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Abstract

This work proposes a fusion of inertial measurement
units (IMUs) and a visual tracking system on an embed-
ded device. The sensor-to-sensor calibration and the pose
estimation are both achieved through an unscented Kalman
filter (UKF). Two approaches for a UKF-based pose esti-
mation are presented: The first uses the estimated pose of
the visual SLAM system as measurement input for the UKF;
The second modifies the motion model of the visual track-
ing system. Our results show that IMUs increase track-
ing accuracy even if the visual SLAM system is untouched,
while requiring little computational power. Furthermore,
an accelerometer-based map scale estimation is presented
and discussed.

1. Introduction
Smart devices are mobile embedded systems equipped

with a video camera which enables the integration of simul-
taneous localization and mapping (SLAM). Mobile aug-
mented reality applications employ the SLAM information.
This is of big interest since smart devices are widely spread
and augmented reality provides a new way of experienc-
ing content on them. Smart devices, however, include addi-
tional sensors (IMUs) which are utilized in this work.

Thus, we focus on the easy integration of inertial mea-
surement units (IMUs) into an existing vision-based SLAM
approach without the need of external equipment. We pro-
pose both a UKF-based fusion of the sensor data as well as
a UKF motion model, which is related to the motion model
employed by the parallel tracking and mapping (PTAM) al-
gorithm [8]. The UKF-based data fusion does not inter-
fere with the SLAM system. We apply a nonlinear filter
since the accelerometer output affects the device position
quadratically.

The PTAM [8] algorithm serves as the SLAM approach
of this work since it is fast enough to run on an embedded
system and is widely known. The camera and sensors of the
consumer device “Microsoft Surface 2 Pro” are used for all
our results. The contributions of this work are the follow-
ing: a) Stating a sensor-to-sensor calibration between cam-

era and IMU, b) Presenting improved accuracy of velocity-
based scale calculation, c) Introducing a UKF-based model
which incorporates visual SLAM results as measurements,
d) Comparing the new UKF-based motion model with the
one of PTAM .

2. Related Work
Early SLAM methods employed a Kalman filter, whose

complexity scales quadratically with map size since each
new map point is added to the state vector. More effi-
cient filtering methods such as FastSLAM [10] treat SLAM
as a localization problem with a collection of N land-
mark estimation problems by employing a particle filter.
The PTAM [8] algorithm used in this work belongs to the
keyframe-based monocular SLAM methods. It differs in a
fundamental way from the filtering-based approaches: The
knowledge of the system is not represented by a probability
distribution but by a subset of images (keyframes) and map
points.

Direct visual odometry (VO) methods do not use key-
points but rather include all image information by operat-
ing on pixel intensities directly. Dense Tracking and Map-
ping (DTAM) [11] is a popular algorithm. Its computational
complexity, however, is too demanding to be executable on
embedded devices.

Today, several works investigated the use of inertial sen-
sors for visual SLAM systems. For example, Servant et
al. [15] used inertial sensor data to support a homography-
based tracking system. Their extended Kalman filter (EKF)
approach indicated that a camera pose estimate based on
high-rate sensor data can be particularly useful during fast
movements.

Omari et al. [13] reviewed an optical flow-based visual
system coupled with inertial measurement units. Their UKF
approach converged even in the presence of large initial er-
rors. The employed filter, however, relied only on a single
optical flow feature as well as gyroscope and accelerometer
measurements. We use the derived pose of a visual SLAM
approach as measurement, whereas the IMUs data serves as
control input.

Nützi et al. [12] combined an EKF approach with PTAM,
a separate camera and inertial sensors. However, they did



not consider the device’s orientation in their calculations.
In [1], a linear Kalman filter together with a visual sys-
tem similar to PTAM is fused with visual-inertial data on
a tablet device. A linear filter approach, however, cannot
describe the quadratic correspondence between accelerom-
eter and device position.

3. The Unscented Kalman Filter (UKF)
The unscented Kalman filter is an extension to nonlin-

ear functions similar to the EKF. The UKF approxima-
tion method, however, does not calculate partial derivatives
of any form, instead it employs the unscented transforma-
tion. The advantages of the UKF compared to the EKF are
its second (and higher) order accuracy and its robustness
against initial errors [3,5,9]. The UKF introduces a slightly
higher computational cost, which is negligible for low di-
mensional tasks as employed in this work.

3.1. The Unscented Transformation

The unscented transformation is based on the assump-
tion, that it is easier to approximate a Gaussian distribution
than an arbitrary non linear function [6].

First, the distribution is sampled through a set of sigma
points S = {X 0, ...,X p}. The state means and covariances
are x̄ and P xx. These points are propagated through the
nonlinear transformation. The propagated sigma points are
used to calculate the new mean measurements ȳ and covari-
ance P yy

Yi = f(X i,u), ȳ =

2n∑
i=0

WiYi,

P yy =

2n∑
i=0

Wi(Yi − ȳ)(Yi − ȳ)T ,

(1)

with u(t) being the control input and Wi is the correspond-
ing weight of X i such that

∑2n
i=0Wi = 1. The basis of the

unscented transformation are the sigma points, since they
capture the statistical moments of the probability distribu-
tion. Several sampling methods for the sigma points have
been suggested, which differ in accuracy and computational
cost. The next section explains the symmetric sampling
method used in this work.

3.2. Symmetric Sigma Point Sampling

The symmetric sampling method [6] uses p = 2n + 1
sigma points. They are calculated as

X 0 = x̄ W0 = κ/(n+ κ),

X i = x̄+ (
√

(n+ κ)P xx)i Wi = 1/(2(n+ κ)),

X i+n = x̄− (
√

(n+ κ)P xx)i Wi+n = 1/(2(n+ κ)),
(2)

where n denotes the dimension, κ ∈ R is for tuning pur-
poses. The “square-root” matrix

√
P xx is shorthand no-

tation and can be obtained using Cholesky decomposition.
The term (

√
(n+ κ)P xx)i resembles the i-th row or col-

umn of
√
P xx.

4. Camera-IMU Calibration
The relation between camera and IMUs have to be cal-

culated before the IMUs can be used. This section shows
the camera-(to)-IMU estimation based on visual and iner-
tial sensor measurements. More precisely, we want the po-
sition I ~PC and orientation I

CR of the camera relative to the
IMU. In the following the rotations are represented by unit
quaternions I

CR ≡ I
C q̂.

4.1. Model Description and Observability

Kelly et al. [7] proved that the system described is (lo-
cally weakly) observable. The camera pose is the only mea-
surement which is obtained through a known chessboard
pattern in the camera-IMU calibration step. Later, it is re-
placed with the pose calculated by PTAM.

The UKF [3, 9] fuses the visual and inertial measure-
ments. Time synchronization between inertial and visual
measurements are implemented such as proposed by Ser-
vant et al. [15].

Our state vector has 26 dimensions containing two unit
quaternions:

x̂(t) =



I
C q̂
I ~PC

~bgd
~bad

I
W q̂(t)
W ~PI(t)
W ~VI(t)
W~g0


=



camera-IMU attitude
camera-IMU position

gyroscope bias
accelerometer bias
world-IMU attitude
IMU-world position
IMU-world velocity

gravity


. (3)

The IMU signals represent the control input u(t) with g(t)
and a(t) being the gyroscope and accelerometer values, re-
spectively. States independent of time t are updated through
the Kalman Gain (Eq. (17)) solely.

4.2. Process Model

The accelerometer and gyroscope biases are estimated
with the IMU-calibration algorithm suggested by Tedaldi et
al. [17]. However, we include also the biases in the state
vector since we observe a difference between dynamic and
static biases. The dynamic biases are introduced due to the
IMU calibration failures. The models of the gyroscope and
accelerometer are of the same fashion. Only the gyroscope
is described in detail:

~g(t) = h(~gr, θg) = BF
GFTK

g(~gr(t) +~bg +~bgd). (4)



BF
GFT is the transformation from the gyroscope to the body
frame. Kg holds the estimation of the scaling errors,~bg and
~bgd are the static and dynamic biases.

The system state evolves in discrete time steps, e.g., for
the gyroscope ~r = ~g(t) · ∆t. The attitude of the world
relative to the IMU (world-IMU) can then be defined as

δq̂ =
(
~r/||~r|| sin ||~r||2 , cos ||~r||2

)T
, (5)

I
W q̂(t+ ∆t) = δq̂−1(∆t)⊗ I

W q̂(t). (6)

The velocity and the position of the IMU-world is expressed
as

I~a(t) = −(~a(t)− I
WR(t) ·W~g0) + I~ac(t), (7)

with I
WR(t) = R(IW q̂(t)). R(q̂) is the mapping from any

unit quaternion q̂ to its rotation matrix R. I~ac(t) is the cen-
tripetal acceleration

I~ac(t) = ~g(t)× (IWR(t) ·W ~VI(t)), (8)

with ~g(t) being the gyroscope’s skew-symmetric matrix and
× the cross-product. The velocity and position are calcu-
lated via W~a(t) = W

I R(t) · I~a(t) and

W ~VI(t+ ∆t) = W ~VI(t) + W~a(t) ·∆t, (9)
W ~PI(t+ ∆t) = W ~PI(t) + W ~VI(t) ·∆t. (10)

4.3. Measurement Model

The camera attitude relative to the world W
C q̂(t) is ob-

tained using the current IMU-world W
I q̂(t) and camera-

IMU attitude I
C q̂. The camera-world position W ~PC(t) is

calculated in the same fashion, leading to

ŷ(t) =

(
W
C q̂(t)

W ~PC(t)

)
=

(
W
I q̂(t)⊗ I

C q̂
WPI + W

I R(t) · I ~PC

)
. (11)

The result of the measurement model is compared to the
real measurement in the innovation step.

4.4. Filtering Steps

The following filtering steps are conducted in each dis-
crete time step:

• The IMU variancesQk are added to the state covariance
P xx. Then, the sigma points are created from P xx by
applying the symmetric sampling method. The involve-
ment of the variancesQk allows the filter to model noise.

• The sigma points are propagated through the nonlinear
process model of Section 4.2:

X i,k+1 = f(X i,k,uk). (12)

• The a priori estimate of the state is approximated by its
weighted mean

x̂−k+1 =

p∑
i=0

WiX i,k+1, (13)

and the a priori state covariance P−xx as

P−xx =

p∑
i=0

Wi(X i,k+1 − x̂−k+1)(X i,k+1 − x̂−k+1)T .

(14)
• Then, the processed sigma points are propagated through

the measurement model of Section 4.3 (Yi,k+1 =
h(X i,k+1)) the same way as in the process model. Con-
sequently, the a priori measurement covariance is

P−yy =

p∑
i=0

Wi(Yi,k+1 − ŷ−k+1)(Yi,k+1 − ŷ−k+1)T .

(15)
ŷ−k+1 is the weighted a priori measurement mean similar
to Equation (13).

• Using the innovation covariance P vv = P−yy + Rk+1

the Kalman Gain is retrieved with K = P xy(P vv)−1,
whereas the cross correlation matrix P xy is

P xy =

p∑
i=0

Wi(X i,k+1 − x̂−k+1)(Yi,k+1 − ŷ−k+1)T .

(16)
• Update of the a posteriori state and covariance

x̂+
k+1 = x̂−k+1 + Kν (17)

P+
xx = P−xx −KP vvKT (18)

with ν = yk+1−ŷ
−
k+1, which is called innovation. yk+1

holds the real measurement obtained through the chess-
board pattern or PTAM.

5. IMU-based Tracking
We propose two ways for including the IMUs. First,

PTAM is kept untouched and the final camera pose of
PTAM serves as measurement for the UKF (pure UKF).
Second, the PTAM algorithm consists of a motion model
for a prior estimate of the pose. This PTAM motion model
(PMM) can be replaced with the a priori state (Eq. (13)) of
the UKF. We call the UKF motion model UMM.

5.1. PTAM Motion Model (PMM)

The motion model consists of a decaying velocity model
for the prior position estimate. The innovations for po-
sition, angular and linear velocity are obtained from the
Special-Euclidean-Group-3 (SE3) difference between suc-
cessive frames. More precisely, using exponential coordi-
nates

Pi = exp(~τi) ·Pi−1 (19)



with decaying linear and angular velocity

~τi = 0.9 · (0.5 · ~τi−1 + 0.5 · ln(Pi−1 ·P−1i−2)). (20)

Although this model already estimates the angular veloc-
ity, we incorporate a separate template-based tracking pro-
cedure suggested by Benhimane et al. [2]. This approach
is more accurate but also computationally more complex
due to the minimization of a sum-of-squared-difference be-
tween templates.

5.2. Pure UKF & UKF Motion Model (UMM)

Our pure UKF approach utilizes only the PTAM output
as measurement for the UKF as proposed in Section 4.3.
This way, the UKF does not interfere with the PTAM al-
gorithm. The UMM approach consists of exactly the same
steps, and additionally substitutes the PTAM motion model
with the a priori pose estimate of the UKF.

The a posteriori state (Eq. (17)) is calculated after each
iteration of the PTAM. This estimate is the fusion of the
measurement, the PTAM-derived camera pose, and the a
priori state x̂−k+1. The result of the UKF a posteriori state
x̂+
k+1 is used as final pose.

The static and dynamic biases are considered in Equa-
tion (4). The state vector is similar to Equation (3) and has
the form

x̂(t) =
(
I
W q̂(t),W ~PI(t),W ~VI(t), sv,

W ~G
)T
, (21)

with sv being the velocity scale. The camera attitude I
C q̂

and position I ~PC are estimated in Section 4. The states are
left out since the relation is static. The resulting vector x̂(t)
has only 14 dimensions. The estimation of the map scale is
an important difference to the sensor-to-sensor calibration.
This is necessary due to the integration of inertial transla-
tional data. The scale factor sv is applied to the velocity
change, yielding to a modification of Equation (8)

I~ac(t) = ~g(t)× (IWR(t) ·W ~VI(t)/sv), (22)

W ~VI(t+ ∆t) = W ~VI(t) + sv ·W~a(t) ·∆t. (23)

Ideally, the velocity scale sv converges to the true scale.
This is, however, only partly the case as will be shown in
Section 6.1.

6. Evaluation
A professional, external tracking system by ART pro-

vides the ground truth of our comparisons. The tracking
system includes five high-resolution 60 Hz cameras in com-
bination with passive markers. The markers are mounted on
the mobile device. We performed a hand-eye calibration be-
tween marker- and camera-center. The data is recorded and

evaluated offline. Figure 1 illustrates the texture-rich set-
ting. All sets are recorded with 20 FPS, 640x480p resolu-
tion, 60 Hz IMU-readings and a duration of about 100−120
seconds per set.

Figure 1: Tracking environment and mobile device with
passive markers.

6.1. Scale Estimation

The pose of the camera is known as its attitude and posi-
tion. The former is scale-invariant and can be used directly
with real world data, the latter is not. The scale s can be de-
scribed as the relation between accelerometer and position-
related visual data. There are two ways of including it in the
filtering process.

The professional tracking system defines the true map
scale sm. The scale s can either be computed in conjunction
with the velocity sv , resulting in Equation (22) and (23) or
with the position sp

W ~PI(t+ ∆t) = W ~PI(t) + sp ·W ~VI(t) ·∆t. (24)

6.1.1 Scale Sets
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Figure 2: Progress of the velocity sv and position scale sp
(dashed lines) for the same recording and different true map
scales sm.

The test set consists of five recordings. We choose solely
sets without loss of tracking. The scale of the PTAM map
can be modified by changing the distance between the first
two keyframes used in the initialization process.

The data of the sets are multiplied with a factor to mod-
ify the true map scales sm and generalize our results. A
uniform distribution between 1 and 5 determines this fac-
tor. The factor of the initial UKF-scale is set to 1. The
resulting estimation process for one recording is displayed
in Figure 2. It is visible that the scale converges to the final
value after 20− 25 s regardless of the map scale size.



6.1.2 Scale Results

Both scale estimation methods run on the same data but sep-
arately. The result of each run and the best fit are displayed
in Figure 3. Noticeable are the linear dependencies of both
scale types. The relative error between the true map scale
sm and the linear fit are 0.11 ± 0.14 and 0.08 ± 0.08 for
sp and sv , respectively. The velocity scale sv delivers more
accurate estimates than the position applied scale sp. The
IMU velocity (Eq. (23)) is close to the pure accelerometer
data as such it permits a more reproducible feedback and
faster convergence compared to the IMU position W ~PI(t).
The works [1,12,16] all include scale estimation but did not
publish data for comparison.
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Figure 3: Linear dependency between UKF-estimated
scales and the true map scale. Velocity and position scale
have the same ground truth.

6.2. Motion Model Comparison

Motion models predict prior poses for trackers. The pre-
cision and stability of these motion models have a direct
influence on tracking performance. This section compares
the fully inertial sensor-based motion model UMM with
the original PMM. We stop the visual update for 10 s for
that purpose. The device is moved around. Both motion
models apply their a priori estimate as measurement during
this time. Figure 4 illustrates the mean error relative to the
ground truth for 10 different recordings.

The attitude error in Figure 4a shows the advantages of
a gyroscope-based attitude update. The PMM converges
quickly to zero change, whereas the UMM keeps track of
the device’s attitude.

This is not the case for the translational error. Even a
small constant attitude error of 1◦ leads to a faulty accel-
eration of around 0.17m/s2. This results in huge position
errors after a few seconds as depicted in Figure 4b.

A way to handle this issue is to apply confidence inter-
vals on the difference between observed and predicted mea-
surements [4]. We do not tackle this problem yet.

Instead, we remove the translational part of the UMM
and incorporate the translation of the PMM in a PUMM ver-
sion of the motion model.
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Figure 4: Error-time dependency for pose estimation with-
out visual update. Dashed lines indicate the standard devia-
tion.
6.3. Pose Accuracy

The PUMM uses PMM and UMM in parallel threads
without interference. Table 1 displays the results of the pose
accuracy of five recordings without tracking failure. PUMM
modifies the PTAM motion model and sets the PTAM pose
as final result. The PUMMUKF uses the PTAM pose as
measurement as with the pure UKF.

PUMM cannot increase accuracy since the position esti-
mate worsens (−3.8%) by improving the attitude propor-
tionally (3.1%). PUMMUKF performs better than both
PTAM-based final poses. The average errors of position
(øεpos) and attitude (øεatt) are reduced in comparison to
PTAM by 12.7% and 6.0%, respectively. Keeping the
PTAM untouched and using its result as measurement for
our proposed UKF (pure UKF) leads to 18.4% and 5.2%
improved accuracy.

method øεpos ± σ [m] øεatt ± σ [deg]
PTAM 0.158± 0.086 2.611± 0.969
PUMM 0.164± 0.089 2.529± 0.921
PUMMUKF 0.138± 0.075 2.454± 0.894
pure UKF 0.129± 0.072 2.475± 0.889

Table 1: Averaged errors of position and attitude for differ-
ent methods. Final poses above the middle line rely on the
PTAM, below on UKF a posteriori estimate.

6.4. Computational Costs

The runtime of the system is computed based on 2000
frames with the pure UKF method. The final map consists
of 18 keyframes and 1700 map points. TrackMap denotes
the search for map points and subsequent pose update pro-
cedures. FAST denotes the detection of FAST corners [14].
The sigma points are propagated on average 3.82 times per
image. The Cholesky decomposition is executed as often as
there are frames in the set. Table 2 depicts the contributions
of the components to the total computation time.

The UKF is cheaper than the PMM calculation. The
most time-consuming part of the UKF is the sigma point
propagation (3.10%). The Cholesky decomposition con-



tributes only a small fraction to the total costs (0.20%). The
decaying velocity model of the PMM comes for free and the
6.10 % might be saved by employing the template tracking
only when necessary.

TrackMap 71.93 % PMM 6.10 %
FAST 17.65 % UKF 4.32 %

Table 2: Relative computational costs of the algorithm com-
ponents.

7. Conclusion
We stated an unscented Kalman filter approach for the

fusion of embedded IMUs with visual data. The proposed
approach enables pose tracking as well as camera-IMU cal-
ibration. We presented two methods in the context of pose
tracking. The first incorporates the a priori state of the UKF
with a motion model of a vision-based tracker. In the sec-
ond method, the pose obtained through visual data serves
only as measurement for the UKF. The a posteriori state of
the UKF defines the pose.

Our results disclose that the motion model is rather un-
stable since the accelerometer corrupts the prior position es-
timates of the SLAM system. This is due to its quadratic
propagation of errors. Thus, minimal noise already af-
fects the device position. The gyroscope, however, deliv-
ers precise attitudes even in case of camera failure. It in-
creases attitude’s accuracy in comparison to the PMM. Con-
sequently, we recommend to integrate only the gyroscope
into an IMU-based motion model.

The second method demonstrates an easy and computa-
tionally cheap way to improve tracking accuracy with the
help of IMUs. The accuracy increases by about 18% and
5% in position and attitude, respectively, without the need
of modifying the existing visual tracker. This improvement
raises the computational complexity by just 4.32%.

Lastly, we showed that the velocity estimate of an ac-
celerometer is more reliable for the calculation of the map
scale than the derived position. This way, a scale error
within a margin of 8% is feasible.

We publish the code of both markerless IMU-based
tracking and sensor-to-sensor calibration at www.mmk.
ei.tum.de/sensorintegrationslam.
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