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ABSTRACT

We present our joint contribution to the 2nd CHiME Speech Sep-
aration and Recognition Challenge. Our system combines speech
enhancement by supervised sparse non-negative matrix factorisation
(NMF) with a multi-stream speech recognition system. In addition to
a conventional MFCC HMM recogniser, predictions by a bidirectional
Long Short-Term Memory recurrent neural network (BLSTM-RNN)
and from non-negative sparse classification (NSC) are integrated
into a triple-stream recogniser. Experiments are carried out on the
small vocabulary and the medium vocabulary recognition tasks of the
Challenge. Consistent improvements over the Challenge baselines
demonstrate the efficacy of the proposed system, resulting in an av-
erage word accuracy of 92.8 % in the small vocabulary task and an
average word error rate of 41.42 % in the medium vocabulary task.

Index Terms— Long Short-Term Memory, recurrent neural net-
works, non-negative matrix factorisation, dynamic Bayesian networks

1. INTRODUCTION

Automatic speech recognition (ASR) in reverberated environments
with interfering noise sources is typically addressed by a combination
of front-end enhancement, such as by speech source separation, and
robust back-ends, involving model adaptation and improved ASR
architectures. Speech source separation can be achieved through
microphone array signal processing [1, 2]; alternatively, if only one
microphone is available, monaural separation techniques such as
non-negative matrix factorisation (NMF) [3–8] can be used. The
latter is especially useful for use cases such as multimedia informa-
tion retrieval, where multi-channel audio with specified microphone
placement is usually not available. On the back-end side, improved
recognition architectures are often based on system fusion, for exam-
ple in tandem ASR. In this context, multi-stream systems have been
introduced that fuse traditional Hidden Markov Models (HMMs) with
neural networks [9, 10] and sparse coding techniques [7, 11]. An ad-
vantage of multi-stream ASR is that additional sources of information
can be integrated without re-training the base system.

The benefits of NMF-based speech separation and multi-stream
recognition have been successfully combined in our system for the
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previous 2011 CHiME Challenge [12], which featured a small vo-
cabulary ASR task. Speech separation by convolutive NMF [4] was
used in the front-end, and in the back-end an HMM recogniser was
combined with a bidirectional Long Short-Term Memory (BLSTM)
recurrent neural network in a multi-stream system. In [7], we refined
this system by adding a third stream employing speech recognition
by non-negative sparse classification [13].

In this contribution, we apply a similar system to both the small
vocabulary and medium vocabulary tasks of the 2nd CHiME Speech
Separation and Recognition Challenge1 [14]. Thus, it is of inter-
est whether the previously introduced methods generalise well to
the increased vocabulary size, and in particular the recognition of
phonemes instead of whole words. As in [7], the system presented
in this work uses a multi-stream HMM to combine MFCCs with
the word or phoneme predictions of NSC and/or a BLSTM-RNN. A
flow-chart of the ASR system is depicted in Figure 1. The BLSTM
predictions correspond to the discrete index of the word/phoneme
with the highest activation. MFCCs as well as BLSTM predictions
can be computed from enhanced speech signals, applying NMF as
pre-processing. Through the multi-stream HMM framework, system-
atic errors of the BLSTM-RNN as well as NSC can be modelled by
the HMMs in a conditional probability table (observed prediction
given HMM state).

In the following, we will shortly describe the evaluation database
of the 2nd CHiME Challenge and our employed methods before
turning to the experimental setup and presenting results.

2. EVALUATION DATABASE

The small vocabulary task, as described in [15], consists of rever-
berated and noisy utterances from the Grid corpus [16] resembling
command-and-control utterances with a fixed grammar and a vocab-
ulary size of 51. Utterances have been convolved with real room
impulse responses measured in a domestic environment, and overlaid
with realistic noise recorded from the same environment at signal-
to-noise ratios (SNRs) from -6 to 9 dB, in steps of 3 dB. A closed
set of 34 speakers is used for training, development, and testing in
the small vocabulary task. The medium vocabulary task is created
in a similar way, using the same noise corpus but the speaker in-
dependent development and evaluation test sets of the Wall Street
Journal corpus (WSJ-0) with 5 k vocabulary size and disjoint sets of
84, 10, and 8 training, development, and test speakers. For both tasks,

1http://spandh.dcs.shef.ac.uk/chime challenge/



Fig. 1: Block diagram of the proposed system: The central component is a multi-stream HMM fusing MFCC with optional word predictions
by NSC (operating on Mel frequency bands, MFB) and/or the BLSTM-RNN (processing MFCC features). The MFCC feature extraction can
optionally by performed on an enhanced speech signal, applying convolutive NMF as pre-processing.
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the same utterances are used at all SNRs in the development and
test sets. The training sets comprise a randomly selected subset of
utterances for each SNR. In the small vocabulary task, the training set
has 17 000 utterances while the development and test sets consist of
6×600 = 3 600 utterances. In the medium vocabulary task, there are
7 138 training, 6× 409 = 2 454 development, and 6× 330 = 1 980
test utterances.

3. METHODOLOGY

3.1. NMF Speech Enhancement

The speech enhancement component of our system uses exemplar-
based spectrogram factorisation algorithms previously employed
in noise robust ASR experiments on Aurora-2 and CHiME/GRID
datasets [13, 17]. Speech and noise bases are generated by sampling
a large amount of B × T mel spectrogram segments, exemplars from
training data and the local context of test utterances. B is the number
of spectral bands, and T the number of consecutive frames in an ex-
emplar spectrogram. Thereafter the mel-spectral representation of an
utterance is factorised using a sliding window method, where B × T
observation windows are extracted with a shift of one frame, and
represented as an additive combination of exemplar spectrograms,

V ≈ Λ(s) + Λ(n) =
J∑
j=1

W
(s)
j hj +

K∑
k=1

W
(n)
k hk, (1)

where V is the true spectrogram, Λ(s) and Λ(n) are estimates for
its speech and noise content, respectively, W are exemplar spectro-
grams and h their activation weights. The coefficients hj and hk are
obtained through supervised NMF with a sparsity constraint on the
activations. We denote the number of speech exemplars (basis size)
by J and similarly noise basis size with K.

For enhancement, speech and noise spectrogram estimates are
generated for full utterances by averaging the frame estimates of
overlapping windows. These are mapped back to the linear frequency
domain, and act as a time-varying filter for the original spectrogram
V, defined by

V̂(s) =
Λ(s)

Λ(s) + Λ(n)
⊗V, (2)

where the division and multiplication denoted by ⊗ are elementwise.
In summary, the main difference to the enhancement methodol-

ogy used in our previous work [7] is the choice of exemplars as basis,

rather than learnt representations of speech and noise. In prelimi-
nary experiments, the exemplar-based enhancement outperformed the
method presented in [7] on the CHiME development sets.

3.2. Speech Recognition by Non-Negative Sparse Classification

The NMF setup described in Section 3.1 is also used for non-negative
sparse classification as proposed in earlier work [7, 13, 17]. Each
speech exemplar is equipped with a Q× T label matrix, which rep-
resents the likelihoods of Q phonetic states over the exemplar’s T
frames. State likelihood matrices are generated for utterances simi-
larly to spectrogram estimation by summing the label matrices accord-
ing to their activation weights, and averaging the frame likelihood
vectors from overlapping windows. Consequently a matrix represent-
ing state likelihoods in every frame of an utterance is acquired. For
the medium vocabulary system, we learnt the label matrices which
map from exemplars to phonetic states. To learn the mapping we
used Ordinary Least Squares (OLS) [18], using as source features the
activations of speech exemplars augmented with an all-ones feature to
model the intercept, and as target features the monophone identities.
The training data for OLS consisted of the reverberated training set.
For the small vocabulary task, state likelihoods are summed up per
word, and the index of the most likely word is used as a discrete
feature nt, as in [7]. Accordingly, for the medium vocabulary task,
state likelihoods are summed up per phoneme to obtain phoneme
predictions.

3.3. BLSTM-based Speech Recognition

As additional source of information besides NSC predictions, a
BLSTM network is used in the multi-stream framework. More pre-
cisely, the BLSTM network is used to generate framewise word /
phoneme estimates, as introduced in [10]. Long Short-Term Memory
(LSTM) networks were introduced in [19]; the underlying principle
can be seen as an extension of conventional recurrent neural net-
works that enables the modelling of long-range temporal context
for improved sequence labelling. LSTM networks are able to store
information in linear memory cells over a longer period of time and
can learn the optimal amount of contextual information relevant for
the classification task. An LSTM hidden layer is composed of multi-
ple recurrently connected subnets (so-called memory blocks). Every
memory block consists of self-connected memory cells and three mul-
tiplicative gate units (input, output, and forget gates). Further details
on the LSTM principle can be found in [20]. We use bidirectional
LSTM networks (BLSTM) which have access to both, past and future
context via forward and backward processing of the speech sequence.
A BLSTM network with input units corresponding to MFCC fea-



tures and one output unit per word (in the small vocabulary task)
or phoneme (in the medium vocabulary task) is used to generate a
discrete word/phoneme prediction feature bt for each time step t.

3.4. Multi-Stream Decoding

Using the baseline HMM recogniser, the BLSTM-based system and
NSC predictions, a multi-stream HMM system is built. In every
frame t, the multistream HMM has access to up to three independent
observations: the MFCC features xt, the BLSTM word/phoneme
prediction bt, and the NSC word/phoneme prediction nt. The MFCC
features are calculated either from the original noisy signal or from
the one enhanced by NMF. With yt being the joint feature vector
and the variables λ1, λ2 and λ3 denoting the stream weights of the
MFCC, BLSTM and NSC streams, respectively, the multi-stream
HMM emission probability in a certain state st can be written as

p(yt|st) =[
M∑
m=1

cstmN (xt;µµstm,Σstm)

]λ1

× p(bt|st)λ
2

× p(nt|st)λ
3

.

(3)

More precisely, the continuous MFCC observations are modeled via a
mixture of M Gaussians per state while the BLSTM and NSC predic-
tions are modeled using conditional probability tables (CPTs) p(bt|st)
and p(nt|st). These are simply obtained as the row-normalised con-
fusion matrices of the BLSTM and NSC on the noisy development
set. Note that in the medium vocabulary task, st denotes a context-
dependent triphone state, while NSC and BLSTM provide predictions
for context-indepenent units. In this case, the phoneme predictions
from BLSTM and NSC are used for all corresponding triphones. The
index m denotes the mixture component, cstm is the weight of the
m’th Gaussian associated with state st, andN (·;µµ,Σ) represents a
multivariate Gaussian distribution with mean vector µµ and covariance
matrix Σ. λi > 0 indicates presence of a stream.

4. EXPERIMENTS

This section describes the baseline recogniser, the system configura-
tion and experimental setup.

4.1. HMM recogniser

As a baseline system, we use the HMM-based speech recognition
system provided by the Challenge organisers. For the small vo-
cabulary recognition task, this system is modified by using mean-
only maximum-a-posteriori (MAP) adaptation (τ = 1.0) to estimate
speaker-dependent models. Furthermore, reverberated training data
are combined with reverberated and noisy training data to increase
the robustness of the recogniser. We create our own noisy training
data by mixing all 17 000 training utterances with random segments
of each of the seven different provided background noise recordings.
Thus, the complete extended multicondition training (ext. MCT) set
consists of 136 000 utterances. As we assume the SNR conditions
in the test data to be unknown, we do not scale the noise or speech
levels to obtain specific SNRs for training. In order to follow the
Challenge guidelines, we furthermore perform experiments with the
baseline noisy training set, or the combination with the reverberated
set (denoted as MCT).

For all multi-stream systems, stream weights λ = 1.0 are used,
except for the medium vocabulary recognition task with the HMM +

BLSTM system, where values of λ1 = 1.1 and λ2 = 0.9 are used.
These were obtained in earlier work on the CHiME 2011 development
data [12].

For the medium vocabulary track, we additionally consider model
re-training to adapt to potential distortions in the NMF enhanced sig-
nals. This is done by re-training the noisy baseline model using the
maximum likelihood training procedure provided by the Challenge
baseline, yet using features extracted from NMF enhanced reverber-
ated and noisy training data. For the small vocabulary track, we do
not consider model re-training, according to our finding in [12] that
performance on the noisy Grid corpus cannot be further enhanced
by this, probably due to the distinctive phonetic properties being
preserved by the enhancement method.

4.2. Parameterisation

4.2.1. Spectrogram Factorisation

The speech enhancement and NSC setup of the small vocabulary track
employs spectrogram factorisation methods as first described in the
2011 CHiME workshop [8] and later refined to a form which is also
used in this work [17]. A speech basis comprising 5 000 exemplars is
generated for each speaker by pseudo-random sampling of training
data and selective reduction with word frequency equalisation. A
matching speaker-dependent basis is always used for factorisation as
the identity of target speakers was known. For a noise model, 5 000
exemplars are sampled from the noise context of each test utterance
individually. All factorisation takes place in a 40-band monaural mel
magnitude domain, where the bands were normalised by applying
an equalisation curve acquired from training speech. Temporally,
the model used 25 ms frames with 10 ms shift, and exemplar size
(window length) of 20 frames. Utterances are factorised using slid-
ing window NMF, where the cost function comprises generalised
Kullback-Leibler divergence for spectral distance between the true
spectrogram and its estimate, and weighted L1 penalty for nonzero
activations to induce sparsity. Iteration count, sparsity weights and
other factorisation parameters are set as reported in earlier work [17].

For the medium vocabulary system, we used the same spectral
features and factorisation method as for the small vocabulary track.
From the reverberated isolated utterances in the training data, 10 000
speech exemplars were extracted by random sampling. Two noise
dictionaries were used: a fixed noise dictionary of 4 000 exemplars
randomly extracted from the embedded utterances in the noisy train-
ing set, and noise dictionary extracted from the 10 seconds of embed-
ding noise in the noisy utterance that is being decoded. This second
noise dictionary consists of all exemplars that can be extracted from
the 1 000 frames of noise: 2 · 500− T + 1 = 981 exemplars. This
brings the total number of exemplars in the dictionary to 14 981. As
for the small vocabulary task, the exemplar size is 20 frames. The
sparsity for the speech was set at 0.075 times the average L1 norm
of the fixed part of the dictionary (speech and noise jointly). The
noise sparsity was set at 0.5 times the speech sparsity. The number of
iterations was kept constant at 400. These values were tuned using a
small random subset of the AURORA-4 corpus.

4.2.2. BLSTM Configuration and Training

The BLSTM network which is used to generate predictions for the
multi-stream recogniser was trained on framewise word targets for
the small vocabulary task, and framewise phoneme targets for the
medium vocabulary task. Therefore, HMM-based forced alignment
of the training set was generated. As network input xi, cepstral mean
normalized MFCC features are used. In addition to the input and



output layers, the BLSTM network is made of three hidden layers.
For the small vocabulary task, these layers consist of 78, 150, and
51 hidden units, respectively. For the medium vocabulary task, 78,
128, and 90 hidden units are employed. Each LSTM memory block
contains one memory cell. BLSTM topologies were chosen according
to previously performed experiments on similar databases.

The networks are trained through gradient descent with a learning
rate of 10−5 and a momentum of 0.9. The gradient descent algorithm
minimises the root mean square error on the training data. For both
tracks each, reverberated training data are used together with rever-
berated and noisy training data for network training. During training,
zero mean Gaussian noise with standard deviation 0.6 is added to the
inputs in order to further improve generalisation. All weights were
randomly initialised in the range from −0.1 to 0.1. Input and output
gates use hyperbolic tangent activation functions, while the forget
gates have logistic activation functions. After every fifth epoch in the
training phase, the overall root mean square error on the development
set is evaluated. Using an early stopping strategy, training is aborted
as soon as no improvement on the development set can be observed
during 25 epochs.

In the small vocabulary recognition task, speaker identities are
known which allows for creating a speaker-dependent system. The
employed BLSTM network is adapted by performing additional train-
ing epochs using only the training utterances of the respective speaker.

4.3. Experimental Setup

In order to demonstrate the impact of our various system compo-
nents on the recognition result, we perform a series of experiments.
Thereby, we start from the baseline system trained on noisy data, and
add one system component at a time. Subsequently, from the full
system, we remove some system components.

In particular, for the small vocabulary task, the following ex-
periments are performed: Starting from the baseline HMM system
trained on noisy training data, we employ extended MCT by combin-
ing noise-free and noisy training data, generated by mixing noise-free
data with seven different noise recordings. In addition, speaker de-
pendent models are created using mean-only MAP adaptation. Next,
we enhance test data for the BLSTM and MFCC streams with NMF;
the NSC prediction is performed on unenhanced data following our
previous findings [7]. Then, a double-stream system is created by
incorporating the word predictions of the BLSTM. Finally, the full
triple-stream system is obtained by adding the NSC prediction stream.
Furthermore, we use this triple-stream system to decode unenhanced
noisy data. Thereafter, in the triple stream system, we replace the
optimised HMM recogniser (MAP + MCT) by the baseline noisy
recognition system.

For the medium vocabulary task, we perform a similar series of
experiments. The (noisy) baseline system is used to decode NMF-
enhanced test data. In addition, we test the system which is re-trained
with enhanced training data. The BLSTM and NSC streams are
added to create double-stream systems, both evaluated with noisy
and enhanced test data – again, enhancement is only used for the
BLSTM and MFCC streams. Based on preliminary results with the
development set, we did not perform experiments with the triple-
stream system on the medium vocabulary task.

5. RESULTS

For the small vocabulary track, word accuracy (WA) is used as evalu-
ation measure, while for the large vocabulary track, word error rate
(WER) is employed. In line with the evaluation setup for the first

track, word accuracy is only measured on the 35 letter and digit key-
words; furthermore, note that in the first track there are no insertion
or deletion errors due to the fixed grammar decoding.

5.1. Small Vocabulary ASR

Table 1 shows results on the development and test sets of the 2nd
CHiME Speech Separation and Recognition Challenge, small vo-
cabulary track. We report the mean accuracy across the six SNRs
(-6 to 9 dB in 3 dB steps) on the development set, and the detailed
accuracies per SNR on the test set. The baseline system, trained on
noisy data, is improved by employing MCT and mean-only MAP
adaptation for speaker adaptation, yielding an average WA of 80.0 %
on the test set. Speech enhancement by NMF leads to further im-
provements, especially at lower SNRs, resulting in an average WA
of 88.3 %. Note that this is significantly above the results reported
in [12] using a smaller NMF base for enhancement. Consistent im-
provement accross all SNRs (average WA of 92.8 %) is achieved by
incorporating word predictions from the BLSTM network recogniser.
Adding the third stream with NSC predictions gives a small (but
non-significant) improvement. While adding the NSC stream to the
single-stream system leads to a significant2 improvement (90.4 %
average WA, not shown in the table), together with the BLSTM, it
brings no further significant improvement. Having obtained substan-
tial improvement compared to the baseline system (93.0 % average
WA on test), the triple-stream system almost reaches human perfor-
mance. It is, however, still significantly below human performance,
mainly due to better performance of the human at low SNRs. Based
on the triple-stream system, replacing the extended MCT set by a
simpler version (by combining the official reverberated and noisy
training sets), our best system which is compliant to the Challenge
guidelines is obtained. With this system, an average WA of 92.8 % is
obtained on the Challenge test set. Removing NMF speech enhance-
ment from the triple-stream system notably results in a relatively
small (but significant) performance degradation with an average WA
of 91.2 % on the test set. Finally, using the baseline noisy models
within the triple-stream system instead of the optimised ones leads to
an average WA of 88.2 %.

5.2. Medium Vocabulary ASR

Results for the medium vocabulary track of the 2nd CHiME Chal-
lenge are displayed in Table 2. The baseline noisy models are used
as a starting point for system improvements. Using NMF-enhanced
test data improves the result to an average WER of 52.48 %. The
improvement is highly significant3 on the development set and on the
test set. When the models are retrained to reduce the mismatch be-
tween the enhanced signals and noisy acoustic models, a substantial
improvement is obtained on all SNRs, leading to an average WER
of 48.07 %. Adding the BLSTM predictions to the noisy baseline
system to form a double-stream system brings further significant im-
provements with an average WER of 41.76 % on the test set. Notably,
when using the BLSTM, the inclusion of NMF enhancement only
brings a small improvement to 41.42 % average WER, which is in
contrast to the picture we observe in the small vocabulary track. This

2When we speak of significant differences, we mean statistical significance
according to a simple z-test, using the significance level α = .05. As a rule
of thumb in the ranges of WA observed in our experiments on the small
vocabulary task, results have to differ by 1.5 % absolute WA on average across
SNRs, and by 4 % absolute WA per SNR to be significantly different.

3According to a z-test with α = .005, treating the number of words as
sample size.



Table 1: CHiME 2013 development and test set (small vocabulary track): (Key)word accuracies (% WA) using single- and multi-
stream ASR with MFCC, BLSTM, and/or non-negative sparse classification (NSC) streams. As a baseline, the HMM system trained
on the noisy training set is used. MAP: mean-only MAP adaptation with τ = 1.0; (ext.) MCT: (extended) multi-condition training.
NMF Enh.: speech enhancement by NMF as pre-processing. 1 Performance of trained human on a subset of the CHiME 2011 test set
(http://spandh.dcs.shef.ac.uk/projects/chime/PCC/results.html).

WA [%] Devel. Test Test
Mean SNR [dB] Mean

Front end Back end -6 -3 0 3 6 9

Single Stream

no Enh. MFCC (noisy baseline) 68.8 49.3 58.7 67.5 75.1 78.8 82.9 68.7
no Enh. MFCC (MAP, ext. MCT) 79.6 63.7 68.9 79.6 85.3 90.4 92.0 80.0

NMF Enh. MFCC (MAP, ext. MCT) 87.4 78.3 84.3 89.3 91.3 93.3 93.3 88.3

Double Stream

NMF Enh. MFCC (MAP, ext. MCT) + BLSTM 93.3 84.6 90.6 92.8 94.9 96.9 97.0 92.8

Triple Stream

NMF Enh. MFCC (MAP, ext. MCT) + BLSTM + NSC 94.2 84.8 90.8 93.3 95.1 97.0 96.9 93.0
NMF Enh. MFCC (MAP, MCT) + BLSTM + NSC 94.0 85.1 90.1 93.1 94.9 96.9 96.8 92.8

no Enh. MFCC (MAP, ext. MCT) + BLSTM + NSC 92.9 81.7 87.9 91.9 93.9 95.8 96.2 91.2
no Enh. MFCC + BLSTM + NSC 89.9 77.5 84.3 89.2 90.8 93.8 93.7 88.2

Human1

– 90.3 93.0 92.3 95.3 96.8 98.8 94.4

probably indicates that the BLSTM would need to be re-trained using
NMF-enhanced data to obtain optimal performance.

Let us briefly discuss the performance of NSC predictions by
themselves. While these could significantly improve the baseline
noisy system (average WER of 52.83 % on the test set), the system
including NMF enhancement could not be improved with NSC pre-
dictions. Interestingly, the result by using the NSC stream on top
of the noisy baseline is similar to the one obtained by using NMF
enhancement without re-training of the MFCC stream (52.48 %, cf.
above). Combining all three recognisers in a triple-stream system
brought no improvement compared to the double-stream BLSTM
system (results not shown in the table).

6. CONCLUSIONS

We have presented our approach to the 2nd CHiME Speech Separa-
tion and Recognition Challenge, employing speech enhancement by
NMF and a multi-stream speech recogniser using predictions from
a BLSTM-RNN system and NSC. We have shown that the general
system architecture can be successfully applied to both small and
medium vocabulary ASR. In the small vocabulary recognition task,
the keyword accuracy (averaged over 6 SNRs) of the baseline system
is improved by 35 % relative, resulting in an average WA of 92.8 %
on the official Challenge test set. In the medium vocabulary track, the
WER of the baseline system was improved by 25 % relative. On the
test set, a WER of 41.42 % was obtained.

Conceptually, the design of the multi-stream architecture allows
straightforward combination of multiple noise-robust ASR system.
We found that system combination in a ‘plug-and-play’ fashion
worked particularly well for the small vocabulary task, yet in the
medium vocabulary task systems apparently have to be fine-tuned
to each other for optimal performance, such as by re-training the
HMMs to cope with NMF enhanced data. Thus, future work should

address optimal adaptation of system components, alternative fusion
strategies. Furthermore, we will consider discriminative training of
the baseline MFCC stream to complement discriminatively trained
neural networks.
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