-truth annotation is subsequently used to construct a word-
level look-up table and to identify those words which are most or least indicative
of overlap. Words which appear more often in overlapping speech and less often in
non-overlapping speech are assigned higher scores, and vice versa. The score forms
the new feature to be used for overlap detection.

Words typically used in overlap segments (e. g. in backchannel utterances) like
‘mh-hmm’, ‘uh-huh’, ‘ah’, ‘yeah’, ‘yep’, ‘okay’, ‘right’ were all shown to be among
those with the highest scores. Figure 4.8 shows the distribution of overlap scores
computed with Equation (4.26) for a choice of 35 typical backchannel words (left)
and for all other words (right) in the training set. The distribution of the non-
backchannel words is centred around slex = 0, except for some outliers, while all of
the backchannel words obtained positive scores. Most of the outliers for the non-
backchannel words are represented by words that occur very rarely, which leads to
bad estimates of the overlap scores. These observations support the hypothesis that
lexical cues have potential for overlap detection.

For the training data, the reference transcriptions were used to determine slex(w)
on a frame-by-frame basis according to Equation (4.26). The value of slex(w) was
then added to the baseline feature set. As with all other features, first order regres-
sion coefficients were added and the features were normalised. The corresponding
value of slex(w) was assigned to recognised words in test data from the look-up table.
For both training and test data, a value of slex(w) = 0 was assigned in the absence
of any recognised words.

To assess the potential of lexical cues for overlap detection independently from
the performance of an ASR system, the performance of the proposed system was
evaluated using a so-called oracle-style ASR system, that is, ground-truth tran-
scripts. Accordingly, to simulate the output of a more realistic ASR system, the
transcripts were purged of overlapping words so as to retain only those with the
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Table 4.5: Precision (Pre), recall (Rec), and overlap detection error (Err), each given in
%, on the test set for the four feature combinations. Operating points were tuned (by
varying OIP) to achieve minimum overlap detection error on the tuning set.

Features OIP Pre Rec Err

MFCC 50 55.3 34.2 93.4
MFCC + ESVC 50 77.8 25.8 81.6
MFCC + lexical 65 72.6 23.2 85.5
MFCC + ESVC + lexical 85 81.7 28.0 78.3

largest duration. The output of such an oracle-style ASR system thus corresponds
to that of a perfect ASR system, but capable only of single-word recognition. This
is the same strategy as applied for language model training.

4.3.6.3 Experimental Evaluation

The proposed system using lexical information for overlap detection was evaluated
using the same partition of the AMI database as described in 4.3.3.1. The required
language models were estimated using a larger training set of 161 meeting recordings.
This step helped to provide a better estimate of the language models. The following
system parameters were applied for feature extraction: energy, spectral, and voicing-
related features were computed every 20 ms. A window size of 60 ms was applied
for MFCC and voicing-related features, whereas other energy and spectral features
were determined using a window size of 25 ms. In addition, CNSC-based features
as developed in previous sections of this thesis were used. CNSC was applied using
magnitude spectra computed from 40 ms windows with a window shift of 20 ms. For
the CNSC features, the number of bases per speaker was set to R = 35. Furthermore,
the algorithm used a convolutional range P = 4 and a sparseness parameter λ =
0.05. The regularisation factor in Equation (4.20) was set to r = 1.2. Speaker bases
were learnt using speaker-specific training data obtained with the LIA-EURECOM
speaker diarization system [20]. The system performance was measured in terms of
frame-wise precision, recall, and overlap detection error.

4.3.6.4 Results and Conclusions

Results are reported for four different combinations of MFCC features, ESV, and
CNSC-based features (denoted as ESVC in combination) as well as for the newly
proposed lexical features (using an oracle-style ASR system). Results are illustrated
in Figure 4.9 for each tested feature combination as a function of OIP. In addition,
Table 4.5 lists the test set results for all four systems at one operating point. This
operating point was determined by varying OIP and evaluating on the tuning set to
achieve a minimum overlap detection error.
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Figure 4.9: Overlap detection performance as a function of the OIP for different feature
combinations [63]. Performance illustrated in terms of detection error (solid line), precision
(dotted line), and recall (dashed line).

The lowest detection error achieved with MFCC features alone was 93.4 % at an
OIP of 50. In combination with the new lexical feature, the error dropped to 85.5 %
as a result of improvements in precision. For other system operating points (other
values for OIP), the addition of lexical information to the MFCC feature set also
helped to decrease the overlap detection error. The best feature set without lexical
features combines MFCCs, energy, spectral, and voicing-related features with CNSC
features. With this feature set, the minimum detection error was 81.6 %, again with
an OIP of 50. When lexical features were added to this feature set, the error dropped
to 78.3 %. This time, however, the drop in error can be attributed to an increase in
both, precision and recall. Here again, the addition of the new lexical feature led
to a consistent performance gain for all tested values of OIP. The increased recall
in the case of using lexical features can be attributed to a better detection of small
overlap segments, for example those containing backchannel utterances.
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Figure 4.10: Illustration of overlap detection, showing annotations for the ground truth,
the baseline system, and the baseline combined with the lexical feature (from top to
bottom) for a 40-second excerpt of a recording from the test set [63].

Figure 4.10 illustrates overlap detection performance for a 40 second excerpt of
a recording from the test set. The three plots show the ground-truth annotation (0,
1 or 2 active speakers), the output of the baseline system and the output when the
new lexical feature is added. Together, these plots illustrate how the new feature
has the potential not only to improve overlap detection accuracy of those segments
already detected with the baseline approach, but also smaller segments which are
not at all detected by the baseline system.

The experimental results confirm the hypothesis that lexical features can help
to improve overlap detection; the results show improved precision and recall perfor-
mance and reduced overlap detection error. Lexical features were derived from an
oracle-style ASR system. It has to be tested how these results transfer to a real-case
scenario with a more error-prone ASR system.

To extend the idea further, future work should not only consider the use of
language model scores, but also those of acoustic models. In addition, continuing
the idea of using more information beyond pure acoustic features, further work
should study the nature of overlapping speech in greater detail so that new insights
can stimulate the development of future overlap detection systems.
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4.3.7 Overlap Detection with Memory-Enhanced Recurrent
Neural Networks

In this section, neural networks exploiting long-range temporal context are applied
to the problem of overlapping speech detection. Together with the HMM overlap
detection system, neural networks are used in a tandem architecture.

In Section 4.3.4, an analysis of detected overlap segments showed that espe-
cially short segments of overlapping speech are hard to detect. Such segments often
include backchannel utterances or interruptions, which are characterised by a low
degree of actual acoustic overlap. Therefore, systems that go beyond pure acoustic
features should be considered in order to improve overlap detection. For example,
an approach presented in [251] uses the output of a voice activity detection system
and the silence distribution to detect overlap. This study was extended by exploit-
ing long-term conversational features for overlap detection [250]. In the previous
section, it was shown how lexical information can be used to detect overlapping
speech.

Neural networks could potentially improve overlap detection by putting a larger
emphasis on analysing temporal context. This idea is motivated by the findings
of [83], which show that interruptions (which are a common type of overlapping
speech) are likely to occur after speech with certain acoustic properties. Thus,
incorporating more temporal context should help to improve an overlap detection
system. In the domain of speech recognition, tandem architectures which combine
neural networks with HMMs were applied successfully [28]. Neural networks can be
equipped with capabilities for context modelling with the introduction of recurrent
neural networks (RNNs). However, the amount of context a conventional RNN can
exploit is limited. Long short-term memory (LSTM) RNNs have been proposed to
overcome this so-called vanishing gradient problem [100]. Recently, LSTM RNNs
have been shown to deliver good results for VAD [44], which is a related problem to
overlap detection.

In this section, LSTM RNNs (the acronym LSTM will be used to denote an
LSTM RNN in the following) are applied to the task of speech overlap detection.
Using conventional MFCC features as well as energy, spectral, vocing-related, and
CNSC-based features that were introduced for overlap detection in the previous sec-
tions, LSTMs are used for regression to predict frame-wise overlap scores. These
scores are employed to detect segments of overlapping speech. In addition, the
predicted overlap scores are applied as features within the HMM framework. Ex-
periments were conducted with the AMI corpus of meeting recordings containing
spontaneous speech.
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Figure 4.11: System overview for the LSTM overlap detection system [64].

4.3.7.1 System Overview

The proposed overlap detection system is depicted in Figure 4.11. It consists of
a conventional HMM system for overlap detection. In addition, extracted audio
features can also be fed to the LSTM to generate overlap predictions. These overlap
predictions are either used directly (by applying a threshold) to detect overlap or
they are added to the other features and decoded with the HMM, resulting in a
tandem LSTM-HMM system.

4.3.7.2 Long Short-Term Memory Recurrent Neural Networks for Over-
lap Detection

RNNs are a widely used technique for context-sensitive sequence labelling. They
exploit context in the form of inputs from past time steps by using cyclic connections.
Due to the so-called vanishing gradient problem (the influence of a certain input on
the hidden and output layers of the network decays exponentially over time), the
context that is used by an RNN is limited. In order to overcome this problem,
LSTM networks have been introduced in [100]. LSTMs use memory cells to store
information over a longer period of time. An LSTM hidden layer is composed
of so-called memory blocks. Each memory block consists of a memory cell and
three multiplicative gate units (input, output, and forget gate). These gates allow
for write, read, and reset operations of the memory cell. The amount of context
information that the network uses is learnt during training. Due to their ability to
model long-range dependencies between the inputs, LSTMs seem to be a promising
approach for overlap detection. A more detailed description of LSTM networks is
given in Section 5.2 of this thesis.

In this study, LSTMs are applied for linear regression to predict framewise over-
lap scores. For this purpose, the output layer of the network consists of a single
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linear unit with output o(t) at time t. The input feature vectors of the network are
defined as

Xf = [xf1, ..., xfT ] (4.27)

where T is the number of frames in the target sequence. The output o(t) depends
on the past input vectors Xft = [xf1, . . . , xft],

o(t) = F(Xft) (4.28)

due to the LSTM principle and the recurrent nature of the network. During network
training, output targets ô(t) are defined as

ô(t) =


1 if xft ∈ overlap
0 if xft ∈ speech
−1 if xft ∈ nonspeech

(4.29)

which results in a larger distance between nonspeech and overlap. This punishes the
confusion of nonspeech and overlap more than that of speech and overlap. The idea
underlying this principle is that nonspeech and overlap should also have a larger
distance in the feature space (e. g. when using energy features) than speech and
overlap. The predictions o(t) of the trained network are used for classification by
applying a threshold θ,

cw(t) =

{
1 if o(t) ≥ θ
−1 if o(t) < θ

(4.30)

whereby the predicted class cw(t) differentiates only between overlap (cw = 1) and
non-overlap (cw = −1). The threshold θ is varied to obtain different system operat-
ing points as a trade-off between precision and recall.

The size of the input layer of the network was equivalent to the number of
employed audio features. One recurrent hidden layer with 50 LSTM blocks was used.
This topology proved to be efficient for voice activity detection [44] and therefore,
it was also considered for this study. Networks were trained and evaluated with the
RNNLIB software by Graves et al. [85]. LSTM training was performed with the
backpropagation through time algorithm; the weights were updated using gradient
descent with a learning rate of 10−5 and a momentum of 0.9. Moreover, the weights
were required to be initialised with non-zero values, leading to the choice of uniform
random values sampled from ]0; 0.1]. To enhance generalisation, Gaussian noise with
zero mean and standard deviation of 0.3 was added to all inputs. A maximum of
40 training epochs was run to avoid over-adaptation. Training was stopped if there
was no error improvement on the development set for the ten most recent epochs.
The frame-wise mean quadratic error between the targets ô(t) and the network
predictions o(t) served as an error measure during network training.
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Figure 4.12: LSTM predictions for a 20-second excerpt from the test set [64]. The dashed
line marks the ground truth (-1: nonspeech, 0: speech, 1: overlap).

Figure 4.12 shows LSTM predictions o(t) for a 20-second excerpt from the test
set. It can be seen that the LSTM predictions are well correlated with the ground
truth, yielding low values for nonspeech regions and high values for overlap segments.
By applying a threshold, overlap segments can be detected from these LSTM pre-
dictions.

To combine LSTM with HMM overlap detection, the LSTM predictions o(t) were
used as an additional feature for the HMM system. As for all other features, delta
coefficients were computed for LSTM predictions. However, LSTM predictions were
not normalised, based on the findings of preliminary experiments.

4.3.7.3 Experimental Setup

Experiments were conducted using a subset of the AMI corpus, using the partition
into training, tuning/development, and test set as specified in Section 4.3.3.1. Fea-
ture extraction for MFCC and ESVC features was performed using the methodology
described in Section 4.3.5.

Both the HMM and LSTM-based overlap detection systems were used to perform
experiments. The systems were tested both with 24 MFCCs and with the 46 ESVC
features. In addition, the combination of HMM and LSTM was evaluated, where
LSTM predictions are added to the HMM feature set. This tandem system was also
tested with MFCC features and with ESVC features. Thus, in total, six different
system configurations were tested.
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Figure 4.13: Precision and recall for HMM (solid lines), LSTM (dashed lines), and their
combination (dashed-dotted lines), each time using either MFCC (black) or ESVC (grey)
audio features [64]. An ‘X’ marks the operating point with minimal overlap detection
error as determined with the development set.

4.3.7.4 Results and Conclusions

Figure 4.13 plots recall against precision for all six tested systems. In addition, each
system’s operating point is marked as ‘X’ and displayed in Table 4.6. These operat-
ing points are the points with minimum overlap detection error on the development
set. For the LSTM system, different operating points were obtained by varying the
threshold for overlap detection, leading to rather straight curve in the plot. Different
operating points for the HMM systems were obtained by increasing OIP. At first,
increasing OIP resulted in higher precision and lower recall, while for higher OIP,
both measures decreased. This can be seen from the results for all HMM systems.

With MFCC features, LSTM-based overlap detection performance was compara-
ble to the HMM in the high-recall region. Beyond this, LSTMs with MFCC features
were capable of achieving high-precision operating points. The two different classi-
fiers achieve an error of 93.4 % and 88.9 %. This difference was the result of higher
precision with the LSTM system. Using ESVC features instead of MFCCs in the
HMM system resulted in higher precision and lower recall. Yet again, the perfor-
mance of the LSTM was comparable to that of the HMM, with error rates of 81.6 %
and 82.3 %, respectively. For both feature sets, adding LSTM predictions (result-
ing in the tandem system) greatly improved the recall performance while achieving
similar precision values. In the case of using MFCC features, for the minimum-error
operating point, recall increased from 34.2 % to 44.0 % while precision stayed roughly

89



4 Speaker Diarization

Table 4.6: Precision (Pre), recall (Rec), and overlap detection error (Err) on the test
set for the six tested system and feature combinations. Operating points were tuned to
achieve minimum overlap detection error on the development set.

Features System Pre Rec Err

MFCC HMM 55.3 34.2 93.4
ESVC HMM 77.8 25.8 81.6
MFCC LSTM 65.2 23.8 88.9
ESVC LSTM 75.7 26.1 82.3
MFCC + LSTM predictions HMM 54.3 44.0 93.1
ESVC + LSTM predictions HMM 78.6 31.7 76.9

at the same level. Due to the relatively low precision, the overlap detection error did
not improve. With ESVC features, the system combination increased recall from
25.8 % to 31.7 %, while the precision remained constant. The error decreased from
81.6 % to 76.9 %, which is the consequence of the increased recall performance.

It is worth noting that in the case of ESVC features, the combination of LSTM
and HMM was Pareto-dominant to the single systems. This means that the sys-
tem combination was in (almost) all cases (operating points) better than the single
systems. This effect was not observed for MFCC features.

In summary, the experimental results show that LSTMs alone perform compa-
rably to HMMs in terms of overlap detection error. The combination of HMM and
LSTM can substantially improve the overlap detection performance due to higher
recall. This combination is obtained by adding LSTM predictions to the HMM fea-
ture set. Overlap detection recall is improved (23 % relative improvement in the
case of using ESVC features) while keeping precision constant. Thereby, the overlap
detection error is substantially reduced. One reason for higher recall with the tan-
dem system could be that the ability of LSTMs to exploit long-range context helps
to identify overlap segments which are hard to detect by the HMM with acoustic
features alone. Examples of such segments are short backchannel utterances.

4.3.8 Summary of Overlap Detection Results

In Section 4.3, different methods and approaches for speech overlap detection were
presented. Because all systems were evaluated with the same database of meeting
speech recordings, the results can directly be compared. The results (in terms of
precision, recall, and overlap detection error) of selected experiments described in
the previous sections are summarised in Table 4.7. For simplicity, for all systems,
results are only reported for one operating point. This operating point was tuned to
achieve a minimum overlap detection error, which is the most important performance
measure for the application of overlap handling for speaker diarization. In addition,

90
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Table 4.7: Comparison of overlap detection results for different systems evaluated in this
study. Results are given in terms of precision (Pre), recall (Rec), and overlap detection
error (Err) on the employed test set of the AMI corpus. Operating points were selected
to achieve minimum overlap detection error.

System Pre Rec Err

HMM (MFCC + other) [18] 64.0 24.0 89.5
CNSC 64.0 23.0 89.9
HMM (MFCC) 55.3 34.2 93.4
HMM (ESVC) 77.8 25.8 81.6
HMM (ESVC + lexical) 81.7 28.0 78.3
HMM (ESVC + LSTM) 78.6 31.7 76.9

results from Boakye et al. [18] are included, as they use the same test set of meeting
recordings. In their study, only precision and recall are reported as performance
measures. The overlap detection error can, however, directly be computed from the
precision and recall values, as was shown in Equation (4.4). This system can be
considered a baseline system as it is an HMM overlap detector employing MFCCs
as well as other spectral audio features, which are rather standard techniques.

In Section 4.3.4, an approach for overlap detection using a signal separation tech-
nique, namely CNSC, was presented. It is based on the idea of separating possibly
overlapping speech signals into the contributing speakers using CNSC. From the
resulting speaker activation energies, features were constructed for overlap detec-
tion. This method works without the HMM framework, but achieved comparable
results (cf. row two in Table 4.7). The study presented in Section 4.3.5 consisted
of selecting relevant audio features for overlap detection. These features were se-
lected from a large set of candidate features, including MFCCs, energy, spectral, and
voicing-related (ESV) features. Furthermore, the CNSC-based features were added
to the feature set. For comparison, a baseline system that uses only MFCCs was
tested (row three). Substantial improvements were obtained with the larger feature
set and the overlap detection error was further decreased to 81.6 %. An approach
exploiting lexical information for overlap detection was introduced in Section 4.3.6.
The spoken content was analysed for words that are cues for overlap. Language
models were used to create a score that was added to the feature set of the HMM
system. With this new feature, improvements in all performance measures were ob-
tained (row five). Finally, in Section 4.3.7, the application of LSTM neural networks
for overlap detection was described. This classifier can exploit long-range temporal
context, which proved to be successful in improving overlap detection results. The
LSTM system was combined with the HMM in a tandem setup, which resulted in
the best overlap detection error among all systems presented in this thesis (row six).
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Table 4.8: Overlap detection performance depending on the overlap segment length, in
terms of statistics derived from the number of positive overlap (P) samples as well as
true-positive (TP) and false-negative (FN) detections.

Length l [s]
0 – 0.33 0.33 – 1 1 – 1.5 1.5 – 5 >5 all

P [s] 56 816 568 2116 727 4283
P

ΣP
[%] 1.3 19.0 13.3 49.4 17.0 100

TP [s] 1 57 110 795 396 1359
Rec = TP

P
[%] 2.3 7.0 19.3 37.6 54.5 31.7

FN [s] 55 759 458 1321 331 2924
FN
P

[%] 97.7 93 80.7 62.5 45.5 68.3
FN
ΣP

[%] 1.3 17.7 10.7 30.9 7.7 68.3

Similar to the analysis presented in Section 4.3.4.3, the performance of the best
overlap detection system in terms of detection error (HMM with ESVC + LSTM
features, cf. last row in Table 4.7) was analysed for different overlap segment lengths.
The results of this analysis are presented in Table 4.8, in which all results are given
for different intervals of overlap segment length. The first row shows the sum of the
lengths (in seconds) of all overlap segments in these intervals, with the percentages
given in the second row. It can be seen that segments with a length between 1.5
and 5 s made up around half the amount of total overlap. The next pair of rows
show the amount of correctly detected overlap in seconds and in percentage (which
is the recall value). In the same manner, the table lists the missed detections in rows
five to seven. These numbers clearly show that short overlap segments (l < 1.5 s)
are especially difficult to detect, resulting in high missed detection (FN) rates. On
the other hand, due to the large amount of overlap segments with a length between
1.5 and 5 s, the overall contribution to the missed detections is comparably small.
It can be concluded that the potential for improvement is larger for short overlap
segments. Overall, however, overlap detection can profit the most from improved
detection of longer overlap segments.

4.4 Overlap Handling

This section describes the full integration of overlap detection results into a top-
down diarization system through the application of overlap exclusion and overlap
labelling. Experiments on a subset of the AMI corpus show that the system delivers
significant reductions in missed speech and speaker error.
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4.4.1 Methodology

Overlap handling is achieved with two setups which correspond to different system
operating points for overlap detection with a different trade-off in precision versus
recall. In the case of an HMM system, these operating points are obtained by varying
OIP. First, detected intervals of overlapping speech are excluded from the diarization
clustering process to reduce speaker model impurities. For this approach, a high
overlap detection recall is desired in order to detect and discard as much overlapping
speech as possible. Second, overlap labelling is applied by adding a second speaker
in the diarization output for all intervals of detected overlapping speech. While this
can reduce missed speaker time, it can also introduce false alarms, and thus a high
precision operating point is desirable in the overlap detection system. In the present
study, two approaches are used to determine the second speaker: either the GMM
log-likelihoods (LLKs) from the diarization system or the CNSC energies according
to Equation (4.17) are summed up over the detected overlap segment. The speaker
with the highest summed score (or the second highest, if the speaker with the highest
score is already that one detected by the baseline system) is then added as a second
speaker.

4.4.2 Results and Conclusions

In the experiments, the overlap detection system presented in Section 4.3.5 was uti-
lised. This is an HMM overlap detection system using the ESVC audio feature set
including MFCCs, energy, spectral, voicing-related, and CNSC-based audio features.
For overlap exclusion, the OIP was set to zero (resulting in a higher recall, with
precision of 66 % and recall of 31 %), while for overlap labelling the OIP was set
to 100 (resulting in a higher precision, with precision of 82 % and recall of 23 %).
The speaker diarization system used for the experiments was the top-down LIA-
EURECOM system reported in [20]. Finally, so that all results are independent of
speech activity detection, reference speech/nonspeech segmentations were used in
all cases.

Results are presented in Table 4.9. For the baseline system, overlapping speech
was shown to contribute 15 % to the missed speaker error4 whereas there were no
false alarms due to the use of reference speech/nonspeech transcriptions. With a
speaker error of 18.2 %, a baseline DER of 33.2 % was obtained. The DER fell
marginally to 32.7 % (1.5 % relative improvement) when overlap exclusion was used

4Note that the missed speaker error is computed as a percentage of the total speaker time,
which weights all speech segments by the number of contributing speakers and thus counts overlap
segments twice (in the case of two overlapping speakers). Therefore the number of 15 % for the
missed speaker time is lower than the number of 20 % reported in Section 4.3.3.1 as the percentage
of overlapping speech (which is computed as a fraction of all speech frames without counting
overlap twice).

93



4 Speaker Diarization

Table 4.9: Influence of overlap handling (applying either overlap exclusion, overlap la-
belling or both), showing the missed speaker error (Miss), false alarm error (FA), speaker
error (SpkE), diarization error rate (DER), and relative improvement in DER over the
baseline. Overlap labelling was performed using either LLK scores or CNSC energy scores.

System Miss FA SpkE DER Improvement

baseline [20] 15.0 0.0 18.2 33.2
+ exclusion 15.0 0.0 17.7 32.7 + 1.5 %
+ labelling LLK 11.6 0.6 20.1 32.3 + 2.7 %
+ labelling CNSC 11.6 0.6 19.6 31.9 + 4.0 %
+ exc. + lab. LLK 11.6 0.6 19.4 31.6 + 4.8 %
+ exc. + lab. CNSC 11.6 0.6 18.9 31.1 + 6.4 %

to reduce clustering impurities. This improvement stemmed from a reduced speaker
error due to improved speaker modelling. On its own (without exclusion), overlap
labelling had a slightly larger impact on performance. The DER improved by 2.7 %
relative when labelling was performed using LLK scores and by 4.0 % relative for
CNSC scores. With a small increase in false alarms, the average missed speech
rate fell to 11.6 %, whereas there was a small increase in speaker error due to erro-
neous labelling. Here, CNSC speaker labelling was more potent in determining the
overlapping speaker, as compared to labelling using the GMM LLK scores. When
used in addition to overlap exclusion, the LLK and CNSC-based overlap labelling
approaches gave relative improvements of 4.8 % and 6.4 %, respectively.

The diarization results show the expected behaviour of decreased missed speaker
error and thereby reduced DER. Overlap labelling requires a high-precision op-
erating point of the overlap detection system. Otherwise, false positive overlap
detections would result in an increased false alarm error contributing to the DER.
However, a high-precision operating point comes at the cost of lower recall. Thereby,
only a part of the missed speaker error is eliminated, as can be seen in the exper-
imental results. With improved overlap detection performance in terms of recall,
even larger DER improvements could be obtained in the future.

4.5 Online Speaker Diarization

While the previous sections focussed on improving a speaker diarization system by
detecting and handling overlapping speech, this section introduces an algorithm for
online speaker diarization. Conventional speaker diarization systems mostly work
offline, which means that the whole audio stream is processed at the same time. All
audio segments must be present before the speakers are compared and clustered. In
online speaker diarization, the segments are processed as soon as they are recorded,
meaning that as soon as a new segment of the audio stream arrives, it must be
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assigned to a speaker. Therefore, offline systems have access to more information,
which makes the results more stable. In addition, online systems have to fulfil real-
time constraints (except a small latency not longer than a couple of seconds), which
is not the case for offline systems.

In this section, an online speaker diarization system is presented. The system is
based on GMMs, which are used as speaker models. The system starts with three
such models (one each for both genders and one for nonspeech) and creates new
models for individual speakers just when the speakers occur. As more and more
speakers appear, more models are created. The system implicitly performs audio
segmentation, speech/nonspeech classification, gender recognition, and speaker iden-
tification. Experiments are performed with the HUB4–1996 radio broadcast news
database [80].

Most of the offline speaker diarization systems work in the following way: a
complete audio stream is segmented in smaller homogenous parts, each of them
containing only one speaker. After the complete audio stream has been segmented,
the segments are compared and clustered. In this way, one cluster is created for every
speaker. This is done for example using the Bayesian information criterion [222].
Online speaker diarization is different, the system cannot wait for all segments to
arrive before the clustering process begins. Therefore, no hierarchical clustering
algorithms (as in offline speaker diarization) can be applied. More sophisticated
clustering algorithms have to be used. In [141], a leader-follower clustering for
k-means clustering and a dispersion-based speaker clustering are proposed for online
speaker diarization.

GMMs in addition with universal background models and maximum a posteri-
ori (MAP) adaptation (also known as Bayesian adaptation [41]) were proposed for
speaker verification in [182]. From a large training database, a universal background
model is created, and to enrol a new speaker in the verification system, very small
amounts of data are needed, because the speaker’s GMM is created from the uni-
versal background model with MAP adaptation. The present study proposes to use
these techniques for a real-time speaker diarization system.

A system which is similar to the proposed system was presented in [145]. How-
ever, there are some substantial differences. In [145], a different model adaptation
technique is used and the main difference is that a simpler database is used for the
experiments. Whereas in [145], a database of recordings of European Parliament
plenary speeches is used, in the present study, a radio broadcast news database is
used. This database contains not only speech but also music, which is responsible for
a lot of errors in a diarization systems. Both types of databases are well suited for
online diarization systems, because relatively long speaker turns and low amounts
of spontaneous speech are beneficial for a stable performance of such a system. A
hybrid system for speaker diarization was presented in [223]. This system repeatedly
performs offline diarization and uses the resulting speaker models to perform online
speaker identification. Another similar system was proposed in [141]. In that sys-
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tem, however, only speaker clustering is performed. The system uses the reference
segmentation instead of performing segmentation itself. In [207], GMMs with MAP
adaptation were used for offline speaker diarization.

One important property of the present system is that it performs online speaker
diarization, in contrast to many other speaker diarization systems, like the one
proposed in [219]. In addition, it does not only perform online speaker clustering or
audio segmentation, but carries out both steps. Furthermore, as the system works
with GMMs, the results of one pass of the system are not only speaker clusters, but
also completely trained GMMs that can be used for speaker recognition. Due to the
properties of the database that is used for validation, the system has to work not
only with clean speech, but also with speech overlapped by music.

4.5.1 Methodology

The system introduced in this study can be divided into an offline part and an online
part. In the first phase, the offline part of the system is used to train GMMs for each
gender (male and female) and garbage. These three models are used as initialisation
for the online phase, in which the male and female models play the role of universal
background models.

The online part of the system performs speaker clustering. This is done as
explained in the following. Initially, the continuous audio stream is segmented. Each
time a new segment (typically with a length of several seconds) is created, model-
based classification is performed and a speaker label is assigned to the segment
based on the classification result. To be able to perform model-based classification,
a model has to be trained for each speaker. The two gender models as well as
the garbage model are constructed in the offline phase of the system. Models for
individual speakers are generated sequentially in the online phase.

The operating principle can best be described by an example as shown in Fig-
ure 4.14. When the first segment of the audio stream arrives, recognition is per-
formed with the existing three models. If the segment is classified as male or female,
a new speaker model is created by copying the corresponding gender model and
adapting the model with the audio data of the segment, using MAP adaptation.
In the example, the first audio segment is classified as male, thus a new speaker
model is created by copying the male model and adapting it with the audio data
of the corresponding segment. At this stage, the following models exist: the gender
models, the garbage model, and the model for the first speaker, named s001. If an
audio segment is classified as garbage, as is segment 2 in this example, no model
adaptation is performed. Segment 3 is classified as female here, leading to a new
speaker model s002. The next segment is recognised as s001. In this case, the model
is once again adapted with the new audio data. The system continues in this way:
whenever a new segment is recognised as male or female, a new speaker model is
created by copying and adapting the gender model. If an already seen speaker is
recognised, its model is adapted as well.
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Figure 4.14: System operation of the proposed online speaker diarization system [62]. At
the beginning, only three models exist, for male (M), female (F), and garbage (gar). New
speaker models (e. g. s001 for speaker 1) are created when the speakers occur. At every
time step, the model to which the segment is classified is highlighted by bold border lines.

The system implicitly performs several tasks: audio segmentation, speech/non-
speech classification, gender recognition, speaker novelty detection, and speaker
identification. Audio segmentation is performed with an energy-based algorithm,
as described below. Speech/nonspeech classification is done model-based: the de-
cision between the speaker models and the garbage model constitutes the decision
between speech and nonspeech. The decision between the two gender models and
any of the speaker models (which have been derived from one of the gender models)
corresponds to the gender recognition. For example, the process of creating new
models could be turned off to get a gender recognition system. Speaker novelty
detection is achieved by the maximum likelihood decision in the classification step.
Considering the case in which several speaker models have already been created,
then, if one of the gender models has the highest likelihood in the classification step
for a new audio segment, the segment is classified as being from a new speaker.

The system works online, there is no clustering process that uses the whole audio
recording. The recording is processed online (with a small latency) and labelled with
speaker names. After a complete pass with one recording, the performance can be
evaluated. The advantages of the system are the following: no trained speaker
models are required (beside the gender and garbage models), the models are created
on the fly. Additionally, the number of possible speakers need not be known to the
system, which is often referred to as open-set speaker recognition. A result of the
online pass of the system are trained speaker models (GMMs) that can be used for
speaker recognition. The model adaptation process of the system was implemented
with the hidden Markov model toolkit [252].
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4.5.1.1 Segmentation and Feature Extraction

An energy-based segmentation method is applied to segment the audio stream. This
method is a modified version of the segmentation as implemented in [252]: each audio
frame is either declared as speech or silence. When the energy of the frame exceeds
a certain threshold, it is declared as speech, otherwise as silence. Various rules are
used to determine start and end points of speech segments. For example, a maximum
segment length is applied, guaranteeing for a low system latency. Different maximum
segment lengths are evaluated in the experimental section. As acoustic features, 12
standard MFCCs (+ energy) were used, together with their corresponding delta and
delta-delta coefficients, which sums up to a total of 39 features. The features were
extracted with a frame rate of 10 ms and window size of 25 ms.

4.5.1.2 Learning New Speakers

The online phase is the centrepiece of the system. In the recognition phase of the
system, the speaker models are constantly adapted using the new audio data. In
order to create a model for a new speaker, the corresponding gender model is copied
and adapted with the new data of this speaker. This process uses MAP adaptation in
the same way as it is used in GMM systems with universal background models [182]
to adapt the means, mixture weights, and variances of the speaker GMMs. This
adaptation process follows the equations presented in Section 2.2.1.4. Here again,
the weighting factor τ was optimised on development data. Using small values of τ
causes the system to produce a new speaker for almost every audio segment, because
in this case, the new model is overfitted to the small amount of adaptation data and
not generalised enough to be able to recognise other segments from the same speaker.
If τ is set to zero, the new speaker model corresponds to a model trained only with
the adaptation data.

4.5.2 Experimental Evaluation

The HUB4-1996 radio broadcast news database [80] was selected for testing pur-
poses. This database consists of radio broadcast news recordings. A total number
of eleven recordings was used in this study, six for training the gender and garbage
models, three in the development set and two in the test set. Each recording is about
28 minutes long and most of them contain at least 15 different speakers. Further-
more, the recordings are interspersed with segments of music, as it appears often
in radio broadcast news recordings. Music occurs not only alone, but also in the
background of speakers.

The composition of the three files of the development set is 74 % male, 19 %
female, and 7 % garbage. The garbage parts consist mostly of music segments and
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Table 4.10: Speech/nonspeech classification and gender recognition error rates [%] on the
development set for different numbers of mixture components.

# Mixtures Speech/ Gender
Nonspeech

1 9.1 23.0
2 14.2 20.2
4 5.5 22.7
8 5.1 19.9
16 4.1 12.1
32 3.9 11.7
64 3.7 7.1
128 4.3 5.9
256 4.6 4.8
512 4.5 4.1
1024 4.7 3.6

pauses between speaker turns. Additional difficulty is added because speech is over-
lapped with music from time to time.

4.5.2.1 Speech/Nonspeech and Gender Recognition Results

In order to get results for the speech/nonspeech classification and gender recognition
performance of the system, the online phase of the system was started without using
the adaptation technique. In this way, no individual speaker models are created and
recognition is performed with just the three models male, female and garbage. To
get the speech/nonspeech classification error rate, the amount of time that male
or female were classified as garbage and vice versa was summed up and divided by
the total length of the audio test material. The gender recognition performance
was obtained by determining the amount of time that male and female are confused
with each other. With this experiment, the speech/nonspeech classification and
gender recognition could be evaluated independently of the subsequent adaptation
process of the system. This makes it easier to track down possible error sources
in the system. The speech/nonspeech classification and gender recognition error
rates with different numbers of mixture components for the GMMs are shown in
Table 4.10. As can be seen in the results, more mixture components generally
promised better results. However, the speech/nonspeech classification performance
stagnated at a medium number of mixture components and even slightly worsened
for higher numbers. Therefore, it was decided to use 128 mixtures: the classification
performance was good enough and the computational effort was small enough to let
the system work in real-time. In sum, the error rate with 128 mixtures was 10.2 %.
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One part of the errors occurred due to segmentation errors: if the segmentation
step erroneously under-segments the audio stream, there are relatively long segments
that contain more than one speaker, for example a female speaker followed by a male
speaker. In the following classification step, it is thus inevitable to make a small
error for this segment, as only one label can be assigned to each segment. Another
large portion of the errors was made because of music overlapping with speech.

4.5.2.2 Online Recognition Results

The online phase of the system including the adaptation process is the main com-
ponent of the system that was evaluated. The system makes similar segmenta-
tion, speech/nonspeech classification, and gender recognition errors as shown above.
Thus, when comparing the clustering results with similar studies, for example [145]
or [141], it must be taken into account that the system presented in this study
performs the whole processing chain, while for example in [141], the reference seg-
mentation is used. Following the results from the previously presented experiment,
it was decided to train the gender and garbage models with 128 mixtures for the
online test, as this number represents the best trade-off between error rate and com-
putation time. The best results were achieved with the MAP adaptation parameter
τ set to τ = 135.

The full system was evaluated using the DER as introduced in Section 4.2.2. Due
to the nature of the evaluation data (relatively long speaker turns), no forgiveness
collar was used. In addition, overlapping speech was ignored, since it is not very
frequent in the database that was used for evaluation. Another measure for the
performance of the clustering process is the cluster purity Pc, which is calculated as

Pc =

Ŝ∑
j=1

max
1<i<S

fij

S∑
i=1

Ŝ∑
j=1

fij

, (4.31)

with S being the true number of speakers while Ŝ is the number of speakers hy-
pothesised by the system, and fij equals the length of all audio frames that belong
to speaker i and were classified as speaker j. The cluster purity shows how well the
clustering process generates clusters which contain only one single speaker.

Table 4.11 shows the results of the proposed speaker diarization system for the
three recordings of the development set and the two recordings of the test set. The
table reports the true number of speakers S as well as the hypothesised number
of speakers Ŝ, the DER for three different maximum segment lengths in the seg-
mentation step, and the cluster purity Pc. The results show that the system was
capable of creating a reasonable number of speaker clusters. The DER and cluster
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Table 4.11: True and hypothesised number of speakers S and Ŝ, respectively, DER [%] for
different maximum segment lengths, and cluster purity Pc [%]. Results are reported for
the files of the development (dev.) and test set.

Max. segment length

Audio file S Ŝ 1 s 2 s 3 s Pc

dev. file 1 15 19 42.3 21.9 29.9 82.3
dev. file 2 27 20 52.7 38.4 45.7 70.9
dev. file 3 17 21 51.4 29.8 32.1 83.1
dev. avg. 48.8 30.0 35.9 78.8
test file 1 18 22 42.1 35.0 40.1 72.7
test file 2 23 20 42.2 55.4 38.1 70.3

purity Pc both contain errors from each of segmentation, gender recognition, and
speaker recognition. The best results (with the development set) were achieved with
a maximum segment length of 2 s, resulting in a DER as low as 30 %, and the cluster
purity reached almost 80 %, on average.

The system had problems with speech overlapped by music: if a person speaks
several times in the recording, sometimes with overlapping music and sometimes
without, the system tended to create two different speaker models, one for the
speaker with overlapping music and one without. In order to reduce the influence of
overlapping music, source separation algorithms may help by removing this music.
In addition, methods for speech overlap detection that were presented in the first
sections of this chapter could be adopted to detect speech overlapped by music and
handle it accordingly.

In the last years, the introduction of graphical processing units for parallelisation
of computing tasks made it possible to speed up the processing times of offline
diarization systems. The study in [49] describes a way to parallelise an offline speaker
diarization system in order to simulate an online system. The results show that the
online system achieves similar results as the original offline system. This, however,
comes at the cost of higher amounts of required computing power, while a dedicated
online system as the one presented in this section works more efficiently.

4.6 Chapter Summary

This chapter presented methods to address open problems in the field of research
of speaker diarization. One notable shortcoming of most diarization systems is
the inability to process overlapping speech, which, however, occurs frequently in
natural conversations. Different systems for detecting overlap were introduced in
this thesis; new features for overlap detection were proposed, using CNSC for signal

101



4 Speaker Diarization

decomposition, exploiting lexical information, or as selected from a large set of
energy, spectral, and voicing-related audio features. Furthermore, LSTM neural
networks were considered as an alternative or in combination with HMMs.

The detected overlap segments were used to improve speaker diarization through
overlap exclusion and overlap labelling. Compared to a baseline overlap detection
system relying on MFCC features and an HMM classifier, the methods presented in
this chapter achieved considerable performance improvements in overlap detection.
The obtained results mark a big step in the direction of solving the problem of
overlapping speech for speaker diarization as well as for other speech processing
applications that are affected by this problem.

In the present thesis, for overlap detection, it was not differentiated between
different types of overlapping speech. The only categorisation that was made was an
analysis of overlap detection performance depending on the segment length. Beyond
that, analysing the system performance with respect to different types of overlapping
speech might give helpful insights. For example, it might be beneficial to exploit
different models for different types of overlap in order to improve the detection
performance.

In addition, a speaker diarization system capable of online processing was pre-
sented. At the initialisation, this system works without any known speaker models.
These are just added when the speakers appear for the first time.
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Robust Speech Recognition

This chapter presents developments and findings in the field of robust acoustic mod-
elling. Methods for robust recognition in environments with non-stationary noise or
reverberation are elaborated.

5.1 Introduction

Automatic speech recognition (ASR) under realistic acoustic conditions (e. g. in-
volving room reverberation and interfering noise sources) is still a major research
challenge. Additive noise causes a spectro-temporal masking of the speech sig-
nal, while reverberation can be regarded as a convolutive channel distortion. The
different categories of approaches to address robustness did not change over the
years [79, 227, 138]. System robustness can be achieved by several strategies at
different levels: speech/feature enhancement, robust features, or robust acoustic
models. On the one hand, the speech signal can be enhanced using de-noising al-
gorithms [146, 181]. Monaural signal separation techniques such as non-negative
matrix factorization (NMF) [208] are especially useful for cases where multi-channel
audio with a specified microphone placement is not available. Furthermore, ro-
bust features such as those obtained with the relative spectral transform – percep-
tual linear prediction method [97], feature enhancement techniques [130], or feature
transformations such as linear discriminant analysis (LDA) [92] can improve the
system robustness. On the other hand, robust models and decoding methods are
often employed, including multi-condition training [140] and/or discriminative train-
ing [180, 117], e. g. using the maximum mutual information (MMI) principle [173].
In addition, methods such as vector Taylor series can be applied to adapt the acous-
tic model to noisy speech [122]. Such approaches which address the robustness of the
back-end of the recognition system were mostly developed for conventional systems
using Gaussian mixture models (GMMs) for acoustic modelling.

Recently, deep neural networks (DNNs) gained popularity in speech recognition
due to the improved acoustic modelling performance compared to GMMs [99], al-
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though the underlying neural network (NN) methods had already been developed
years ago [19]. In [200, 232], the potential of DNNs for robust recognition was
demonstrated. In addition, recurrent neural networks (RNNs) using the long short-
term memory (LSTM) architecture [100] have been used for various machine learning
tasks in audio processing (e. g. emotion recognition [244] and especially speech recog-
nition [241, 87, 191, 169, 65]) or handwriting recognition [88] in the last years. In
the previous chapter of this thesis, LSTM networks were used for speech overlap
detection. Another application of LSTM networks is as a de-noising auto-encoder
for feature enhancement [233].

Previously, in the context of (robust) speech recognition, LSTM networks have
been applied mostly in a double-stream HMM architecture, where they are combined
with a GMM acoustic model. This approach was first proposed in [241] and uses
LSTM networks for phoneme prediction. The predicted phoneme probabilities are
used for decoding jointly together with the GMM. The system presented in [237]
exploits even a third stream of observations, which consists of predictions from
non-negative sparse coding. In the past, LSTMs were mostly compared to simple
acoustic models. In addition, a detailed investigation of the potential for robust
recognition is still missing. Furthermore, until now, LSTM networks have never
been directly applied as an acoustic model, predicting context-dependent HMM
states for the hybrid acoustic modelling approach. A hybrid system that employs
LSTMs for HMM state prediction could make use of the LSTM topology to exploit
long-range temporal context and of the modelling power of a large network to be
able to accurately predict HMM states.

5.1.1 Contributions

The first contribution of this chapter is to combine the LSTM approach with a state-
of-the-art discriminatively trained ASR system. In particular, this study wants to
address the following research question: is the LSTM system capable of improving a
state-of-the-art noise-robust GMM-HMM ASR system? The experimental results (in
two recognition tasks, influenced by highly non-stationary noise or by reverberation)
affirm this question.

Furthermore, this study investigates the application of LSTM RNNs for acous-
tic modelling in the hybrid NN-HMM system architecture. The proposed system
employs LSTM networks to predict context-dependent HMM states and uses the
network predictions for acoustic modelling. The experimental results show that, in
the hybrid architecture, LSTMs outperform GMM acoustic models and can compete
with DNNs.

After discussing the related work, the LSTM principle is introduced in the next
section. Section 5.3 presents the systems for recognition in highly non-stationary
noise, while Section 5.4 describes the system for recognition in reverberant environ-
ments. The chapter finishes with a short summary in Section 5.5. Section 5.3 is
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based on the results published in [59, 69], and Section 5.4 is based on the results
published in [72].

5.1.2 Related Work

The two most widespread methods for using NNs for ASR are the hybrid and the
tandem setup. In the hybrid setup, the network predicts HMM states, and thus these
predictions are interpreted as posterior probabilities that are directly used for HMM
decoding in a Viterbi search [19]. This method was constantly refined and advanced
over the years [184, 185, 189, 221, 209], and currently, it is very successfully applied to
large-vocabulary continuous speech recognition [36, 99]. The recent success of hybrid
systems can be attributed to the application of DNNs, the deep topology (multiple
hidden layers) provides a high modelling power. Mostly, a long context window is
used as input to the DNN. Because of their deep topology, DNN acoustic models can
learn higher-level representations of the features by themselves. In this way, they
also learn to process context information that is either introduced through feature
frame stacking (for DNNs) or is inherently incorporated in the model topology (for
LSTMs). Exploiting such context is helpful to improve noise robustness, for example
in cases where a portion of frames within a longer window is spectrally masked by
noise.

In the tandem setup [98], the predictions of the network are used as observa-
tions for a GMM acoustic model. Therefore, often, the network predicts phonemes
(instead of HMM states) to keep the number of targets (and in turn, the number of
GMM observations) small. One variant of this method is the extraction of bottle-
neck features: a network is designed with a relatively small intermediate layer, and
the output of this layer is used (instead of the output of the last layer) as features
for the GMM [91], after decorrelation. One advantage of tandem systems is that the
additional technology is introduced in the front-end part of the system, and thus
the back-end recognition system can remain unchanged.

Recent examples where recurrent networks were applied in a tandem system
are [225, 169]. Deep RNNs with end-to-end training are also capable of being used
for speech recognition on their own without an HMM framework [89], in the tandem
setup [246], or in the hybrid NN-HMM setup [87]. Another possibility of combining
an NN acoustic model with a GMM is a multi-stream HMM. In this topology, the
model has access to two independent streams of observations. Multi-stream HMM
systems were initially proposed to combine independent feature streams [13]. For
example, in this way, GMMs can be fused with NNs [93] or with NMF-based sparse
coding techniques [211] for increased robustness.

One shortcoming of conventional RNNs is that the amount of context they use
decays exponentially over time (the well-known ‘vanishing gradient problem’ [101]).
To overcome this problem, the LSTM concept has been introduced [100]. An LSTM
RNN exploits a self-learnt amount of temporal context, which makes it especially
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suited for a speech recognition task that involves reverberation and additive non-
stationary noise. Context information is helpful when only a portion of frames
within a longer window is masked by noise. Previously, LSTM networks were sug-
gested for noise-robust spelling recognition in a tandem HMM-LSTM system [245].
The application of LSTM networks in a double-stream system was first introduced
in [241] for conversational speech recognition, where LSTM phoneme predictions
improved a simple triphone HMM system. One study that tries to compare LSTM
networks with conventional RNN and DNN architectures (in the hybrid setup) for
large-vocabulary speech recognition is presented in [191], where the introduction
of a modified LSTM architecture leads to superior results of the proposed system,
compared to RNN and DNN systems.

Building upon the first CHiME Speech Separation and Recognition Challenge
[11], in its second instalment [224], a medium-vocabulary speech recognition track
was introduced by using the Wall Street Journal (WSJ0) read speech corpus. To-
gether with degradation introduced by room reverberation and highly non-stationary
additive noise, this proved to be a challenging recognition scenario. Preceding the
present study, a GMM-LSTM multi-stream system was used in combination with
NMF speech enhancement in the very successful contributions to the 1st and 2nd
CHiME challenge [235, 243, 60, 73]. An LSTM network was used to generate frame-
wise phoneme predictions, largely improving the performance of the maximum like-
lihood (ML) trained HMM baseline system. The HMM system employed NMF
speech enhancement in its front-end. However, up to now, the LSTM approach has
never been combined with discriminatively trained HMM systems. Since in previ-
ous studies, it was always combined with an ML-trained GMM-HMM system, it is
not clear whether the LSTM approach will also lead to such large improvements in
combination with a state-of-the-art discriminatively trained GMM system.

5.2 Long Short-Term Memory Recurrent Neural

Networks

LSTM networks were introduced in [100]. Compared to conventional RNNs, LSTM
RNNs are able to exploit a self-learnt amount of temporal context. In a conventional
RNN, the hidden state vector sequence h = (h1, . . . , hT ) is computed as

ht = H(Wxhxt +Whhht−1 + bh), (5.1)

where W is a weight matrix, xt is the input vector at time step t, bh denotes the
hidden bias vector, and H is the hidden layer function, which is usually an element-
wise application of a sigmoid function. The output of the network is determined by
the following equation:

yt = Whyht + by. (5.2)
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Figure 5.1: Long short-term memory (LSTM) block, containing a memory cell and the
input, output, and forget gates [59]. ‘T’ denotes a delay of one time step.

In an LSTM network, the function H is replaced by so-called memory blocks. These
memory blocks can store information in the cell variable c. In this way, the network
can exploit long-range temporal context and thus, overcome the vanishing gradient
problem, where the influence of previous inputs decreases exponentially over time,
as in a conventional RNN.

Each memory block consists of a memory cell and three gates: input, output,
and forget gate, as depicted in Figure 5.1. These gates control the behaviour of the
memory block. The activation vectors of the gates are computed as

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (5.3)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (5.4)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ), (5.5)

where σ is a sigmoid function, causing each gate either to be open or closed. The
forget gate can reset the cell variable which leads to ‘forgetting’ the stored input
ct [74], while the input and output gates are responsible for reading input from xt
and writing output to ht, respectively:

ct = ft ⊗ ct−1 + it ⊗ tanh(Wxcxt +Whcht−1 + bc) (5.6)

ht = ot ⊗ tanh(ct) (5.7)

where ⊗ denotes element-wise multiplication and tanh is also applied in an element-
wise fashion. Each memory block can be regarded as a separate, independent unit.
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Therefore, the activation vectors it, ot, ft, and ct are all of the same size as ht, i. e.
the number of memory blocks in the hidden layer. Furthermore, the weight matrices
from the cells to the gates are diagonal, which means that each gate depends only
on the cell within the same memory block.

In addition to LSTM memory blocks, the systems proposed in this study use bidi-
rectional RNNs [198]. A bidirectional RNN can access context from both temporal
directions, which makes it suitable for speech recognition, since whole utterances are
decoded. This is achieved by processing the input data in both directions with two
separate hidden layers. Both hidden layers are then fed to the output layer. The
combination of bidirectional RNNs and LSTM memory blocks leads to bidirectional
LSTM networks [86], where context from both temporal directions is exploited. A
network composed of more than one hidden layer is referred to as a DNN [99]. By
stacking multiple (potentially pre-trained) hidden layers on top of each other, in-
creasingly higher level representations of the input data are created (deep learning).
When multiple hidden layers are employed, the output of the network is (in the case
of a bidirectional RNN) computed as

yt = W→
hy

→
hNt +W←

hy

←
hNt + by, (5.8)

where
→
hNt and

←
hNt are the forward and backward state vector of the N -th (last)

hidden layer, respectively. Furthermore, a softmax activation function is used at the
output,

p(b
(j)
t |xt) =

exp(y
(j)
t )∑P

j′=1 exp(y
(j′)
t )

, (5.9)

to generate probabilities at the output units b
(j)
t , j = 1, . . . , P .

For network training, the systems employed in this study used online gradient
descent by backpropagation through time, using mini-batch learning where weights
were updated after processing a set of sequences. Training utterances were ‘shuffled’
(presented in random order) to improve generalisation in online learning. For the
purpose of defining an error function for training, the output of the network (after
applying the softmax function) and the targets are both regarded as a probability
distribution over all possible output observations. Thus, the cross entropy between
the targets and the output distribution was used as an error measure. In this way, the
networks were trained discriminatively. For implementation, the publicly available
CURRENNT toolkit was used [238]1.

1https://sourceforge.net/p/currennt, last accessed in April 2014
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5.3 Recognition in Highly Non-Stationary Noise

In this section, a state-of-the art GMM system is combined with a deep bidirectional
LSTM recurrent neural network in a double-stream architecture. Such networks
use memory cells in the hidden units, enabling them to learn long-range temporal
context and thus increasing the robustness against noise and reverberation. The
network is trained to predict frame-wise phoneme estimates, which are converted
into observation likelihoods to be used as an acoustic model. It is of particular
interest whether the LSTM system is capable of improving a robust state-of-the-
art GMM system, which is confirmed in the experimental results. In addition,
LSTM networks are applied for acoustic modelling in the classical hybrid setup
together with an HMM. The network predicts HMM states, and the predicted state
posteriors are directly used for decoding within the HMM system. Experiments were
conducted on the medium-vocabulary task of the 2nd CHiME speech separation
and recognition challenge [224], which includes reverberation and highly variable
noise. The performed experiments demonstrate the influence of different system
components on the recognition performance and show that the proposed system
strongly outperforms the challenge baseline as well as the best-performing challenge
entry.

5.3.1 System Description

A flow chart of the evaluated ASR system is depicted in Figure 5.2. On the back-end
side, a double-stream architecture is used for acoustic modelling. In addition to a
GMM acoustic model, a deep bidirectional LSTM network is used as an acoustic
model in the HMM framework. Both of them are always trained in a multi-condition
fashion, using noise-free and noisy data. The GMM and LSTM can be combined in
a double-stream HMM decoding architecture, where the HMM has access to both
streams ob observations. The GMM acoustic model makes use of various feature
transformations (as explained later). Since the LSTM is deep, such transforma-
tions (e. g. LDA + MLLT for decorrelation) are presumably not needed because the
network can ‘learn’ useful feature representations on its own.

5.3.1.1 GMM-HMM-based Speech Recognition

The employed ASR system makes use of a state-of-the-art GMM-HMM, as it was
described by Tachioka et al. in [213]. This system is implemented with the Kaldi
speech recognition toolkit [171]. In addition to maximum-likelihood (ML) parameter
estimation, it uses discriminative learning (DL) and various feature transformation
(FT) methods. Discriminative training is performed using boosted maximum mutual
information (bMMI) as proposed in [173]. The MMI principle aims at maximising
the posterior probabilities of the correct utterances, given the trained models. By
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Figure 5.2: Block diagram of the evaluated system [59]. The central component is a multi-
stream HMM fusing GMM and LSTM acoustic models. For the GMM stream, feature
transformations (as explained in later sections) can be employed.

applying bMMI, a weight is introduced, strengthening the influence of hypotheses
with a higher error. In addition to model-space bMMI, feature-space bMMI is
applied as well.

Furthermore, techniques for feature transformation are employed. Feature trans-
formations can improve the class separation and address the speaker variability in the
training data. Channel variability, such as different channels and additive noise or
reverberation, can also be compensated by feature transformations. LDA is applied
on ‘stacked’ MFCC vectors (i. e. extracted from multiple signal frames using a sliding
window centered around the current frame) and reduces these high-dimensional fea-
tures to a smaller dimension. The necessary class labels are obtained by aligning the
triphone HMM states. There are too few data to train full-covariance models, be-
cause of the high-dimensional acoustic feature space. Therefore, diagonal-covariance
models, which do not consider correlations between features, are used instead. In
this study, a maximum likelihood linear transform (MLLT) as described in [192] is
used for decreasing the correlations between features. The combination of LDA and
MLLT exploits context to reduce the influence of non-stationary noise, and corre-
lations between feature dimensions that were introduced by noise are removed. To
address the problem of large variations among speakers, speaker-adaptive training is
applied: during the ML training procedure, feature-space maximum likelihood lin-
ear regression (MLLR), which is the same as constrained MLLR [51], is applied to
estimate a speaker-dependent transform. The estimated transform is subsequently
used during model re-estimation. First, a tight-beam decoding is performed to re-
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estimate the speaker-dependent transform (the speaker identities are known), before
doing a final decoding pass.

During decoding, the GMM acoustic likelihood pG(xt|st) for observations given
HMM states is computed as

pG(xt|st) =
M∑
m=1

cstmN (xt;µstm,Σstm), (5.10)

modelling the continuous feature observations via a mixture of M Gaussians per
state, where st denotes a context-dependent triphone state at time step t. The index
m denotes the mixture component, csm is the weight of the m-th Gaussian associated
with state s, and N (·;µ,Σ) represents a multivariate Gaussian distribution with
mean vector µ and covariance matrix Σ.

5.3.1.2 LSTM Acoustic Modelling

As an alternative to GMM acoustic modelling, an LSTM network is used. Thereby,
two different approaches are employed. In the first approach, the network is trained
to generate frame-wise phoneme estimates, as first proposed in [241]. The observa-
tion likelihoods are derived from these phoneme estimates. In the second approach,
the LSTM directly predicts HMM states, and the observation likelihoods are com-
puted from these predictions using Bayes’ rule.

For a phoneme prediction LSTM, the input vectors xt of the network correspond
to the employed acoustic features, whereas the output yt represents frame-wise acti-
vations for each phoneme (and therefore each output node corresponds to one class).
In order to use phonemes as training targets, a forced alignment of the baseline HMM
recogniser is created.

During decoding, a phoneme prediction b̂t is derived from the network output
activations,

b̂t = arg max
j

(
p(b

(j)
t |xt)

)
, j = 1, . . . , P (5.11)

leading to one phoneme prediction per frame. Here, P is the number of possible
phonemes, and p(b

(j)
t |xt) are the outputs of the network. The process of LSTM

decoding and generating the phoneme prediction is summarised in the function

L(xt) = b̂t. (5.12)

These frame-wise phoneme predictions are used to obtain the likelihood p(bt|st)
for the acoustic model in the following way: using development data, the frame-
wise phoneme predictions are evaluated, and all confusions between true labels b
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and predictions b̂ are counted and stored in the phoneme confusion matrix C as
row-normalised probabilities:

C(i, j) = p
(
b̂ = j|b = i

)
. (5.13)

Although the phoneme confusions are estimated on the development set in the cur-
rent study, the performance generalises well to the test set. The likelihood p(xt|st)
(observation given HMM state) is obtained through the mapping b = m(s) from
HMM states to phonemes. Since the LSTM works with monophones, triphone
structures are ignored here, mapping triphone HMM states to the corresponding
monophones. The acoustic likelihoods are therefore computed as

pL(xt|st) = C
(
m(st),L(xt)

)
. (5.14)

Thus, instead of directly predicting the probability p(st|xt) with the network and
using Bayes’ rule to obtain observation likelihoods, as in a typical hybrid system, the
network converts the output scores p(bt|xt) to discrete phoneme predictions b̂t using
Equation (5.11). These phoneme predictions are evaluated on the development set.
By storing the confusions in C and normalising the rows of C, this matrix constitutes
a discrete probability table for p(b̂t|bt). For HMM decoding, the likelihoods pL(xt|st)
are required, which are now approximated by

p(L(xt)|m(st)) = p(b̂t|bt), (5.15)

exploiting the surjective mapping from states to phonemes. Thereby, the confusions
of the network are ‘learnt’ in the conditional probability table C and used to derive
the observation likelihoods pL(xt|st). These likelihoods are expected to have a high
discriminative power. With this method, the RNN needs fewer output nodes (as
compared to predicting state posteriors), which makes it easier to train.

Phoneme classification experiments in [84] support the choice of using bidirec-
tional LSTM networks instead of other network architectures. In that study, bidirec-
tional LSTMs are shown to perform better than feedforward networks or traditional
RNNs without LSTM cells. To underpin this statement, in the experimental section
of this thesis, additional results are shown where a feedforward network is employed
for phoneme prediction instead of an LSTM.

In order to combine GMM acoustic modelling with LSTM phoneme predictions,
a double-stream HMM system is employed. In every time frame t, the double-
stream HMM has access to two independent information sources, pG(xt|st) and
pL(xt|st), which are the acoustic likelihoods of the GMM and the LSTM predictions,
respectively. In this case, the double-stream emission probability is computed as

p(xt|st) = pG(xt|st)λ · pL(xt|st)2−λ, (5.16)
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where the variable λ ∈ [0, 2] denotes the stream weight of the GMM stream.

The second method for LSTM acoustic modelling that is considered in this study
corresponds to the classical hybrid NN-HMM approach, in which the neural network
is trained to predict HMM states s. The training targets are generated using a forced
alignment of the HMM system, as in the case of phoneme predictions. From the
posterior probabilities p(st|xt) resulting from the network predictions, the required
state likelihoods are obtained by dividing by the state frequencies:

p(xt|st) =
p(st|xt)
p(st)

. (5.17)

These state likelihoods represent the acoustic model and are used for decoding in
the HMM. This corresponds to setting λ = 0 in Equation (5.16), and thus only the
NN acoustic model is used.

One of the main differences between the two methods of using neural network
predictions for acoustic modelling is the number of training targets. For phoneme
predictions, the network has 40 output units (corresponding to the 40 phonemes),
whereas the number of output units of a network that predicts context-dependent
triphone HMM states is usually several thousands.

5.3.2 The CHiME Challenge

The experiments reported in this section are conducted on the medium-vocabulary
speech recognition task of the 2nd CHiME challenge [224]. This database consists of
utterances from the WSJ0 5 k vocabulary read speach corpus [165], convolved with
real binaural impulse responses measured in a domestic environment and mixed
with realistic noise backgrounds recorded in the same environment. The impulse
responses were measured for a fixed position of 2 m in front of a head and torso
simulator. The background noise contains a rich collection of sound sources from
a lounge and kitchen such as electronic and kitchen appliances, noise produced by
the inhabitants (such as footsteps, laughter or background speech), and noise from
outside the house. Speech utterances are temporally placed in the background noise
such that different signal-to-noise ratios (SNRs) from -6 to 9 dB, in steps of 3 dB,
are obtained. The training set contains 7 138 utterances from 83 speakers summing
up to 14.5 hours (forming the WSJ0 SI-84 training set), in clean, reverberated, and
reverberated + noisy form. For the development set, 409 noisy utterances from 10
other speakers are provided at all six different SNRs, leading to a total number of
2 454 utterances (4.5 h in total). The test set includes 330 noisy utterances from 12
speakers at all SNRs (1 980 recordings or 4 h in total). All noisy utterances are also
provided in an embedded form (not used in this study), where 10 s of surrounding
background noise are included. The word error rate (WER) is used as an evaluation
measure, counting the number of word substitutions, insertions, and deletions as
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a fraction of the number of target words. For all evaluated systems, the WER is
reported for each of the six different SNR values. In addition, the average WER
across all SNRs is provided for better comparison of the systems.

5.3.3 Experimental Evaluation

5.3.3.1 Preprocessing and Feature Extraction

While the challenge data are stereophonic, only single-channel signals are considered
in this study. These signals were obtained by averaging over both channels. For the
employed database, this corresponds to a delay-and-sum beamforming, since the
target speaker is located at a fixed position in front of the microphones (azimuth 90
degrees).

All features were extracted from frames of 25 ms and a frame shift of 10 ms. The
baseline GMM-HMM system used standard MFCCs, i. e. 13 coefficients with their
delta and delta-delta coefficients, whereas for the advanced GMM-HMM the features
were processed using feature frame stacking and LDA projection (as described in
the following section). The LSTM networks (both in the experiments for phoneme
or state prediction) used log Mel filter bank coefficients (instead of MFCCs) that
were also complemented by their delta and delta-delta coefficients. This follows other
recent studies that use DNNs for speech recognition [99, 89, 150]. 26 logarithmic Mel
filter bank coefficients (plus root-mean-square energy) covering the frequency range
from 20 – 8 000 Hz were computed with the same frame size and shift as applied for
the MFCCs. In addition, experiments were performed in which the LSTM network
(in the phoneme recognition setup) uses MFCCs (same configuration as for the
GMM-HMM system) as inputs.

5.3.3.2 Parametrisation

Parametrisation and training of GMM-HMM acoustic models in the system were
the same as described in [213] and work as follows: 40 phonemes (including si-
lence) were integrated in context-dependent triphone models with 2 500 states and
a total number of 15 000 Gaussians. First, models were trained with clean training
data applying the ML principle. Next, ML training was continued with reverber-
ated training data, using the alignments and triphone tree structures from the clean
models. Then, isolated noisy training data were used for training. In the exper-
imental section, this basic system (using only ML training) is referred to as the
ML GMM acoustic model. From this setup, an advanced system was created us-
ing discriminative training and feature transformations. First, another set of ML
training iterations was performed after applying the described feature transforma-
tions, using the noisy training data. Here, the 13 static MFCC coefficients of nine
consecutive frames were concatenated together and LDA was applied to reduce the
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117-dimensional vector to 40 dimensions. The LDA used the 2 500 aligned triphone
HMM states as classes. Subsequently, features were transformed using MLLT and
models were re-estimated. Afterwards, a feature-space MLLR transform was esti-
mated for speaker adaptation, leading to another set of model re-estimation itera-
tions. Based on the resulting acoustic models, discriminative training was performed
with the noisy training data, using model-space and feature-space bMMI. The lan-
guage model weight used to generate the final hypothesis from the lattices was tuned
for each system to minimise the average WER across all SNRs on the development
set.

Parameters for the LSTM networks were estimated through multi-condition
training, using the combination of the reverberated noise-free and noisy training sets.
The inputs to the LSTM network were globally normalised in mean and variance.
To this end, the global means and variances were computed from the reverberated
noise-free and noisy training set features.

The bidirectional LSTM networks for phoneme prediction were parametrised as
follows: in addition to the input and output layers, the employed bidirectional LSTM
network was made of three hidden layers (making it a deep network), where 81, 128,
and 90 hidden units were employed for the network with filter bank coefficients as
input. These values correspond to the number of memory blocks in each of the two
temporal directions (since the network is bidirectional). The number of input nodes
corresponds to the length of the feature vector (81 in case of filter bank features),
while the number of output nodes is equal to the number of phonemes, which is 40.
In the case of using MFCC features as input to the LSTM, the size of the hidden
layers was 78, 128, and 90, respectively. LSTM topologies were chosen according to
previously performed experiments on similar databases.

For the state prediction networks, different configurations were tested, to inves-
tigate how the topology influences the recognition performance. Generally, these
networks are equipped with broader layers, leading to more trainable parameters,
which is necessary because of the larger output layer. The networks were tested
with one, two, or three layers with a size of 150 memory blocks (per direction). In
addition, one experiment was performed where the layer size was increased to 250.

All networks were trained through gradient descent with a learning rate of 10−5

and a momentum of 0.9. During training, zero mean Gaussian noise with a standard
deviation of 0.6 was added to the inputs in order to further improve generalisation.
All weights were randomly initialised from a Gaussian distribution with mean 0
and standard deviation 0.1. The average cross entropy error per sequence on the
development set was evaluated after every fifth epoch in the training phase. Using
an early stopping strategy, training was aborted as soon as no improvement on the
development set could be observed during 25 epochs.
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Table 5.1: WER [%] on the CHiME development set when combining different GMM
acoustic models with the phoneme prediction LSTM. The GMMs were trained either
with maximum likelihood (ML) training or using discriminative learning (DL) and feature
transformation (FT). DNN results are included for comparison.

Acoustic model SNR [dB]
GMM LSTM -6 -3 0 3 6 9 Mean

ML - 68.5 59.0 50.3 44.3 39.7 34.5 49.4
DL+FT - 52.9 43.0 34.6 26.7 23.5 19.0 33.3

ML 3 53.7 43.2 35.2 29.8 26.7 22.1 35.1
DL+FT 3 45.2 34.4 27.5 21.5 19.2 15.7 27.3

DNN [214] 57.2 45.9 36.2 30.6 26.4 23.3 36.6
DL+FT DNN 50.9 40.6 32.6 25.8 22.6 18.7 31.9

5.3.3.3 GMM versus LSTM Results

First, the effects of combining the employed LSTM method with the two different
GMM acoustic models are studied: the standard system using only ML training or
the advanced discriminatively trained system employing LDA, MLLT, and speaker
adaptation. Experimental results for the four system combinations are displayed in
Table 5.1. The ML-trained GMM acoustic model (first row, 49.4 % average WER)
and the discriminatively trained system including all feature transformations (sec-
ond row, 33.3 %) correspond to the systems described by Tachioka et al. in [213],
except that beamforming (cf. Section 5.3.3.1) was applied, which brought an ab-
solute improvement of about 7 % in average WER. Combining the two techniques
for acoustic modelling in the double-stream system (GMM stream weight λ = 1)
led to further large improvements. The simple GMM was improved upon by almost
30 % relatively (35.1 %). Furthermore, the discriminatively trained HMM could also
vastly be improved upon (18 % relatively) by adding the LSTM phoneme predictions
(27.3 %). The relative improvements are nearly the same for all SNRs. For compar-
ison, results for a standard DNN, taken from [214], are also listed in Table 5.1. The
DNN acoustic model had three hidden layers and 500 k parameters and is thus com-
parable to the LSTM employed in the present study. As it is not speaker-adapted
(though it still uses the LDA+MLLT feature transformation), the DNN (36.6 %) is
not able to beat the GMM. Beyond that, the performance is also weaker than the
GMM-LSTM double-stream system. A phoneme prediction DNN (employed in the
same way as the LSTM and described in more detail later in this section) performed
significantly worse than the LSTM.
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Figure 5.3: Average WER (development set) for different HMM decoding stream weights
λ [59]. Values of 0 and 2 correspond to using only the LSTM or GMM acoustic model,
respectively.

The stream weight λ in Equation (5.16) controls the trade-off between the influ-
ence of the GMM and LSTM acoustic model likelihoods. When setting λ = 2, the
system uses only the GMM acoustic model (though with an exponent of 2). Ac-
cordingly, λ = 0 means that the system uses only the information from the LSTM
stream. Figure 5.3 shows the average WER for different stream weights. Of par-
ticular interest are the results with λ = 0 and λ = 2. The GMM alone performed
better than the LSTM. This might appear contrastive to the conclusion that DNN
acoustic models perform better than GMMs [99]. However, only the advanced GMM
(including DL+FT) beat the LSTM, while the LSTM approach outperformed the
standard ML-trained GMM. In addition, the employed LSTM only models mono-
phones. Further improvements are expected when modelling context-dependent
HMM states. The best performance of the double-stream system was achieved with
a stream weight of λ = 1 (27.3 %). Therefore, this value was used in all other
reported experiments. These results show that, even if the LSTM acoustic model
alone performs worse than the GMM, the GMM system can greatly benefit from
the combination with the LSTM predictions in the double-stream setup.

In order to demonstrate the merits of the chosen LSTM architecture, differ-
ent feedforward DNNs were trained for phoneme recognition. Table 5.2 shows the
framewise phoneme error rate on the development set for these experiments. A
layer size of 400 hidden units was chosen for the DNNs, with either three or four
hidden layers. Feature frame stacking (incorporating seven neighbouring frames)
was applied to exploit temporal context. The phoneme recognition results show
that the DNN (51.8 %) was not able to reach the performance of the LSTM network
(35.8 %). What can also be seen is that adding the fourth layer to the DNN (and
thereby adjusting the number of parameters to the LSTM) brought no improvement
(52.1 %). In that case, the missing pre-training or initialisation of the DNN becomes
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Table 5.2: Framewise phoneme error rate on the CHiME development set, comparing an
LSTM with different DNNs with or without feature frame stacking.

Network Layers # Weights Error [%]

DNN 400-400-400 370 k 59.5
DNN (feature stacking) 400-400-400 490 k 51.8
DNN (feature stacking) 400-400-400-400 650 k 52.1
LSTM 81-128-90 660 k 35.8

noticeable. Compared to the DNN, the LSTM is better structured and thus easier
to train. The DNN with 3 layers and feature frame stacking was also used to obtain
the results in the last row in Table 5.1, where it could also be seen that the LSTM
performs better than the comparable DNN.

The findings support the results presented in [87], where a similar effect was
observed. In that study, it was suspected that the main reason for this discrepancy
between framewise phoneme error and WER (in the test set experiments of the
present study, it is shown that a well-tuned DNN and an LSTM perform similarly
well in terms of WER) is that the frame-wise error does not take into account
the language model. The LSTM might learn a word-level language model itself,
which interferes with the language model during decoding. In fact, the experiments
performed in the present study also showed that for LSTM decoding, much higher
language model weights are necessary compared to DNN decoding.

To better understand what the LSTM is learning, an analysis of the amount of
exploited context was performed. In [242], a methodology is proposed to perform
such an analysis. From the sequential Jacobian [84],

J tt
′

ji =
∂y

(j)
t

∂x
(i)
t′

(5.18)

which corresponds to the derivative of the network outputs y
(j)
t with respect to

network inputs x
(i)
t′ at different time steps (given as a relative position compared to

time step t), the sensitivity can be computed. This is achieved by summing up the
absolute magnitudes of the derivatives over all input units i, output units j, and all
time steps t and normalising them:
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∑
j

∑
i |J tt

′
ji |

(5.19)

This sensitivity can be considered as a measure of the contribution of input nodes
to the activity at the output of the network. Figure 5.4 shows the sensitivity (mean
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Figure 5.4: Sensitivity (mean ± standard deviation) of network outputs to input nodes of
neighboring time frames [59].

± standard deviation over time steps t) of a randomly chosen sequence (with SNR
of -6 dB) in the development set. In particular, the plot shows the average sensi-
tivity of the outputs with respect to the inputs from ± 50 frames of context. For
example, considering a sensitivity threshold of 0.2, the network exploited roughly
30 frames (300 ms) of past and future information. The standard deviation (dashed
lines) shows that there was a higher variability in using past context. In compar-
ison to standard DNNs, which usually exploit context of around 7–11 frames via
feature frame stacking [99], the employed LSTM architecture has access to a much
larger amount of context information. For a standard DNN, the amount of context
could be increased with larger windows for feature frame stacking. This would, how-
ever, increase the number of trainable parameters of the network, and thus make it
more difficult to train. An advantage of the LSTM topology is that the amount of
exploitable context is independent of the number of parameters.

5.3.3.4 LSTM Input Features

While for the results in Table 5.1, the LSTM network used log Mel filter bank co-
efficients as input features, additionally, experiments were performed in which the
LSTM used the same features as the GMM, namely MFCCs. The results can be
seen in Figure 5.5. The network that uses filter bank coefficients as input performed
consistently better than the one using MFCCs. Averaging over all SNRs, the rel-
ative improvement in combination with the basic model (ML) was 10 %, and with
the advanced model (DL + FT) it was 8 %. This shows that since the system uses
a deep network, it is favourable to let the network ‘learn’ better representations for
the features instead of using the discrete cosine transform for approximate feature
de-correlation, as is done in MFCC computation. These results support the previ-
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Figure 5.5: Influence of input (MFCC or logarithmic Mel filter bank (Log-FB) coeffi-
cients) to the phoneme prediction LSTM network on WER (development set), evaluated
in combination with the two different GMM systems (ML or DL + FT).

ous finding that NN-based acoustic models perform better with filter bank features
instead of MFCCs [150, 99].

5.3.3.5 Results for LSTM Hybrid Acoustic Modelling

Results for the evaluated state prediction networks, used as an acoustic model in the
hybrid setup, are shown in Table 5.3. In order to compare them to the double-stream
approach where a GMM is combined with a LSTM for phoneme prediction or to a
conventional DNN, these results should be set in comparison with the results listed
in Table 5.1. First, the experiments show that an LSTM network with one layer
achieved a better performance (40.0 %) than the ML GMM (49.4 %) but fell back
behind the advanced GMM (33.3 %). Adding a second layer led to a substantial
improvement (31.5 %). This network (which is later employed in the test set exper-
iments) had 1.4 million weights in total. Increasing the layer size of this network
(3.2 million weights) or adding a third layer (2 million weights) brought no benefit.
These results show the limits of increasing the size of the network. Compared to
the best setup with a phoneme prediction LSTM (27.3 %), the best state prediction
LSTM (31.4 %) could not quite reach the same performance (although the systems
are difficult to compare, since the phoneme prediction LSTM is combined with a
GMM). It did, however, perform better than a standard DNN (36.6 %).

5.3.3.6 Test Set Results

Finally, Table 5.4 shows the results for the CHiME challenge test set. Generally,
the results show the same tendencies as for the development set.

From the proposed systems, the GMM-only system (with DL + FT) is included.
Furthermore, results are reported for the two different LSTM approaches: either
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Table 5.3: Results for hybrid acoustic modelling with different state prediction networks
(WER [%] on the development set).

SNR [dB]
Network Layers -6 -3 0 3 6 9 Mean

LSTM 300 60.2 48.9 39.2 34.5 31.4 25.8 40.0
LSTM 300-300 49.0 39.2 31.5 26.4 23.1 19.7 31.5
LSTM 500-500 48.9 39.2 31.8 26.6 22.5 19.6 31.4
LSTM 300-300-300 50.4 40.7 31.1 26.4 23.2 20.0 32.0

Table 5.4: Test set evaluation (WER [%]) of the proposed ASR systems with NMF en-
hancement and LSTM phoneme predictions, and comparison to related approaches.

SNR [dB]
System -6 -3 0 3 6 9 Mean

Other systems

Baseline noisy GMM [224] 70.4 63.1 58.4 51.1 45.3 41.7 55.0
NMF, noisy GMM [111] 61.9 55.6 50.9 43.5 39.1 37.4 48.1
NMF, GMM (ML)+LSTM [60] 57.4 49.0 42.5 37.4 32.6 29.7 41.4
GMM (DL+FT) [213] 54.7 45.1 36.0 28.6 24.4 21.4 35.0
Blind source extraction [153] 42.2 38.4 32.7 29.2 26.9 23.7 32.2
Bin. mask., GMM (DL+FT) [214] 44.1 35.5 28.1 21.2 17.4 14.8 26.9
DNN [232] 42.1 31.7 24.7 19.4 16.4 14.3 24.8
RDNN [232] 38.1 29.1 23.0 17.9 15.0 13.6 22.8
LSTM enh., GMM (DL+FT) [234] 35.6 27.1 22.4 17.5 16.1 14.3 22.2

Systems proposed in this study

GMM (DL+FT) 46.4 36.2 28.5 21.6 17.9 15.7 27.7
GMM (DL+FT) + LSTM 37.1 27.2 22.5 16.7 13.9 11.8 21.5
LSTM (states) 40.3 32.2 25.0 19.8 16.8 15.8 25.0

with the state prediction network as an acoustic model alone, or with the phoneme
prediction network in combination with the GMM in the double-stream setup. The
results for the official CHiME challenge baseline (multi-condition ML-trained GMM-
HMM using MFCCs) are shown in the first row of the table (55.0 % average WER).
This was improved with NMF enhancement exploiting long-context speech and noise
models by Hurmalainen et al. [111] by 13 % relatively. In the original contribution
to the challenge [60], which was the basis for the present study, an NMF speech
enhancement approach was used, together with an earlier version of the LSTM
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double-stream system, in combination with the official challenge baseline. This sys-
tem reduced the WER to 41.4 %. An alternative recognition system for the challenge
was provided by Tachioka et al. in [213], which, compared to the official baseline,
used LDA, MLLT, speaker adaptation, and discriminatively trained GMM-HMMs,
resulting in a WER of 35.0 %. This result was surpassed (8 % relatively) by the
approach proposed by Nesta et al. in [153]. Their system worked mainly on the
front-end side, exploiting blind source extraction, and using the challenge baseline
recogniser. Including binary feature masking (bin. mask.) in the front-end of the
system in [213] improved the result by 23 %, relatively, which was the challenge
entry with the best results [214]. In [232], a well-tuned DNN and a recurrent DNN
were evaluated on the CHiME task. This DNN is different from the DNN presented
in [214] and included in Table 5.1, which was a preliminary version. For example,
the systems presented in [232] made use of multiple passes of alignment and model
retraining. These systems outperformed the best GMM baseline. The application
of LSTM networks for feature enhancement was proposed in [234]. Together with
an advanced GMM acoustic model, this resulted in an average WER of 22.2 %. The
WER improvement obtained through the LSTM enhancement is especially notice-
able at lower SNR values.

The systems elaborated in the present study are also based on the GMM system
described in [213]. First, performing the simple beamforming method as described
in Section 5.3.3.1 led to a relative improvement of 21 %, down to an average WER
of 27.7 %. The GMM-LSTM system brings a larger improvement, yielding a WER
of 21.5 %. Compared to the official challenge baseline, this is a relative improve-
ment of 61 %. The best challenge entry is beaten by 21 % relatively. Notably, the
best proposed system also surpasses the DNN and recurrent DNN results presented
in [232], as well was the LSTM feature enhancement approach proposed in [234].
The LSTM system for state prediction achieved an accuracy of 25.0 % on the test
set, which makes it comparable to the DNN evaluated in [232].

5.3.4 Conclusions

This section presented a system for noise-robust ASR that combines GMM acoustic
modelling with phoneme predictions from a deep bidirectional LSTM network. In
addition, LSTM networks for state prediction were employed as an acoustic model
alone.

In particular, the focus was on the following research question: when a state-
of-the art discriminatively trained GMM-HMM system including feature transfor-
mations is used instead of a simple baseline, can the LSTM predictions still lead
to an improvement? The results (cf. Table 5.1) reveal that the LSTM brings large
improvements to both GMM systems. Overall, the experimental results show that
the novel combination of a state-of-the-art GMM and an LSTM is highly efficient.
The system achieved large improvements in WER and outperformed all entries to
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the 2nd CHiME challenge while being compliant with the challenge guidelines. On
the test set, the challenge baseline, a standard HMM system, had an average WER
of 55.0 %, whereas with the best proposed system, a WER of 21.5 % was obtained.

In addition, LSTM networks were proposed as an acoustic model alone. In this
system, bidirectional LSTM networks are trained with HMM states as training tar-
gets, and the resulting predictions are converted into state likelihoods for decoding
in the HMM framework in the hybrid setup. The experimental results show that
the performance of this system is comparable to that of a standard DNN, while it
is slightly worse than the GMM-LSTM double-stream approach.

5.4 Recognition in Reverberant Environments

While in the previous section, the application scenario for the speech recognition
system was an environment primarily influenced by highly non-stationary noise,
the scenario in this section is characterised by high reverberation. Reverberation
severely degrades the performance of automatic speech recognition. The REVERB
challenge [125] addresses the problem of reverberated speech by providing a testbed
for speech enhancement and speech recognition methods in a reverberant environ-
ment. In this section, it is shown how the LSTM principle can be applied to speech
recognition in a reverberant environment. Due to its improved capability of context
modelling, an LSTM network is especially suited for this task, because reverberation
has a large impact on the context of a speech utterance.

The LSTM is trained with phonemes as targets, and the predictions are converted
into observation likelihoods and used as an acoustic model in a double-stream sys-
tem, in combination with the GMM. Furthermore, the system is compared to a de-
reverberation method called correlation shaping [78], which works with eight-channel
recordings. This method is based on linear prediction and reduces the length of the
equalised speaker-to-receiver impulse response. Using de-reverberation as a front-
end of the GMM in combination with the LSTM predictions leads to substantial
improvements of the WER for the official REVERB challenge database.

5.4.1 System Description

Figure 5.6 shows an overview of the proposed system. In addition to a standard
GMM-HMM system, the HMM can make use of phoneme predictions from an LSTM
network in a double-stream architecture. This LSTM network predicts phonemes
and the predictions are converted to observation likelihoods for HMM decoding.
Compared to the baseline GMM-HMM provided by the organisers of the REVERB
challenge, a slightly improved system is used in this study. This system uses a
different method for model adaptation and the main difference is that it uses a
trigram language model instead of a bigram.
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Figure 5.6: System overview: a double-stream HMM system combining GMM with LSTM,
and de-reverberation using 8-channel recordings [72].

The GMM is trained either with clean or multi-condition training data, while
the LSTM uses multi-condition training data in all experiments. Furthermore, a
de-reverberation method (correlation shaping) is applied, processing the 8-channel
recordings, and the GMM is either fed with the 1-channel reverberated test data or
with the processed test data from the 8-channel recordings.

5.4.1.1 HMM-GMM Recognition System

In addition to the REVERB baseline recognition system, which is implemented with
the hidden Markov model toolkit [252], experiments were performed with a (slightly
improved) re-implementation with the Kaldi toolkit [171].

The baseline recogniser was a GMM-HMM system that employed tied-state
HMMs with ten Gaussian components per state and was trained according to the
maximum-likelihood criterion. As features, standard MFCCs (computed every 10 ms
from windows of 25 ms) including delta and delta-delta coefficients were used. Two
methods were utilised to address the reverberation in the audio recordings. First,
multi-condition training was employed by training the recogniser not only with clean
training data, but also with the reverberated version of the training data. Second,
constrained MLLR adaptation (in batch processing) was used to adapt the features
to each test condition. The WSJ0 bigram language model was used during decoding.

A re-implementation using the Kaldi toolkit of this system was used for the ex-
periments in this study. Instead of constrained MLLR, the Kaldi system employed
basis feature space MLLR [172] for adaptation. This method performs well even
on small amounts of adaptation data and thus was used for utterance-based batch
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processing instead of full batch processing. This implicates, however, that the im-
plementation is not capable of online processing since it always waits for the end
of the current utterance. The biggest improvement that was made compared to
the baseline system is the introduction of a trigram language model instead of the
bigram language model that was used in the baseline.

The Kaldi HMM system was tested in similar configurations as the challenge
baseline system. First, a clean triphone recogniser was trained with the WSJCAM0
training set. Then, the reverberated training set was used to train a multi-condition
acoustic model. For this model, the bases for MLLR adaptation were estimated,
and finally, the trigram language model was used for decoding with this model. In
the case of using front-end de-reverberation, the employed method was always only
applied on the test data, while the original acoustic model (trained with unenhanced
data) was used.

5.4.1.2 LSTM Double-Stream Recognition

In addition to GMM acoustic modelling, an LSTM network was used to generate
frame-wise phoneme estimates. From these phoneme estimates, the observation
likelihoods for the acoustic model were derived. These were used together with
the GMM in a double-stream architecture. The general approach of using LSTM
networks for phoneme prediction in the double-stream architecture was the same as
described in Section 5.3.1.2.

Instead of MFCCs, the LSTM used Mel filter bank features, complemented by
their delta coefficients. In the previous section of this thesis, it was already shown
that this leads to a small performance gain. 26 logarithmic Mel filter bank co-
efficients (plus root-mean-square energy) covering the frequency range from 20 –
8 000 Hz were used, computed with a frame size of 25 ms and frame shift of 10 ms.
Thus, in total, the dimension of features for the LSTM was 54. Features for the
LSTM were extracted from the one-channel recordings of the REVERB challenge
database. As an additional preprocessing step, per-utterance peak normalisation
of the waveforms of the audio recordings was considered. To this end, the record-
ings were amplified to set the largest occurring absolute value to -3 dB below the
maximum amplitude. This was necessary because the recordings from the REAL
partition of the dataset are badly adjusted.

The topology of the tested bidirectional LSTM network was as follows: as the
dimension of the feature vector was 54, this was also the size of the input layer. Three
hidden layers were employed, where two systems were tested, with 100 or 200 LSTM
blocks. The number of output units corresponds to the number of phonemes, which
was 45 in the implemented system. For training the networks, the multi-condition
training set was employed. The networks were trained through online gradient
descent with a learning rate of 10−5 and a momentum of 0.9. During training,
zero mean Gaussian noise with standard deviation of 0.6 was added to the inputs
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in order to further improve generalisation. All weights were randomly initialised
from a Gaussian distribution with mean 0 and standard deviation 0.1. After every
training epoch, the average cross entropy error per sequence on a validation set was
evaluated. Training was aborted as soon as no improvement on the validation set
could be observed during 10 epochs. This validation set was a held-out part of
the multi-condition training set, consisting of the utterances from 10 speakers. The
stream weight for double-stream decoding was set to λ = 1.2.

5.4.1.3 De-reverberation

The proposed method of using LSTM acoustic models to increase the robustness of
the recognition system is compared to a method for multi-channel de-reverberation
called correlation shaping (CS) [78, 72].

In short, this approach works as follows: the goal of the method is to decrease
the length of the equalised speaker-to-receiver impulse response. This is achieved by
reducing the long-term correlation in the linear prediction residual of the reverberant
speech recordings. The CS method is implemented as a multi-input single-output
linear filter and thus processes multi-channel audio recordings.

5.4.2 The REVERB Challenge

The goal of the 2014 REVERB challenge [125] was to evaluate methods for speech en-
hancement and robust speech recognition in reverberant environments. Thus, there
are two tasks in the challenge, enhancement and recognition. The contribution of
this thesis is limited to the recognition track, where the task is to recognise read
medium vocabulary (5 k) speech in different reverberant environments (reverbera-
tion times T60 ranging from 0.25 to 0.7 s). There are eight different environments,
whereof six (called the SIM condition) are simulated by convolving the WSJCAM0
corpus [186] (which is a British English version of the WSJ corpus [165]) with mea-
sured room impulse responses. These impulse responses were measured in three
different rooms, each at a near (50 cm) and far (200 cm) microphone distance. Ad-
ditionally, stationary noise from the same rooms are added at an SNR of 20 dB. The
other two conditions (called the REAL condition) correspond to recordings from
the MC-WSJ-AV corpus [139]. This database contains real recordings from a rever-
berated room, measured at two distances (near = 100 cm and far = 250 cm). For
all data (SIM and REAL), eight-channel recordings from a microphone array are
available. In addition, it is also possible to evaluate one-channel systems. In this
case, only the recording from the first microphone is considered. For training the
recognition system, the WSJCAM0 training set containing 7 861 utterances from 92
speakers is provided. In addition, a multi-condition training set is available, which
is created similarly like the SIM data from the WSJCAM0 training set. Test ex-
periments are performed using data from the eight different environments, where
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Table 5.5: Phoneme classification error [%] on the REVERB development set for different
LSTM configurations with and without waveform normalisation.

Data
Normalisation Layers # Weights SIM REAL

- 100-100-100 170 k 25.91 67.79
3 100-100-100 170 k 25.55 51.39
3 200-200-200 600 k 24.97 52.35

the six conditions from the SIM data together have 1 484 and 2 176 utterances in
the development and test set, respectively, each from 20 speakers. The REAL data
consists of 179 and 372 utterances (development and test) from five/ten speakers.
Systems are evaluated using the WER, counting the number of word substitutions,
insertions, and deletions as a fraction of the number of target words.

5.4.3 Experimental Evaluation

First of all, different configurations of the LSTM recognition system were tested
and evaluated in terms of frame-wise phoneme classification performance on the
development set. The results are listed in Table 5.5. A smaller and a larger LSTM
network were considered (the number of weights is included in the table), and the
influence of the audio normalisation was investigated. The results show that the
normalisation had a positive effect on the results for the REAL data (51.39 %),
while the SIM results were unaffected (25.55 %). The recordings from the REAL
partition were badly adjusted and all of them had a low amplitude. This problem
was solved by the normalisation, but the phoneme recognition rates for the REAL
data are still far worse than for the SIM data. Increasing the number of LSTM units
in the hidden layers to 200 brought a small improvement for the SIM data (24.97 %).
It was decided to use the larger network in the other experiments. The reason for
this is because the LSTM was validated with a small partition of the original multi-
condition training (MCT) data (using a forced alignment of the development data
for system training was not allowed in the challenge rules), which is comparable to
the SIM data.

Experimental results for combining the Kaldi GMM recognition system in the
double-stream setup with the LSTM predictions are given in Table 5.6. Results
are reported for four different configurations of the GMM system, with increasing
complexity: using the simple GMM, employing MCT or basis feature space MLLR
for adaptation to the test conditions (or their combination), or finally, employing
the trigram language model. These steps gradually improved the recognition per-
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Table 5.6: REVERB development set: influence of combining the GMM with LSTM
predictions, in terms of WER [%].

GMM +LSTM
Adapt MCT Language model SIM REAL SIM REAL

- - bigram 50.61 88.50 38.46 79.90
- 3 bigram 27.85 53.00 21.07 47.20
3 3 bigram 22.07 45.52 17.38 42.70
3 3 trigram 16.85 38.33 12.98 36.14

Table 5.7: REVERB test set: influence of combining the GMM with LSTM predictions,
in terms of WER [%].

GMM +LSTM
Adapt MCT Language model SIM REAL SIM REAL

- - bigram 49.95 88.50 36.80 79.81
- 3 bigram 27.53 53.78 20.79 48.97
3 3 bigram 22.36 46.14 17.77 43.83
3 3 trigram 17.26 39.76 13.75 36.78

formance of both the SIM and REAL data. For the SIM condition, including LSTM
predictions led to a substantial improvements for each GMM configuration. Apart
from that, the improvements with the REAL data were smaller. Here, the mismatch
between training and test data had a larger influence on the LSTM recognition per-
formance. Finally, experimental results with the test set are shown in Table 5.7 for
the same system configurations. Overall, the results are comparable to the develop-
ment set results, and the same tendencies are visible. The improvements obtained
by adding LSTM predictions were roughly the same as for the development set
experiments.

To give a detailed coverage of the results on the test set, Table 5.8 includes test
set results for different system configurations, broken down into the eight different
recording conditions. Firstly, the results of the REVERB challenge baseline recog-
niser are also included (first row). The Kaldi implementation of the GMM (row
two) already achieved substantial improvements compared to the baseline system.
The results also include experiments where de-reverberation using CS was applied
(row three). Results for the LSTM system were similar to CS for the SIM data,
but for the REAL data, a large improvement was obtained with the employed de-
reverberation method. It could furthermore be observed that, while the relative
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Table 5.8: Test set results in terms of WER [%] for selected systems and for another
state-of-the-art system, for all eight test conditions. The GMM recogniser is improved
with correlation shaping (CS) de-reverberation and/or LSTM predictions.

SIM Real
Room 1 Room 2 Room 3 Avg. Room 1 Avg.

System near far near far near far near far

Baseline 16.2 18.7 20.5 32.5 24.8 38.9 25.3 50.1 47.6 48.9
GMM 10.2 12.3 13.0 23.3 15.3 29.5 17.3 40.6 39.0 39.8
GMM+CS 10.9 11.5 10.7 15.6 11.4 19.1 13.2 28.0 28.3 28.2
GMM+LSTM 8.3 10.0 10.6 18.7 12.2 22.7 13.8 36.4 37.2 36.8
GMM+CS+LSTM 8.5 9.7 9.4 13.7 9.6 16.3 11.2 28.3 28.0 28.1

Enh.+LSTM [239] 5.1 5.7 6.0 8.6 6.7 10.1 7.0 17.0 22.3 19.6

improvement from the LSTM predictions was similar for all room conditions, the
employed de-reverberation technique worked better with higher reverberation times.
This is due to the fact that CS punishes long-term reverberation energy. Thus, bet-
ter de-reverberation was observed under long impulse responses. The combination
of de-reverberation and LSTM prediction led to further improvements for the SIM
dataset. For comparison, Table 5.8 includes results of a recognition system that
includes several state-of-the-art techniques to address robustness [239]. In this sys-
tem, the eight-channel waveforms are processed using sum-and-delay beamforming
and LSTM feature enhancement in the front-end part. The back-end part consists
of a GMM using feature transformations and discriminative training, in combina-
tion with LSTM phoneme predictions (as also employed in this study). This system
is able to achieve further improvements in all testing conditions, at the cost of a
substantially increased system complexity.

5.4.4 Conclusions

This section presented an LSTM-based system for the recognition of reverberated
speech. An LSTM network was employed for phoneme prediction in addition to the
GMM acoustic model, which increased the robustness of the system. Experiments
were performed according to the official REVERB challenge guidelines with the pro-
vided databases. The results showed that the proposed methods are highly effective
for the recognition of reverberated speech.

Further improvements are possible with a full integration of all system compo-
nents. In the current version, speech de-reverberation is not applied on the multi-
condition training set, which might bring another small improvement. In addition,
the input to the LSTM network is also unenhanced. However, it is not yet fully
confirmed in the literature, whether speech enhancement is still relevant for deep
neural network based systems; this has to be shown in future work, especially also
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for LSTM systems. A detailed comparison of LSTMs (used as an acoustic model in
a hybrid system) and similar DNNs without LSTM cells is also to be done in the
future.

5.5 Chapter Summary

This chapter addressed the problem of speech recognition in adverse conditions,
namely corrupted by highly non-stationary additive noise and by room reverber-
ation. The main part of the evaluated recognition systems consisted of an LSTM
RNN, which was deployed in two different configurations. It was shown that network
predictions are capable of improving a state-of-the-art GMM acoustic model. Used
as an acoustic model alone (for state predictions in the hybrid setup), the LSTM
was furthermore able to keep up with the GMM and with other acoustic models
based on neural networks. This is especially noticeable since the employed LSTM
did not require methods for pre-training or initialisation that are used in other DNN
methods.

In a highly reverberant environment, improvements obtained with the LSTM
were comparable to a dedicated de-reverberation method, and the combination of
both methods resulted in the best system performance.

Due to the enhanced memory of the LSTM topology, this type of RNN can exploit
long-range temporal context, which is especially helpful in noisy and reverberant
environments. It was shown how much context is analysed by an LSTM, which is
larger than the amount of context that is usually used in standard DNNs (through
feature frame stacking).

Future work should focus on a better understanding of the performance dif-
ferences between LSTMs and other network architectures. For example, it is not
yet clear, whether methods for pretraining and initialisation (which are applied for
standard DNNs) are able to improve LSTM networks. Furthermore, the interaction
between speech or feature enhancement and robust acoustic modelling using NNs
should be studied in more detail.
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Summary

The goal of this thesis was to advance the state of the art in different fields of
computational auditory scene analysis. The focus was on pattern recognition aspects
and thus on the back-end of a system that potentially uses methods for source
separation and localisation in its frond-end. This goal was achieved by presenting
solutions for different problems, ranging from general acoustic scene classification to
robust automatic speech recognition.

Applications of such audio analysis systems can be found in smart homes or in
robotic assistants, for example. Such systems have to cope with changing environ-
ments and a wide range of different sound sources. On the one hand, this constitutes
a difficult challenge for the system. The system is required to adapt to changing
external conditions and to previously unseen sound sources. Solutions are desired
to address these issues. On the other hand, a system that is utilised in such a rich
environment can make use of all kinds of information that is conveyed in the audio
signal. Not only human speech, but also other sounds can contain important in-
formation. Methods are required to extract the relevant information from different
sound sources and to analyse these sounds. Each of the main chapters of this the-
sis made a contribution towards these goals, addressing the objectives and research
questions that were defined in the introduction of this thesis.

In Chapter 2, methods for the recognition of acoustic scenes and events
were presented. The goal of this system is first to classify an acoustic scene as a
whole. Window-based classification is employed to derive a decision for a long-term
recording. The suitability of different audio features for this task was investigated,
showing that beyond MFCCs, other energy, spectral, and voicing-related features are
capable of improving the classification performance. Experiments were performed
within the challenge on detection and classification of acoustic scenes and events,
where the proposed system was able to beat a baseline derived from speech pro-
cessing methods and most of the other participating systems, leading to a ranking
in the upper third of all participants. In addition, a methodology was proposed to
learn new acoustic events in an acoustic event classification system. Here, the diffi-
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culty is to create a model for a new class with limited amounts of training data. It
was shown that the proposed method (using MAP adaptation of one of the existing
models) prevails over conventional learning methods.

A system for acoustic gait-based person identification was proposed in
Chapter 3. This system analyses the step sounds of persons walking in a corridor.
Two different methods for classification were considered. First, static classification
was performed building upon a large set of audio features. The contribution of
different features to the final result was analysed, and it was shown how a feature
selection method can help to choose the optimal set of features. Furthermore, the
capability of audio analysis to enhance video processing was demonstrated through
multimodal fusion. Second, a dynamic classifier was employed for this task. This
system models the distinct gait cycles, which leads to large performance improve-
ments compared to static classification. With this system, two thirds out of 155
subjects (from a publicly available database) were identified correctly when walking
in the same condition as for system enrolment.

Different ideas to improve speaker diarization were introduced in Chapter 4.
The largest portion of this chapter aimed at detecting overlapping speech, where sev-
eral methods were developed: using the outcome of a signal separation technique,
analysing the suitability of different low-level audio features for this task, exploiting
lexical information, and using a classifier that analysis long-range temporal context.
Each of these methods contributed to improving the overlap detection performance
compared to a state-of-the-art system. Furthermore, it was shown how the results
of an overlap detection module can be used to improve a speaker diarization sys-
tem. Nevertheless, the overlap problem is far from being solved. The detection of
overlapping speech is a difficult problem, and solutions can contribute to improving
all kinds of speech processing applications where multiple speakers are involved. In
addition, an algorithm for online speaker diarization was proposed.

The focus of Chapter 5 was on robust speech recognition. The goal was
to improve recognition in environments with highly non-stationary noise and high
reverberation. Therefore, an acoustic model exploiting large amounts of temporal
context was applied. This model was either combined with conventional acoustic
models or used alone. It was analysed how the proposed architecture performs in
comparison to other state-of-the-art methods. Experiments were performed using
the databases of the CHiME challenge and the REVERB challenge, demonstrating
the improved capability of the proposed system to cope with reverberation and
additive noise.

In summary, methods were proposed to address different aspects of an audio
recognition system. For different recognition tasks, it was shown how the choice and
design of correct set of audio features can improve the system performance. It was
also demonstrated across multiple chapters, that methods which exploit temporal
context are highly performant in audio recognition tasks.
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Directions for future research in the addressed topics were already discussed to
some extent in the respective chapters of this thesis. Future systems for the rich
transcription of an audio recording (such as a speaker diarization system) should
also aim at incorporating other methods from automatic speaker analysis (e. g. gen-
der, emotion, health state [195]), and not only identification. In fact, considering
speaker traits or states (e. g. in a multi-task learning system) could help to improve
the identification performance in a similar way like handling of overlapping speech.
Furthermore, the evaluation of such systems should always be analysed depending
on these influencing factors, for example alcohol intoxication [61].

Emerging topics, such as acoustic scene recognition or acoustic gait-based person
identification, open possibilities for different applications in the future. On the one
hand, these methods can complement computer vision systems in order to improve
scene analysis, e. g. in surveillance scenarios. On the other hand, such methods can
be deployed on their own, for example where cameras are not available. In the
future, further research is required to improve the robustness and performance of
these methods.

In this thesis, the focus was only on audio recognition, whereas the separation
of multiple simultaneous audio sources was not addressed. In the future, a better
coupling of these two tasks (source separation and recognition), for example using
exemplar-based approaches [73], could improve the performance in both of these
tasks.

A system that combines all of the methods proposed in this thesis is capable of
providing a detailed analysis of an acoustic scene. Starting from a coarse classifi-
cation of the scene as a whole, persons can be identified using their step sounds or
voice, followed by a transcription of the spoken contents. Such a system can open a
wide range of possible applications.
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Acronyms

ALIAS . . . . . . . Adaptable Ambient Living Assistant
AMI. . . . . . . . . . Augmented Multi-party Interaction
ASR. . . . . . . . . . automatic speech recognition
bMMI . . . . . . . . boosted maximum mutual information
CHiME. . . . . . . Computational Hearing in Multi-Source Environments
CNSC . . . . . . . . convolutive non-negative sparse coding
CS . . . . . . . . . . . correlation shaping
DER . . . . . . . . . diarization error rate
DL . . . . . . . . . . . discriminative learning
DNN . . . . . . . . . deep neural network
Err . . . . . . . . . . . overlap detection error
ESV. . . . . . . . . . energy, spectral, and voicing-related
FN . . . . . . . . . . . false-negative detection
FP . . . . . . . . . . . false-positive detection
FT . . . . . . . . . . . feature transformation
GAID . . . . . . . . gait from audio, image and depth
GEI . . . . . . . . . . gait energy image
GMM . . . . . . . . Gaussian mixture model
HMM . . . . . . . . hidden Markov model
LDA . . . . . . . . . linear discriminant analysis
LLD. . . . . . . . . . low-level descriptor
LLK. . . . . . . . . . log-likelihood
LSTM . . . . . . . . long short-term memory
MAP . . . . . . . . . maximum a posteriori
MCT . . . . . . . . . multi-condition training
MFCC . . . . . . . Mel-frequency cepstral coefficient
ML. . . . . . . . . . . maximum likelihood
MLLR. . . . . . . . maximum likelihood linear regression
MLLT . . . . . . . . maximum likelihood linear transform
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Acronyms

MMI . . . . . . . . . maximum mutual information
N. . . . . . . . . . . . . Negative samples (in a detection problem)
NIST . . . . . . . . . National Institute of Standards and Technology
NMF . . . . . . . . . non-negative matrix factorization
NN . . . . . . . . . . . neural network
NSC. . . . . . . . . . non-negative sparse coding
OIP . . . . . . . . . . overlap insertion penalty
P. . . . . . . . . . . . . Positive samples (in a detection problem)
Pre . . . . . . . . . . . precision
Rec. . . . . . . . . . . recall
REVERB . . . . reverberant voice enhancement and recognition benchmark
RNN . . . . . . . . . recurrent neural network
SMILE . . . . . . . speech and multimedia interpretation by large-space extraction
SNR. . . . . . . . . . signal-to-noise ratio
SVM . . . . . . . . . support vector machine
TN . . . . . . . . . . . true-negative detection
TP . . . . . . . . . . . true-positive detection
VAD . . . . . . . . . voice activity detection
WSJ . . . . . . . . . Wall Street Journal
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Mathematical Symbols

Recognition of Acoustic Scenes and Events

aij . . . . . . . . . . .HMM transition probability from state i to state j

A . . . . . . . . . . . .set of HMM transition probabilities aij

b . . . . . . . . . . . . SVM offset

bik . . . . . . . . . . .HMM observation probability for state i and observation k

B . . . . . . . . . . . set of HMM observation probabilities bik

c . . . . . . . . . . . . additive constant for Bakis length modelling

Em(x2) . . . . . . expected value of the squared observation vector x2 for mixture m

f . . . . . . . . . . . . factor for Bakis length modelling

f(x) . . . . . . . . . output of a linear SVM for feature vector x

γ . . . . . . . . . . . . normalising factor for MAP adaptation

k . . . . . . . . . . . . possible HMM class

k̂ . . . . . . . . . . . . predicted HMM class

λ . . . . . . . . . . . . HMM parameters

K . . . . . . . . . . . number of possible HMM observations

µi . . . . . . . . . . . expected value of the feature distribution for class i

µm . . . . . . . . . . original mean of mixture component m

µ̂m . . . . . . . . . . MAP-adapted mean of mixture component m

µ̄m . . . . . . . . . . mean of observation data for mixture component m

ni . . . . . . . . . . . number of samples belonging to class i

N . . . . . . . . . . . number of HMM states

Nm . . . . . . . . . . occupation likelihood of adaptation data for mixture component m

Ntr . . . . . . . . . . number of training recordings
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Nw . . . . . . . . . . number of windows per recording

O . . . . . . . . . . . HMM observation sequence

Ot . . . . . . . . . . . HMM observation at time step t

πn . . . . . . . . . . . starting probability for HMM state n

Π. . . . . . . . . . . .set of HMM starting probabilities πn

qt . . . . . . . . . . . .HMM state at time step t

σi . . . . . . . . . . . standard deviation of the feature distribution for class i

σ2
m . . . . . . . . . . original variance of mixture component m

σ̂2
m . . . . . . . . . . MAP-adapted variance of mixture component m

sn . . . . . . . . . . . HMM state

S . . . . . . . . . . . . set of possible HMM states sn

τ . . . . . . . . . . . . MAP adaptation weighting factor

tij . . . . . . . . . . . t-statistic for two different classes i and j

t̄(k) . . . . . . . . . average length of recordings for class k

T . . . . . . . . . . . .number of time steps in an observation

vk . . . . . . . . . . . possible HMM observation

V . . . . . . . . . . . set of possible HMM observations vm

w . . . . . . . . . . . .SVM normal vector to the hyperplane

wm . . . . . . . . . . original mixture weight of mixture component m

ŵm . . . . . . . . . . MAP-adapted mixture weight

x . . . . . . . . . . . . feature vector

Acoustic Gait-based Person Identification

α . . . . . . . . . . . . significance level

a(fn) . . . . . . . . recognition accuracy for feature fn

c . . . . . . . . . . . . class index

δ(·) . . . . . . . . . .Kronecker delta function

fn . . . . . . . . . . . audio feature with index n

F . . . . . . . . . . . set of audio features

l(t) . . . . . . . . . . true label for instance t

m(c, fn) . . . . . model for class c using feature fn

N . . . . . . . . . . . number of features

T . . . . . . . . . . . .number of test instances

xt . . . . . . . . . . . feature vector for instance t

X . . . . . . . . . . . set of feature vectors xt
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Speaker Diarization

cw . . . . . . . . . . . word class (speech or overlap)

δER . . . . . . . . . . threshold for the CNSC energy ratio ER

δET . . . . . . . . . . threshold for the CNSC total energy ET

df . . . . . . . . . . . discriminant value of feature f

dur(seg) . . . . . duration of a segment

D(· || ·) . . . . . .Kullback-Leibler divergence

Et(s) . . . . . . . . estimated energy for speaker s in frame t

ERt . . . . . . . . . CNSC energy ratio for frame t

ETnt . . . . . . . . normalised total CNSC energy for frame t

ETt . . . . . . . . . total CNSC energy for frame t

θ . . . . . . . . . . . . threshold for LSTM overlap detection

f . . . . . . . . . . . . audio feature index

f0 . . . . . . . . . . . fundamental frequency

fij . . . . . . . . . . . audio frames belonging to speaker i and classified as speaker j

F . . . . . . . . . . . LSTM output function

H . . . . . . . . . . . NSC activation matrix

Ĥ . . . . . . . . . . . objective for NSC activation matrix

I . . . . . . . . . . . . identity matrix

Is . . . . . . . . . . . speaker-specific rows in NSC activation matrix H for speaker s

λ . . . . . . . . . . . . NSC sparsity parameter

l . . . . . . . . . . . . . length of an overlap segment

µp . . . . . . . . . . . mean of Gaussian distribution p

M . . . . . . . . . . . dimensionality of NSC data matrix (spectral components)

N . . . . . . . . . . . dimensionality of NSC data matrix (time frames)

Ncorr(seg) . . . number of correctly detected speakers for segment seg

Nref (seg) . . . . number of speakers for segment seg in the reference

Nsys(seg) . . . . number of hypothesised speakers for segment seg

o(t). . . . . . . . . .LSTM output at time step t

ô(t). . . . . . . . . .LSTM target at time step t

p . . . . . . . . . . . . column shift index for CNSC

pf . . . . . . . . . . . probability distribution of feature f for overlap frames

P . . . . . . . . . . . convolutional range in CNSC

Pc . . . . . . . . . . . diarization cluster purity
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qf . . . . . . . . . . . probability distribution of feature f for all frames

r . . . . . . . . . . . . regularisation factor for CNSC total energy

R . . . . . . . . . . . .number of NSC bases

σ2
p . . . . . . . . . . . variance of Gaussian distribution p

s . . . . . . . . . . . . speaker index

slex . . . . . . . . . . overlap score derived from lexical cues

ŝi . . . . . . . . . . . .speaker with the ith highest energy

seg . . . . . . . . . . speech segment

S . . . . . . . . . . . . number of speakers

Ŝ . . . . . . . . . . . . number of speakers hypothesised by the system

τ . . . . . . . . . . . . MAP adaptation weighting factor

t . . . . . . . . . . . . time step index

tET . . . . . . . . . . factor for threshold δET

Tsp . . . . . . . . . . set of all speech frames in a recording

w . . . . . . . . . . . .discrete random variable for the word

W . . . . . . . . . . . NSC basis matrix

Ŵ . . . . . . . . . . . objective for NSC basis matrix

WG . . . . . . . . . global CNSC speaker basis

Wp . . . . . . . . . . basis matrix for CNSC for column shift of p

Ws . . . . . . . . . . CNSC basis for speaker s

xft . . . . . . . . . . feature vector at time step t

X . . . . . . . . . . . data matrix for NSC

X̂ . . . . . . . . . . . NSC recomposition for data matrix

Xf . . . . . . . . . . whole set of feature vectors

Xft . . . . . . . . . . set of feature vectors up to time step t

Robust Speech Recognition

b
(j)
t . . . . . . . . . . LSTM output element j at time step t after softmax

b̂t . . . . . . . . . . . .discrete LSTM phoneme prediction at time step t

bx . . . . . . . . . . . bias vector for variable x

csm . . . . . . . . . . weight of the m-th Gaussian mixture component for state s

ct . . . . . . . . . . . .LSTM cell variable at time step t

C . . . . . . . . . . . LSTM phoneme confusion matrix
∂y
∂x

. . . . . . . . . . . derivative of y with respect to x
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ft . . . . . . . . . . . LSTM forget gate activation vector at time step t

h . . . . . . . . . . . . hidden state vector sequence of a neural network
←
hNt . . . . . . . . . . backward state vector of the N -th hidden layer
→
hNt . . . . . . . . . . forward state vector of the N -th hidden layer

H . . . . . . . . . . . neural network hidden layer activation function

it . . . . . . . . . . . . LSTM input gate activation vector at time step t

J tt
′

ji . . . . . . . . . . sequential Jacobian

λ . . . . . . . . . . . . GMM stream weight for HMM double-stream decoding

L . . . . . . . . . . . .LSTM prediction function

µsm . . . . . . . . . .mean vector of the m-th Gaussian mixture component for state s

m(s) . . . . . . . . mapping function from HMM states s to phonemes

M . . . . . . . . . . . number of mixture components in a GMM

N . . . . . . . . . . . number of hidden layers in a deep neural network

N (·;µ,Σ). . . .multivariate Gaussian distribution with mean vector µ and covari-
ance matrix Σ

ot . . . . . . . . . . . LSTM output gate activation vector at time step t

pG . . . . . . . . . . .GMM acoustic likelihood

pL . . . . . . . . . . . LSTM acoustic likelihood

P . . . . . . . . . . . number of LSTM output units

σ . . . . . . . . . . . . sigmoid function

Σsm . . . . . . . . . covariance matrix of the m-th Gaussian mixture component for
state s

st . . . . . . . . . . . HMM state at time step t

St′ . . . . . . . . . . .average network output sensitivity to input at relative position t′

t . . . . . . . . . . . . time frame/step index

T . . . . . . . . . . . . sequence length

Wxy . . . . . . . . . weight matrix from x to y

xt . . . . . . . . . . . input feature vector at time step t

yt . . . . . . . . . . . neural network output at time step t
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