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Abstract—This paper studies the effective convergence of
iterative methods for solving convex minimization problems using
block Gauss–Seidel algorithms. It investigates whether it is always
possible to algorithmically terminate the iteration in such a
way that the outcome of the iterative algorithm satisfies any
predefined error bound. It is shown that the answer is generally
negative. Specifically, it is shown that even if a computable
continuous function which is convex in each variable possesses
computable minimizers, a block Gauss–Seidel iterative method
might not be able to effectively compute any of these minimizers.
This means that it is impossible to algorithmically terminate the
iteration such that a given performance guarantee is satisfied. The
paper discusses two reasons for this behavior and gives simple
and concrete examples.
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I. INTRODUCTION

Many problems in engineering and science, e.g. in com-
munications, signal processing, information theory, artificial
intelligence, control, finance, can be formulated as optimiza-
tion problems (see, e.g. [1]–[6]). In applications, however, the
concrete structure of the problem makes it often impossible to
perform a global optimization of all performance functions and
over all parameters. Therefore, iterative methods are applied.

Modern communication systems provide an important ex-
ample of this situation. These systems use a bidirectional
communication protocol and have a highly distributed and hi-
erarchical structure with many different communication notes
such as base stations, access points, and individual users. The
performance functions (e.g. the transmission rates) of the indi-
vidual communication notes depend on the signal processing
and coding parameters (e.g. beam forming coefficients, MIMO
antenna gains, transmit powers, frequency dependent channel
parameters, waveforms, etc.) of all other communication notes.
This decentralized structure together with the multiuser inter-
ference, introduced by the wireless communication channel,
imply that a joint optimization of all performance functions
based on all parameters of the system is practically impossible.
Therefore individual, decentralized optimization strategies,
that iteratively optimize only over a subset of the parameters,
have been proposed and applied for such systems. In fact,
already the first multiuser beamformaing approaches [7], [8]
use iterative optimization. In distributed multiuser MIMO
systems, the number of parameters grows further [9]–[12],
and modern applications like integrated sensing and commu-
nications require even more complex performance functions
because of the joint optimization of communication and pulse

forming for the radar [13], [14]. Consequently, also these
systems rely on iterative optimization methods.

Modern computer technology allows to tackle huge opti-
mization problems in very high dimensions. Nonetheless, up to
now, there exists no general rule to programmatically interrupt
an iterative optimization procedure such that the result of the
computation is guaranteed to satisfy a predefined error bound
with respect to the true solution. As an example, we mention
the fairly simple problem of approximating the optimal input
distribution that achieves the capacity of discrete memoryless
channels [15]–[17]. Using techniques from computability the-
ory, this paper will actually show that such a stopping rule can
not exist for iterative optimization problems, in general.

Immediately after the precise formulation of the mathemat-
ical notion of computing, due to Turing [18], [19], it became
clear that few physical problems can be solved exactly by
digital computations. Most solutions can only be approximated
(arbitrarily well). Therefore Turing’s notion of computation
requires that the result of a computation has to satisfy a
predefined error bound. It turns out that there exist compu-
tational objects (numbers, functions, etc.) for which this is not
possible. Then they are said to be non-computable. If such an
error control is possible, the objects are computable. In this
paper, we investigate the ability to solve optimization problems
on digital hardware. To this end, we consider optimization
problems in the m-dimensional real Euclidean space Rm:

minx∈R f(x) (1)

where f : Rm → R is a continuous function and R ⊂ Rm is a
convex, compact subset of Rm. It is well known [20] that the
minimum value MinR(f) = minx∈R f(x) of (1) is always
computable. If (1) has a unique minimizer, i.e. if the set

MINR(f) =
{
x̂ ∈ R : f(x̂) = MinR(f)

}
(2)

contains exactly one vector, then also this minimizer is com-
putable. If, on the other hand, the minimizer is not unique
then some or all minimizers might not be computable [20].
So as long as (1) has at least one computable minimizer, this
minimizer can, in principle, algorithmically be computed on
a digital computer. One only needs to construct a sequence{
x(k)

}
k∈N ⊂ Rm that effectively converges to x̂. Since x̂ is

computable, this is always possible. However, finding such a
sequence might be a fairly complicated and creative problem
and the question is whether this process can (efficiently) be
automated on a digital computer.



Practical algorithms often apply a certain (suboptimal)
strategy to find a sequence

{
x(k)

}
k∈N that converges to a

minimizer of f . One strategy is to minimize successively only
over some dimensions of x ∈ Rm while keeping the other
dimensions fixed: For example, let

R = [a1, b1]× [a2, b2]× · · · × [am, bm] (3)

and let x(0) = (x
(0)
1 , x

(0)
2 , . . . , x

(0)
m ) ∈ Rm be an arbitrary

initialization vector. Then one successively solves for ℓ =
1, 2, . . . ,m the one dimensional optimization problems

x
(k+1)
ℓ = arg min

y∈[aℓ,bℓ]
f(x

(k+1)
1 , . . . , x

(k+1)
ℓ−1 , y, x

(k)
ℓ+1, . . . , x

(k)
m )

and iterates over k = 0, 1, 2, . . . . This strategy produces a
sequence

{
x(k)

}
k∈N that converges to a global minimizer x̂

of f under fairly weak (convexity) conditions on f . However,
the so determined sequence

{
x(k)

}
k∈N may not effectively

converge to the global minimizer. Instead, it may happen that:
• Some of the computational steps are not computable, i.e.

they may not be realizable on a digital computer with an
effective control of the approximation error.

• The sequence
{
x(k)

}
k∈N may converge to a non-

computable minimizer of f .
Thus even through there exists a global computable optimizer
of f , the automated procedure might not be able to find a cor-
responding approximation sequence

{
x(k)

}
k∈N of computable

vectors that effectively converges to this minimizer, i.e. the
automated procedure might not be able to effectively compute
a global minimizer of f .

This paper studies the described iterative optimization strat-
egy. We will show that there exist simple (piecewise linear)
functions f that are convex in each coordinate, that have in-
finitely many computable minimizers but such that the iterative
optimization is not able to find a computable sequence that
converges effectively to any of the computable minimizers.

Because of space constraints, this paper contains no formal
proofs. These proofs, together with more results and discus-
sions can be found in the preprint [21].

II. NOTATION AND COMPUTABILITY

Vectors in Rm are denoted by boldface lower-case letters
written as row vectors like x = (x1, x2, . . . , xm). As usual,
[a, b] = {x ∈ R : a ≤ x ≤ b} denotes a closed interval on R.
For real numbers ai < bi, i = 1, 2, . . . ,m, (3) is said to be a
rectangle in Rm. The set of all continuous functions on Rm

or on R ⊂ Rm are denoted by C(Rm) or C(R), respectively.
Computability analysis: We briefly review concepts and

notions of computability analysis [18]–[20], [22]–[24]. It cen-
tral concept is the notion of effective convergence:
Definition 1: Let x = {xn}n∈N be a sequence of real
numbers that converges to x ∈ R. We say that x converge
effectively to x if |x− xn| ≤ 2−n for all n ∈ N.

For an effectively convergent sequence, one can control the
approximation error, i.e. for arbitrary small ϵ = 2−n ´ one
can determine n ∈ N so that |x− xn| is less than ϵ.

Every x ∈ R is the limit of a sequence of rational numbers.
Only if this sequence effectively converges, x is said to be
computable.
Definition 2: A number x ∈ R is said to be computable if
there exists a sequence {rk}k∈N ⊂ Q that converges effectively
to x. A vector x ∈ Rm is said to be computable if each of its
components is a computable number.
We write Rc ⊊ R for the subfield of all computable real
numbers and Rm

c for the set of computable vectors in Rm.
A rectangle R ⊂ Rm as in (3) is said to be computable if all
ai, bi, i = 1, 2, . . . ,m are computable numbers.
Definition 3: A sequence x = {xn}n∈N of real numbers is
said to be computable if there exists a doubly indexed rational
sequence {rn,k}n,k∈N ⊂ Q such that for every n ∈ N

|xn − rn,k| < 2−k , for all k ∈ N .

A sequence {xn}n∈N ⊂ Rm is said to be computable if each
component of this sequence is a computable sequence.

Besides computable numbers and sequences, computable
functions will play an important role in this paper.
Definition 4: Let m,M ∈ N. A function f : Rm → RM is
said to be Banach–Mazur computable, if for every computable
sequences {xn}n∈N ⊂ Rm the sequence {f(xn)}n∈N ⊂ RM

is computable.
Definition 5: A function f : R → R, on a computable
rectangle R ⊂ Rm, is said to be effectively uniformly
continuous if there exits a recursive function d : N → N such
that for every k ∈ N and n = d(k)

∥x1 − x2∥ ≤ 2−n implies |f(x1)− f(x2)| ≤ 2−k .

A function that is Banach–Mazur computable and effectively
uniformly continuous is said to be a computable continuous
function, and Cc(R) denotes the set of computable continuous
functions on R.
Remark: There exist other notions of computable functions
(see, e.g., [25] for an overview and its logical relations). Here
we only need that every function that is not Banach–Mazur
computable is also not a computable continuous function.

III. OPTIMIZATION OF SMOOTH FUNCTIONS

This section explains in more detail the iterative optimiza-
tion algorithm that will be studied in this paper and introduces
some more notation needed to formulate our main results.

a) Minimum value and minimizer: We consider general
minimization problems with a so-called box constraint [26]:
Let R = R1×R2×· · ·×Rr ⊂ Rm be a computable rectangle
with Rℓ ⊂ Rnℓ and

∑r
ℓ=1 nℓ = m, and let f : R → R be a

continuous function on R. Now we may ask for the minimum
value of f on the rectangle R, i.e. for the value

MinR(f) = min
x∈R

f(x) = min
xℓ∈Rl,1≤ℓ≤r

f(x1,x2, · · · ,xr) , (4)

and we may ask for a corresponding minimizer, i.e. for a vector

x̂ ∈ R such that f (x̂) = min
x∈R

f(x) . (5)



Note that the minimizer is generally not unique but there
may exist a whole set (2) of global minimizers in R. It
depends on the actual application whether one needs to find
the minimum value or the minimizer, but it is clear that if
one knows a minimizer x̂ then one also knows the minimum
value MinR(f) = f(x̂). Conversely, knowing MinR(f) may
not help in finding the corresponding minimizer x̂.

Remark: Instead of the minimization problem (4), one may
consider a corresponding maximization problem, i.e. the prob-
lem finding the maximum value of f on R or of finding the
maximizer of f . Such a maximization problem can always be
transformed into a minimization problem by considering the
function −f on R. Then the minimizer of −f is the maximizer
of f . Therefore, without loss of generality, this paper only
discusses the minimization problem (4).

b) Computability of the minimum value and the mini-
mizer: Apart from very special cases, there exists no closed-
form solution for MinR(f) or x̂. Therefore these values
are usually approximated using numerical algorithms that
determine a sequence that is guaranteed to converge to the
optimal value. For a wide variety of optimization problems,
algorithms are known that converge to the minimum value
or minimizer, respectively. Most notable are certainly algo-
rithms for convex optimization [26]–[28]. Nevertheless, from
a practical point of view, the question is not only whether
the algorithm converges to the optimum but whether this
convergence is effective, i.e. whether the minimum value or the
minimizer is computable. With respect to the computation of
the minimum value MinR(f) the following result concerning
its computability is well known (cf., e.g., [20, Chapter 6]).

Proposition 1: Let Rℓ ⊂ Rnℓ , ℓ = 1, 2, . . . , r, be computable
rectangles, and let R = R1 × · · · ×Rr ⊂ Rm. There exists a
Turing machine TMMin that computes for every computable
continuous function f ∈ Cc(R) the value MinR(f).

So the minimum value (4) is always algorithmically com-
putable on a digital computer provided f is a computable
continuous function. Moreover, TMMin in Proposition 1 is
universal in the sense that it only depends on the rectangle
R. So for a fixed R, the corresponding TMMin can compute
MinR(f) for all f ∈ Cc(R) as input [6].

For the computation of the minimizer x̂, it is known that
if (4) has a unique (global) minimizer then this minimizer is
computable (cf., e.g., [20, Chap. I.0.6]). If the minimizer is not
unique then some (or all) minimizers might not be computable
and there exist several examples of computable continuous
functions f that attain there minimum only at non-computable
points (see, e.g., [29] and references in [20]).

c) Iterative optimization: Minimizing jointly over all m
components of x ∈ R ⊂ Rm in (4), is often considered as
being too complex. Therefore block coordinate optimization
methods of the Gauss–Seidel type are applied that iteratively
optimize over sub-rectangles Rℓ, ℓ = 1, 2, . . . , r while keeping
the other variables fixed [30]–[34]. Starting with an initial
guess x̃(0) = (x̃

(0)
1 , x̃

(0)
2 , . . . , x̃

(0)
r ) ∈ R, one solves for k = 0

the optimization problems

x̃
(k+1)
ℓ = arg min

y∈Rℓ

f
(
x̃
(k+1)
1 , . . . , x̃

(k+1)
ℓ−1 ,y, x̃

(k)
ℓ+1, . . . , x̃

(k)
r

)
(6)

successively for ℓ = 1, 2, . . . , r and iterates over k = 1, 2, . . . .
In particular, if n1 = n2 = ... = nℓ = 1 then each step opti-
mizes only over one coordinate of the vector x̃(k) ∈ Rm. This
procedure yields a sequence

{
x̃(k)

}
k∈N of approximations

of a minimizer of (4). The components of each vector x̃(k)

are minimizers of a local optimization problem (6). Therefore{
x̃(k)

}
k∈N is said to be a sequence of local minimizers.

One can show that under mild conditions on f , this se-
quence of local minimizers converges to a global minimizer
x̂ of (4). In fact, there exist many studies investigating the
convergence of iterative algorithms for optimization problems
of the form (1) (see, e.g., [33], [34]). These works investigate
the convergence of sequences

{
x̃(k)

}
k∈N obtained by an

iterative optimization algorithm. Apart from results regarding
the convergence, there seems to exist no estimates on the
convergence speed of these algorithms. However, such results
are highly desirable from a practical point of view because the
convergence results alone imply, in principle, that the iterative
algorithm has to compute ad infinitum to reach the optimal
value. In practice, one needs a criterion to stop the iteration if
a desired error bound is achieved, i.e. one needs the possibility
to pass an M ∈ N to the algorithm. Then the algorithm should
be able to stop the iteration at K ∈ N if

∣∣x̂− x̃(K)
∣∣ < 2−M .

Up to now, no such algorithm is known which brings us to
our first question:

Question 1: Given a sequence
{
x̃(k)

}
k∈N of local minimizers

that converges to a global minimizer x̂ of (4). Is this conver-
gence always effective?

We will show that the answer is generally "no", even in the
case m = 2. This implies that there can be no algorithmic
stopping criterion for such iterative optimization algorithms.

Remark: The non-existence of such an algorithmic stopping
criterion was recently observed for several central problems
in information theory. One example is the celebrated Blahut–
Arimoto algorithm [15], [16]. Further information theoretic
questions showing a similar behavior are discussed in [36].

The argmin-operation in step (6) of the iterative algorithm
is only a pseudo-code and it is not clear at the outset whether
there exists an effective implementation on a digital computer
for this operation. This raises the following general question.

Question 2: Does there always exists an effective implemen-
tation of Step (6)?

Associated with the block coordinate optimization method
(6), we define for every ℓ = 1, 2, . . . , r, the sets

MIN ℓ = MIN ℓ(x1, . . . ,xℓ−1,xℓ+1, . . . ,xr)

=
{
x̂ℓ ∈ Rℓ : f(x1, . . . ,xℓ−1, x̂ℓ,xℓ+1, . . . ,xr) =

min
y∈Rℓ

f(x1, . . . ,xℓ−1,y,xℓ+1, . . . ,xr)
}

(7)



of all local minimizes with respect to the ℓth coordinate, i.e.
MIN ℓ contains all x̂ ∈ Rℓ that minimize the right hand side
of (6). Then the argmin-operator in (6) simply chooses one
element from MIN ℓ. This operation can be described by a
so-called assignment function:
Definition 6: Consider the optimization problem (4) for a
function f : R → R. A function Gℓ : R1 × · · · × Rℓ−1 ×
Rℓ+1×· · ·×Rr → Rℓ is said to be an assignment function of
f for the ℓth coordinate of the iterative optimization procedure
if it has the property

Gℓ(x1, . . . ,xℓ−1,xℓ+1, . . . ,xr) ∈ MIN ℓ . (8)

The set of all assignment functions of f for the ℓth coordinate
will be denoted by Aℓ(f).
With this notion, step (6) can be written as

x
(k+1)
ℓ = Gℓ

(
x
(k+1)
1 , . . . ,x

(k+1)
ℓ−1 ,x

(k)
ℓ+1, . . . ,x

(k)
r

)
. (9)

In particular, the coordinate-wise optimization where each Rℓ

is one-dimensional, can be rewritten as in Algorithm 1.

Algorithm 1: Coordinate-wise optimization

Initialization: x0 = (x
(0)
1 , · · · , x(0)

m ) ∈ Rm, k = 0
repeat

forall ℓ = 1, 2, . . . ,m do
x
(k+1)
ℓ = Gℓ(x

(k+1)
1 , . . . , x

(k+1)
ℓ−1 , x

(k)
ℓ+1, . . . )

k = k + 1
until convergence;
Output : xout = x(k)

For every ℓ ∈ {1, 2, . . . , r} the set Aℓ(f) contains generally
many different assignment functions Gℓ. Namely, there are as
many different Gℓ as there are different vectors in MIN ℓ. In
principle, one can choose any Gℓ ∈ Aℓ(f) for the optimization
step (9). However, in order that step (6) be algorithmically
solvable, we need to choose Gℓ ∈ Aℓ(f) to be a computable
function. The interesting question is whether this is always
possible. The next section will show that there are very
simple computable continuous functions f such that for some
ℓ ∈ {1, 2, . . . , r}, the set Aℓ(f) contains no computable
assignment function.

IV. COMPUTABILITY OF ASSIGNMENT FUNCTIONS

To make our arguments and examples as clear as possible,
we consider the simplest case of the optimization problem (4),
namely we consider functions f : R2 → R on the rectangle
R = R1 × R2 with R1 = [−a, a] and R2 = [−b, b] for
arbitrary positive computable numbers a, b ∈ Rc. Then the
corresponding iterative optimization algorithm is a coordinate-
wise optimization as shown in Algorithm 1.

We show first that there exist computable continuous func-
tions f1 of two variables such that the set A1(f1) of assign-
ment functions contains no computable assignment function.
Theorem 2: Let a, b ∈ Rc be arbitrary positive numbers and
let R = R1×R2 with R1 = [−a, a] and R2 = [−b, b]. There
exist computable continuous functions f1 : R → R such that:

Fig. 1. An example of a function f1(x1, x2) as given in Thm. 2 for an
R = [−a, a]× [−b, b] with arbitrary a > 1 and b > 0.

1) For every x2 ∈ R2, the function f1(·, x2) : R1 → R
is a computable continuous function that is convex and
piecewise linear (with 3 linear pieces).

2) For every x1 ∈ R1, the function f1(x1, ·) : R2 → R
is a computable continuous function that is convex and
piecewise linear (with 2 linear pieces).

3) f1 has only global minima (i.e. no local minima that are
not global) and the set of all global minima is convex.

4) For every x2 ∈ R2, x2 ̸= 0, the function f(·, x2) has
only one global minimum.

5) Every G1 ∈ A1(f1) is not (Banach–Mazur) computable.

Remark: The proof of this theorem can be found in [21].
There even a concrete functions f1 with the properties from
Thm. 2 is constructed. This function, shown in Fig. 1, illus-
trating the Properties 1)-4) of these functions.

As a consequence of Thm. 2, one immediately obtains a
negative answer to Question 2, namely that the first optimiza-
tion step, that aims to find the local minimum with respect to
the first coordinate of x, cannot algorithmically be solved:

Corollary 3: Let f1 : R1 × R2 → R be the computable
continuous function from Thm. 2. Then the optimization step

x
(k+1)
1 = arg min

y∈R1

f1(y, x
(k)
2 ) , k ∈ N .

cannot be solved algorithmically, i.e. there exists no Turing
machine that is able to compute x

(k+1)
1 on input x(k)

2 .

V. REACHABILITY OF GLOBAL MINIMIZERS

We still consider the optimization problem (4) on a com-
putable rectangle R = R1 × R2 with R1 = [−a, a]
and R2 = [−b, b] for some positive a, b ∈ Rc and for
a given function f : R2 → R. In this section we need
to study the point sets

{
(G1(x2), x2) ⊂ R2 : x2 ∈ R2

}
and



{
(x1, G2(x1)) ⊂ R2 : x1 ∈ R1

}
in some detail. By the defi-

nition of the assignment functions (cf. Def. 6), we have

G1(x2) ∈ MIN 1(x2) = arg min
x1∈R1

f(x1, x2) and

G2(x1) ∈ MIN 2(x1) = arg min
x2∈R2

f(x1, x2) .

Let x̂ = (x̂1, x̂2) ∈ MINR(f) be a global minimizer of f .
We want to study the behavior of the points (G1(x2), x2) ∈ R2

as x2 approaches x̂2 and the behavior of (x1, G2(x1)) ∈ R2

as x1 approaches x̂1. To this end, we define the sets

G+
1 (x̂2) =

{
x = lim

x2→x̂2
x2>x̂2

(
G1(x2), x2

)
: G1 ∈ A1(f)

}

G−
1 (x̂2) =

{
x = lim

x2→x̂2
x2<x̂2

(
G1(x2), x2

)
: G1 ∈ A1(f)

}

i.e. the set of all limits of points of (G1(x2), x2) ∈ R2 as x2

converges to x̂2 from above and below, respectively. In the
same way, we define sets G+

2 (x̂1) and G−
2 (x̂1) as the limits of

points (x1, G2(x1)) ∈ R2 as x1 converges to x̂1 from above
and below, respectively. By these definitions, we have

G±
1 (x̂2) ⊂ MINR(f) and G±

2 (x̂1) ⊂ MINR(f)

and we notice that these inclusions are generally strict. This
motivates the following definition:
Definition 7: Let x̂ = (x̂1, x̂2) ∈ MINR(f) be an arbitrary
global minimizer of f . We say that x̂ is reachable along

• the coordinate x2 if x̂ ∈ G+
1 (x̂2) ∪ G−

1 (x̂2).
• the coordinate x1 if x̂ ∈ G+

2 (x̂1) ∪ G−
2 (x̂1).

Remark: In other words x̂ ∈ (x̂1, x̂2) is reachable along the
coordinate x2 if there is a G1 ∈ A1(f) such that

lim
x2→x̂2, x2 ̸=x̂2

(
G1(x2), x2

)
∈ MINR(f) .

Example 1: Consider the function f1 shown in Fig. 1.
Its set of all global minimizers is MINR(f1) =
{(x1, 0) : x1 ∈ [−1, 1]}.
For all x2 > 0, we have (G1(x2), x2) = (−1, x2) and
for all x2 < 0, we have (G1(x2), x2) = (1, x2), so that
G+
1 (0) = (−1, 0) and G−

1 (0) = (1, 0). Similarly, since
(x1, G2(x1)) = (x1, 0) for all x1 ∈ R, we have G+

2 (x1) =
G−
2 (x1) = (x1, 0) for every x1 ∈ [−1, 1].
Thus all points in MINR(f1) are reachable along the coor-

dinate x1 but only the points (−1, 0) and (1, 0) in MINR(f1)
are reachable along the coordinate x2.

If a minimizer x̂ ∈ MINR(f) is not reachable along a
certain coordinate then the iterative coordinate-wise algorithm
will not be able to compute this minimizer. In such a case it
might happen that even though f has global minimizers that
are computable, the iterative coordinate-wise algorithm may
not be able to compute them because they are not reachable
along a certain coordinate.

The following theorem shows that there exist functions f2
such that all global optimizers of f2 that are reachable along
the coordinate x2 are not computable in R2.

Theorem 4: Let a, b ∈ Rc with a, b > 0 be arbitrary and let
R = R1 ×R2 with R1 = [−a, a], R2 = [−b, b]. There exist
computable continuous functions f2 : R → C such that

1) f2 ∈ C1(R2).
2) f2(·, x2) is strictly convex for every x2 ∈ R, x2 ̸= 0, and

a computable continuous function for every x2 ∈ Rc.
3) f2(x1, ·) is strictly convex for every x1 ∈ R, and a

computable continuous function for every x1 ∈ Rc.
4) f2 has only global optimizers and the set of all global

optimizers is a closed interval on the x1-axis.
5) Every (x̂1, x̂2) ∈ MINR(f2) that can be reached

along the coordinate x2 is not computable in R2.

Remark: The proof of this theorem can be found in [21] which
also contains an explicit expression for a function f2 with the
properties given in Thm. 4.
As an immediate consequence of the last statement of this the-
orem we obtain the following negative answer to Question 1.
Corollary 5: Let f2 : R× R → R be a function from Thm. 4
and let {(xn, x̂2)}n∈N be an arbitrary sequence that converges
to a global minimum (x̂1, x̂2) ∈ MINR(f2) of f2, then this
convergence cannot be effective.

Remark: In Thm. 4, f2 belongs to C1(R2). One can show that
for every K ∈ N, there exist functions f2 ∈ CK(R) such that
all partial derivatives up to order K are computable continuous
functions and satisfy Properties 2) - 5) of Thm. 4.

VI. SUMMARY AND DISCUSSION

This paper has investigated the computability properties
of iterative, block coordinate optimization algorithms. These
results are relevant to situations where a global optimization is
hard or impossible to implement. An example is a decentral-
ized communication system where it is impossible to collect
global information about the whole network at a central point,
but where the optimization has to be performed locally, based
on restricted knowledge on the network.

We have shown that there exist computable continuous
functions f∗, for which it is impossible to find an effective im-
plementation of such iterative optimization algorithms. Since it
is impossible to construct an algorithm for single functions f∗,
it is a fortiori impossible to construct a general algorithm who
takes f as an input and which is able solve the optimization
problem for a larger set (including the f∗’s) of functions.

We emphasis that the negative results of Theorems 2 and
4 are consequences of the local coordinate-wise optimization
strategy. Indeed, the functions from Thm 2 and 4 have at least
one global minimizer x̂ ∈ Rm that is computable. Therefore it
is always possible to find a computable sequence

{
x̂(k)

}
k∈N ⊂

Rm that effectively converges to x̂.
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