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Abstract— This paper gives a complete characterization of
the complexity of computing the minimum mean square pre-
diction error for wide-sense stationary stochastic processes. It
shows that if the spectral density of the stationary process is
a strictly positive, computable continuous function then the
minimum mean square error (MMSE) is always a computable
number. It is also shown that the computation of the MMSE
is a #P1 complete problem on the set of strictly positive,
polynomial-time computable, continuous spectral densities. This
means that if, as widely assumed, FP1 ̸= #P1, then there
exist strictly positive, polynomial-time computable continuous
spectral densities for which the computation of the MMSE is
not polynomial-time computable. So under the widely accepted
assumptions of complexity theory, the computation of the
MMSE is generally much harder than NP1 complete problems.

I. INTRODUCTION

Let x = {xn}n∈Z be a discrete wide-sense stationary
stochastic process. An important practical problem is to
predict the value x0 from past observations of x by means
of a linear filter H with impulse response h = {hn}∞n=1, i.e.

x̂0 = H(x) =
∑∞

n=1 hnx−n .

The goal is to find h such that the mean square error (MSE)
σ2
h = E[|x̂0 − x0|2] = E[|H(x)− x0|2] is minimized, where

E[x] denotes the expectation of the random variable x. This
problem plays an important role in many different areas of
control [1]–[8] but also in diverse fields of science and engi-
neering such as communications [9], [10], signal processing
[11], [12], biology [13], [14], or financial engineering [15],
[16] to mention only very few.

The described prediction problem is very well studied
from the analytic side. If hmin denotes the optimal impulse
response that minimizes the MSE and if σ2

min = σ2
hmin

is the corresponding minimum mean square error (MMSE)
then analytical expressions for hmin and σ2

min are well
known [17], [18]. However hmin will generally be an infinite
impulse response filter. Then, for practical implementations,
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this filter needs to be approximated by a finite impulse
response (FIR) filter. Fortunately there exists many different
algorithms that are able to determine FIR approximations
{hN}N∈N =

{
h
(N)
n : n = 1, 2, . . . , N

}
N∈N that converges

to the optimal impulse response hmin as N tends to infinity.
In addition, these algorithms often determine at the same
time the MSE σ2

N = σ2
hN

that can be achieved with the
FIR approximation hN . From a practical point of view, we
still need to choose a concrete N . To this end, we need a
(recursive) function s : N → N on the natural numbers N
that is able to determine for every arbitrary chosen precision
M ∈ N a stopping index N0 = s(M) such that∣∣σ2

N − σ2
min

∣∣ < 2−M for all N ≥ N0 . (1)

It is by far not obvious whether such a computable stopping
rule s : N → N always exists. At least in the literature, no
such stopping rule can be found. Instead, heuristic stopping
criteria are often applied. For example, one may stop the
calculation if the difference

∣∣σ2
N − σ2

N−1

∣∣ between two
consecutive MSEs falls below a certain threshold. However,
it is clear that such a stopping rule is generally not able to
guarantee the error bound

∣∣σ2
N − σ2

min

∣∣ < 2−M .
The question of whether a computable stopping rule s

exists is closely related to the question of whether the MMSE
σ2
min is a computable real number. It was recently shown

[19] that in the set of non-deterministic stationary stochastic
processes with computable continuous spectral densities with
a computable first derivative, there always exist spectral
densities for which the MMSE is not a computable number.
This implies that for this set of stochastic processes no
general computable stopping rule can exist for any possible
algorithm for the computation of

{
σ2
N

}
N∈N.

With regard to that result, this paper first characterizes a set
of stationary stochastic processes for which the correspond-
ing MMSE σ2

min is always a computable number. For this set
of stochastic processes a corresponding computable stopping
rule s : N → N, as described above, exist. Then we ask for
the complexity of computing σ2

min for stochastic processes in
this set. In fact, we will precisely characterize the complexity
of computing σ2

min for stochastic processes with polynomial-
time computable, strictly-positive, continuous spectral den-
sities. Namely, it will be shown that the complexity of
computing σ2

min is #P1 complete. This implies in particular,
that if the widely accepted assumption FP1 ̸= #P1 is true,
then there exist stochastic processes with continuous, strictly
positive, and infinitely often differentiable spectral densities
of low complexity (i.e. they are polynomial-time computable)
but for which the computation time for σ2

min grows faster



than any polynomial in the required precision M in (1).
This phenomenon of a problem with a low complexity input
(here the spectral density) and with a high complexity output
(here the MMSE), also known as complexity blowup, has also
been observed in other problems, e.g. in solving ordinary and
partial differential equations [20], [21].

This paper is organized as follows. Whereas Section II
gives basic notation and definitions from computability anal-
ysis, Section III briefly introduces the necessary background
from prediction theory. Then Section IV derives sufficient
conditions on a stochastic processes such that the MMSE is
a computable real number and Section V precisely character-
izes the complexity for computing the MMSE and proves the
complexity blowup property. The paper closes with a short
discussion in Section VI. In this paper, we characterize the
complexity of computing the MMSE based on well-known
complexity classes from computational complexity analysis.
To make the paper self contained, the complexity classes
and basic results used in this paper are briefly summarized
in the appendix at the end of this paper. Because of space
constraints, the long and technical proofs of our main results
are not contained in this paper but will be given in an
extended journal paper [22].

II. COMPUTABILITY ANALYSIS

Our analysis of computability is based on the standard
model of a Turing machine [23]–[26], an abstract device
that provides a theoretical model describing the fundamental
limits of any realizable digital computer.
Definition 1 (Computable number): A t ∈ R is said to be
computable if there exists a Turing machine TMt with input
M ∈ N and output γ = γ(M) = TMt(M) ∈ Q, such that∣∣t− γ

∣∣ = ∣∣t− TMt(M)
∣∣ ≤ 2−M , for all M ∈ N . (2)

If (2) holds, we say that {γ(M)}M∈N binary converges to t,
and we write Rc ⊊ R for the set of computable real numbers.
The Turing machine TMt in Def. 1 will generally need
several steps to calculate the approximation γ(M) ∈ Q. It
will usually require more steps (i.e. computation time) to
determine γ(M) if M increases. The quantitative relation
between M and the computation time for γ(M) determines
the computational complexity of t ∈ Rc.
Definition 2 (Polynomial-time computable): We say that
the computational complexity of t ∈ Rc is bounded by a
function q : N → N if there exists a Turing machine TMt

such that (2) is satisfied after TMt executed at most q(M)
steps. The number t ∈ Rc is said to be polynomial-time
computable if its computational complexity is bounded by a
polynomial q.

To characterize the computability of functions, we apply
the machine model of a function-oracle Turing machine: Let
f : [a, b] → R be a function on an interval [a, b] ⊂ R and
assume that we want to compute f(t) for some t ∈ [a, b].
Following the same ideas as in Def. 1, one needs a Turing
machine TMf with input M ∈ N such that∣∣f(t)− TMf (M)

∣∣ ≤ 2−M , for all M ∈ N . (3)

However, the task for TMf is generally more complex than
in Def. 1. Indeed, for a given M ∈ N, TMf first needs to
compute t, i.e. it needs to compute an approximation γ of t
that is sufficiently good to achieve finally the required error
bound (3) for the computation of f(t). Only then, based on
γ and M , can TMf compute an approximation of f(t) that
satisfies (3). So based on the input M ∈ N, TMf basically
needs to follow a three step procedure:

1) Determine the necessary precision m = m(M) ∈ N
for the approximation of t.

2) Start a Turing machine TMt with input m and output
γ(m) = TMt(m) ∈ Q such that |t− γ(m)| < 2−m.

3) Start a Turing machine TMf with inputs γ and M
such that

∣∣f(t)− TMf (γ,M)
∣∣ < 2−M .

The overall computational complexity is determined by all
three steps. However, the complexity of computing t (Step 2)
says nothing about the computability of the function f . For
example, if one computes f(t) for t ∈ Q, the computational
complexity of Step 2) would be essentially zero, whereas for
t ̸∈ Rc, the computational complexity of Step 2) would be
infinite. So in order to assess the computability of functions
independently of the complexity of computing the argument,
one considers so-called function-oracle Turing machines.
These are ordinary Turing machines, as described above, but
with an additional function-oracle γ that is able execute Step
2) in a single step for all t ∈ [a, b].
Definition 3 (Computable function): A function
f : [a, b] → R is said to be computable on [a, b] ⊆ R if
there exists a function-oracle Turing machine TMf such
that for each t ∈ [a, b] and for each γ : N → Q that binary
converges to t, one has∣∣f(t)− TMf (γ,M)

∣∣ < 2−M , for all M ∈ N . (4)

Note that a computable function f on [a, b] has to satisfy (4)
uniformly for all t ∈ [a, b]. This implies immediately that it
is necessarily continuous.
Proposition 4: If f : [a, b] → R is a computable function
on [a, b] then f is continuous on [a, b].
We write Cc([a, b]) for the set of all computable continuous
functions on the interval [a, b].

The computational complexity of computable functions is
defined similarly as for computable numbers.
Definition 5 (Polynomial-time computable function):
We say that the complexity of a computable function
f : [a, b] → R is bounded by a function q : N → N if there
exists a function–oracle Turing machine TMf such that for
all t ∈ [a, b] and all γ : N → Q that binary converge to t,
TMf (γ,M) satisfies (4) after at most q(M) computation
steps. We say that f : [a, b] → R is polynomial-time
computable if its complexity is bounded by a polynomial q.
A Turing machine TM can exactly compute only with
rational numbers. If the input of TM is a computable number
or a computable function than these inputs are given to TM
in the form of a program (i.e. a description) that can be
executed on TM and allows to effectively compute these
inputs up to any necessary precision.



III. PREDICTION THEORY

This section briefly recalls the main concepts and notation
from prediction theory. We refer to standard textbooks and
recent overview articles [27]–[31] for details.

Throughout the rest of this paper, T = {z ∈ C : |z| = 1}
denotes the unit circle in the complex plane C and we write
L1(T) for the Banach space of absolute integrable functions
on T with ∥f∥1 = 1

2π

∫ π

−π

∣∣f(eiθ)∣∣dθ < ∞.

A. Stationary stochastic processes

For a probability space (Ω,F , ν), R = R(Ω,F , ν)
denotes the Hilbert space of all complex random variables
(rvs) x with zero mean E[x] =

∫
Ω
x(ω) dν(ω) = 0, finite

second moments E[|x|2] < ∞, and with the inner product

⟨x, y⟩R = cov(x, y) = E[xy] =
∫
Ω
x(ω) y(ω) dν(ω) ,

wherein cov(x, y) denotes the covariance of the rvs x and y.
A sequence x = {xn}n∈Z ⊂ R is said to be a wide-
sense stationary (wss) stochastic process if ⟨xn+k, xk⟩R =
⟨xn, x0⟩R for all n, k ∈ Z. Then rx(n) = ⟨xn, x0⟩R, n ∈ Z,
is called the auto-covariance function of x which has the
spectral representation

rx(n) =
1
2π

∫ π

−π
e−inθdµx(e

iθ) , n ∈ Z ,

with the spectral measure µx. This measure can always be
decomposed as

dµx(e
iθ) = φx(e

iθ) dθ + dµs(e
iθ) (5)

where φx ∈ L1(T) is the spectral density of x and µs is the
singular part of µx (with respect to Lebesgue measure).

B. The minimum MSE of linear prediction

An important practical problem is to find the best linear
predictor x̂0 of x0 from finitely (or infinitely) many past
observations of the sequence x. It is given by

x̂0 = argmin
x∈X[−∞,−1]

∥x− x0∥2R = P[−∞,−1](x0) ,

wherein X[−∞,−1] = span{xn : n ≤ −1} ⊂ R stands
for the closed subspace spanned by {x−1, x−2, . . . } and
where P[−∞,−1] : X → X[−∞,−1] denotes the orthogonal
projection from X = span{xn : n ∈ Z} onto X[−∞,−1]. The
resulting MMSE is then given by

σ2
min = ∥x0 − x̂0∥2R = E

[ ∣∣x0 − P[−∞,−1](x0)
∣∣2 ] .

If σ2
min = 0, i.e. if x0 can be perfectly predicted from

past observations then x is called deterministic. If, on the
other hand, σ2

min > 0, the process x is said to be non-
deterministic. We only consider non-deterministic stochastic
processes and the following statement characterizes such
stochastic processes in terms of their spectral measures.
Proposition 6: If x is a wss stochastic sequence with spec-
tral measure (5) then x is non-deterministic if and only if
logφx ∈ L1(T), i.e. if and only if∫ π

−π
logφx(e

iω) dω > −∞ . (6)

If (6) is satisfied then the MMSE is given by

σ2
min(φx) = exp

(
1
2π

∫ π

−π
logφx(e

iω) dω
)

. (7)

Remark: Condition (6) is also known as Szegö’s condition
[32], whereas (7) is known as Kolmogorov’s formula [33].
Proposition 6 implies that the spectral measure of a non-
deterministic wss stochastic process x has necessarily a non-
vanishing spectral density φx, and that the MMSE σ2

min

depends only on φx.

IV. THE COMPUTABILITY OF THE MMSE

It is of great practical relevance to compute the MMSE
(7) for a given spectral density φ. Let

MD =
{
φ ∈ Cc(T) : φ′ ∈ Cc(T) and logφ ∈ L1(T)

}
,

be the set of computable continuous spectral densities φ
that satisfy (6) and which have a first derivative φ′ that
is a computable continuous functions on T. The question
is whether there exists a universal Turing machine TM
with two inputs φ ∈ MD and M ∈ N and with output
σ2
φ,M = TM(φ,M) such that for all φ ∈ MD and every

M ∈ N, we have
∣∣σ2

min(φ)− TM(φ,M)
∣∣ < 2−M . The

next theorem, taken from [19], implies that no such Turing
machine exists.
Theorem 7: There are spectral densities φ ∈ MD for which
there exists no Turing machine TM with input M ∈ N such
that

∣∣σ2
min(φ)− TM(M)

∣∣ < 2−M for all M ∈ N.
So MD contains spectral densities φ such that σ2

min(φ)
is not a computable number. Consequently, it is a fortiori
impossible to have a universal Turing machine that is able
to effectively compute σ2

min(φ) for all φ ∈ MD.
In view of Theorem 7, we ask now for sufficient conditions

on the spectral density φ such that σ2
min(φ) is guaranteed to

be a computable number. The answer is given by next result.
Theorem 8: If φ ∈ Cc(T) satisfies minζ∈T φ(ζ) > 0 then
σ2
min(φ) ∈ Rc.

In words, for every wss stochastic process x with a strictly
positive computable spectral density φ is the corresponding
MMSE σ2

min(φ) a computable real number.

V. COMPLEXITY OF COMPUTING THE MMSE

Theorem 8 provides conditions on the spectral density φ
such that the corresponding MMSE is computable. So let

M+ =
{
φ ∈ Cc(T) : minζ∈T φ(ζ) > 0

}
be the set of all spectral densities that satisfy the sufficient
condition of Theorem 8. Then σ2

min(φ) is computable for
every φ ∈ M+ and there exists a Turing machine TMσ2

with inputs φ ∈ M+ and M ∈ N and whose output satisfies∣∣σ2
min(φ)− TMσ2

(φ,M)
∣∣ < 2−M .

Nevertheless, the computation of σ2
min(φ) may still be very

complicated. So we ask whether σ2
min(φ) is polynomial-

time computable which is the widely accepted definition in
computer science for being efficiently computable.



To this end, it is important to note that the computational
complexity of TMσ2

(φ,M) depends on the complexity of φ.
In fact, in order for TMσ2

to be able to process the input φ,
one needs to prepare a description of φ that could be
understood by TMσ2

. Since φ is computable there exists a
function-oracle Turing machine TMφ whose output satisfies∣∣φ (

eiω
)
− TMφ(γ,M)

∣∣ < 2−M for every ω ∈ [−π, π).
Thus TMφ determines the necessary description of φ. So it
is clear that the complexity of computing σ2

min(φ) is at least
as large as the complexity for determining the description
of the spectral density φ. However, we may hope that for a
low-complexity input, i.e. a polynomial-time computable φ,
also the MMSE σ2

min(φ) is low-complexity, i.e. polynomial-
time computable. Otherwise, if the computation of σ2

min(φ)
is much more complex than the computation of φ, we will
speak of complexity blowup.
Definition 9 (Complexity Blowup): We say that the com-
putation of the MMSE shows complexity blowup on a set
M of spectral densities, if there exists a polynomial-time
computable spectral density φ ∈ M so that σ2

min(φ) is not
polynomial-time computable.

We are going to show that the computation of the MMSE
shows complexity blowup on M+. To this end, our first re-
sult provides an upper bound on the complexity of computing
σ2
min(φ) for polynomial-time computable φ ∈ M+.

Theorem 10: For every polynomial-time computable spec-
tral density φ ∈ M+, the computation of σ2

min(φ) is in
#P1.
Remark: We refer to [22] for a proof of this statement and
to the appendix for a definition of the complexity class #P1.
Theorem 10 shows that for polynomial-time computable
spectral densities φ ∈ M+ the computation of the MMSE
σ2
min(φ) is generally in #P1. Since not all problems in #P1

are polynomial-computable (provided the conjecture FP1 ̸=
#P1 is true), there might exist spectral densities φ ∈ M+

such that σ2
min(φ) is not polynomial-time computable. The

following theorem shows that M+ contains indeed such
”bad” spectral densities.
Theorem 11: There exists a polynomial-time computable
φ∗ ∈ M+ ∩ C∞(T) such that the computation of σ2

min(φ∗)
is #P1-complete.
Remark: Here C∞(T) denotes the space of infinitely often
differentiable real functions. So the ”bad” spectral densities
φ∗ in M+ for which σ2

min(φ∗) is not polynomial-time
computable might even be infinitely differentiable.

Theorems 10 and 11 completely characterize the com-
plexity of computing the MMSE (7) of the optimal causal
Wiener filter for stochastic processes with polynomial-time
computable spectral densities in M+. Indeed, Theorems 10
gives an upper bound on the complexity for computing σ2

min,
namely #P1. Then Theorem 11 provides a lower bound on
the complexity by showing that M+ contains at least one
polynomial-time computable spectral density φ∗ for which
the problem of computing σ2

min(φ∗) is #P1-complete, i.e. it
is at least as complex as any other problem in #P1. In fact,

Theorem 11 shows that even for spectral densities φ∗ ∈ M+

that are infinitely differentiable, the computation of σ2
min(φ∗)

is generally #P1-complete. In other words, if the conjecture
FP1 ̸= #P1 is true then there is no algorithm that can
compute σ2

min(φ∗) in polynomial-time.
Corollary 12: If FP1 ̸= #P1 then the computation of the
MMSE σ2

min shows complexity blowup on M+.

So there exists a wss stochastic process x with spectral den-
sity φ ∈ M+ ∩ C∞(T) that can be computed in polynomial
time, i.e. there is a function-oracle Turing machine TMφ

that computes an approximation φ̃(eiω) = TMφ(γ(ω),M)
such that

∣∣φ(eiω) − φ̃(eiω)
∣∣ < 2−M for all M ∈ N in a

computation time that grows polynomially in M . However,
for the computation of the corresponding σ2

min(φ) there only
exist Turing machines TM that achieve an approximation
error

∣∣σ2
min(φ) − TM(M)

∣∣ < 2−M in a computation time
that grows faster than any polynomial in M .

VI. SUMMARY AND DISCUSSION

The computation of the MMSE for the prediction of
wss stochastic processes shows complexity blowup on the
set of all non-deterministic wss stochastic processes with
computable and strictly positive spectral densities. This result
is independent of any specific algorithm for the computa-
tion of σ2

min. Such algorithms usually compute a sequence{
σ2
N (φ)

}
N∈N ⊂ Q of rational approximations of the MMSE

such that limN→∞ σ2
N (φ) = σ2

min(φ). These algorithms are
typically characterized by the complexity for computing a
specific approximation σ2

N (φ). For the celebrated Durbin–
Levinson algorithm [34], [35], for example, it is known that
its runtime to compute σ2

N (φ) is O(N2). However, it is
generally not known which N0 ∈ N is sufficient such that
for a given M ∈ N,∣∣σ2

N (φ)− σ2
min(φ)

∣∣ < 2−M for all N ≥ N0 . (8)

The results of this paper show that the computation time to
find an N0 ∈ N such that (8) is satisfied might be much
larger than the computation time for σ2

N (φ) itself. More
specifically, Theorem 7 shows that if the spectral density
φ is not strictly positive (but satisfies Szegö’s condition
(6), is computable and has a computable first derivative)
then it even might be impossible to find an N0 ∈ N
such that (8) is satisfied. Moreover, Theorem 11 implies
that there exist infinitely differentiable strictly positive and
polynomial-time computable spectral densities φ but such
that the determination of N0 ∈ N, such that (8) is satisfied,
requires a computation time that grows faster than any
polynomial in the precision M . Again, we emphasize that
these statements hold for any possible algorithm for the
computation of σ2

N (φ) on a digital computer.
In terms of complexity theory, Section V provided a

complete characterization of the complexity of computing
the MMSE for strictly positive, continuous, and polynomial-
time computable spectral density. First, it was shown (Theo-
rem 10) that for all spectral densities in this set, the computa-
tion of the MMSE is (at most) #P1. Then, it was shown that



this set contains (infinitely differentiable) spectral densities
for which the computation of the MMSE is indeed #P1.
So if the widely accepted assumption FP1 ̸= #P1 is true
then there exist strictly positive, infinitely differentiable, and
polynomial-time computable spectral densities φ such that
the computation of the MMSE σ2

min(φ) is not polynomial-
time computable.

In applications the complexity classes P and NP (or P1

and NP1) are frequently used and there exist many results
showing that a certain problem is NP (or NP1) complete.
This paper showed that the computation of the MMSE
for strictly positive, polynomial-time computable continuous
functions is even #P1-complete, i.e. it is strictly harder than
any NP1-complete problem.

Finally, we mention that all derivations in this paper are
based on the model of a function-oracle Turing machine (cf.
Sec. II). At a first glance, this model may look somewhat
artificial and not practical. However, there are other models
to characterize the computational complexity of functions
that are equivalent to function-oracle machines. In particular,
the computation on dyadic grids is equivalent to the model
of function-oracle Turing machines [25]. In this model, all
points t at which f(t) is computed lie on a discrete grid
of dyadic decimals and so it is very close to practical im-
plementations. Since both models are equivalent, our results
hold also for this computational model.

APPENDIX

This appendix briefly reviews some concepts and notions
from complexity theory which are needed in this paper. We
refer to books like [26], [36], [37] for more details.

A. Complexity classes

If Σ is a finite alphabet then Σa denotes the set of all
words of length a ∈ N in the alphabet Σ and Σ∗ stands for
the set of all finite words in the alphabet Σ. In this paper,
we only consider the alphabets Σ = {0, 1} and Σ = {0}.

Example: If Σ = {0} then Σ∗ is the set of finite 0-sequences,
i.e. {0}∗ = {{0}, {0, 0}, {0, 0, 0}, . . . }.

The length of a word x ∈ Σ∗ will be denoted by |x|.
Decision problems – complexity classes P and NP :

Decision problems have only two possible solutions, namely
”0” = ”no” or ”1” = ”yes”. Let L be a subset of Σ∗, then
L is said to be in the complexity class P if there exists a
deterministic Turing machine TM and a number k ∈ N such
that for every word x ∈ L, TM stops on input x after at
most |x|k + k computation steps. In this case, one says that
TM runs in polynomial time.

The notation NP stands for non-deterministic polynomial-
time problems. If one replaces the term ”deterministic Tur-
ing machine” by ”non-deterministic Turing machine”, one
obtains the definition for the class NP . However, it is often
more intuitive to give an equivalent definition in form of a
verifying problem: The subset L is in NP if there exists a
polynomial-time Turing machine M and a polynomial p such
that x ∈ L if and only if there exists an certificate y ∈ Σ∗

of length |y| ≤ p(|x|) such that M(x, y) = 1. Thus y ∈ Σ∗

certifies that x belongs to L.
In other words, P is the set of all decision problems

that can be solved by a deterministic Turing machine in
polynomial time, whereas NP is the set of all problems
for which a given solution (the certificate) can be verified
in polynomial-time by a deterministic Turing machine. It
follows from the definition that P ⊆ NP (because y may
have length zero). It is an open question whether P = NP
or P ⊊ NP , but it is widely assumed that P ̸= NP .

To illustrate the relation between decision problems and
counting problems, which we discuss in the next paragraph,
we may identify the subset L ⊂ Σ∗ with its indicator
function f defined by f(x) = 1 if x ∈ L and f(x) = 0
if x /∈ L. Then decision problems in P and NP can be
related to functions f : Σ∗ → {0, 1} in the following way.

Definition 13 (P and NP ): A function f : Σ∗ → {0, 1} is
in P if it can be computed by a deterministic Turing machine
in polynomial time. A function f : Σ∗ → {0, 1} is in NP if
there exists a polynomial p : N → N and a polynomial-time
Turing machine M such that for every x ∈ Σ∗ there exists an
y ∈ Σp(|x|) such that M(x, y) = 1 if and only if f(x) = 1.

Remark: If Σ = {0} then the complexity classes in Def. 13
are usually denoted by P1 and NP1.

Counting problems – complexity classes FP and #P :
Whereas a decision problem only asks whether a solution
exists (answers ”0” or ”1”), a counting problem asks for the
number of solutions. Therefore, counting problems can be
represented by functions f : Σ∗ → N where f(x) is the
number of solutions for x ∈ Σ∗.

Definition 14 (FP and #P ): A function f : Σ∗ → N is in
FP if it can be computed by a deterministic Turing machine
in polynomial time. A function f : Σ∗ → N is in #P if
there exists a polynomial p : N → N and a polynomial-time
Turing machine M, so that for every x ∈ Σ∗,

f(x) =
∣∣∣{y ∈ Σp(|x|) : M(x, y) = 1

}∣∣∣ . (9)

Remark: As for decision problems, the complexity classes
are denoted by FP1 and #P1 if the alphabet is Σ = {0}.

So FP is the set of all counting problems that can be
solved in polynomial time. As for NP , M : Σ∗ × Σ∗ →
{0, 1} verifies in polynomial time a certificate y for the
problem x and so (9) is the number of valid certificates, i.e.
the number of solutions, for the problem x. It is evident that
FP ⊆ #P but it is an open question whether FP = #P .
It is commonly assumed that FP ̸= #P . Moreover, if
P ̸= NP is true then also FP ̸= #P and FP1 ̸= #P1.

Definition 15 (Complete in #P ): An f ∈ #P is said to
be complete in #P if any other g ∈ #P can be reduced to
f by a polynomial-time Turing machine.

So if f is complete in #P and if there exists a deterministic
Turing machine that can solve f in polynomial time then any
other problem g in #P can also be solved in polynomial time
by a deterministic Turing machine.



Remark: Completeness for other complexity classes are de-
fined in exactly the same way.

B. Computational complexity of integration
Our results on the computational complexity in Section V

are based on known results concerning the computational
complexity of integration. The first result in this direction (cf.
[37] or [38]) states that the integral of a compactly supported
computable function is always a computable number.
Proposition 16: For an interval [a, b] ⊂ R with a, b ∈ Rc,
let f : [a, b] → R be a computable function. Then

∫ b

a
f(t) dt

is a computable number.
The question of whether the integral of a polynomial-time
computable function is again polynomial-time computable
is more subtle as shown by the following results due to
Friedman [25] and Ko [26], [39].
Proposition 17: For a, b ∈ Rc, the number

∫ b

a
f(t) dt is

polynomial-time computable for all polynomial-time com-
putable f ∈ C∞([a, b]) if and only if FP1 = #P1.
Since it is widely assumed that FP1 ̸= #P1, the following
corollary of Proposition 17 will be useful for us.
Corollary 18: If FP1 ̸= #P1 then there exists an in-
finitely differentiable polynomial-time computable function
f ∈ C∞([a, b]) such that the number

∫ b

a
f(t) dt is not

polynomial-time computable.
So the computation of a definite integral of a polynomial-
time computable function is #P1-complete.
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