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Zero Error Capacity

• Shannon conjectured in 1956 the zero-error capacity to be additive:

C0(W1 ⊗W2)
?
= C0(W1) + C0(W2)

channels. The words may be subdivided into 
classes corresponding to the pattern of the 
choices of letters between the two channels. 
There are 2n such classes with (E) classes in 
which exactly k of the letters are from the first 
channel and n - k from the second. Consider now 
a particular class of words of this type. Re- 
place the letters from the first channel alphabet 
by the corresponding non-adjacent letters. This 
does not harm the adjacency relations between 
words in the code. Wow, as in the product case, 
partition the code words according to the 
sequence of letters involved from the first 
channel. This produces at most Ak subsets. Each 
of these subsets contains at most Bn - k members, 
since this is the greatest possible number of non- 
adjacent words for the second channel of length 
n - k. In total, then, summing over all values 
of k and taking account of the (bn) classes for 
each k, there -we at most r n'.Ak Rn - k 

k (k) 
=(A + B)n words in the code for the sum channel. 
This proves the desired result. 

Theorem 4, of course, is analogous to 
known results for ordinary capacity C, where the 
product channel has the sum of the ordinary 
capacities and the sum channel has an equivalent 
number of letters equal to the sum of the equiva- 
lent numbers of letters for the individual 
channels. We conjecture but have not been able 
to prove that the equalities in Theorem 4 hold 
in general, not just under the conditions given. 
We now prove a lower bound for the probability of 
error when transmitting at a rate greater than Co. 

Theorem 5: In any code of length n and 
rate R> Co, Co > 0, the probability of error P, 
will satisfy Pez(l - e -n(C, - Ii) ) p n where min' 
P min is the minimum non-vanishing p,(j). 

w: By definition of Co there are not 
more than enCo non-ad'acent words of length n. 
With R> Co, among e xl4 words there must, therefore, 
be an adjacent pair. The adjacent pair has a 
common output word which either can cause with a 
probability at least pmyn. This output word can- 
not be decoded into both inputs. At least one, 
Vcrefore, must cause an error when it leads to 
thi.s output word. 
least eBnR Gin 

This gives a contribution at 
to the probability of error Pe. 

NOW omit this word from consideration and apply 
the same argument to the remaining enR -1 words 
of the code. This will give another adjacent pair 
and another contribution of error of at least 
e-nR n 

pmin* The process may be continued ztil the 
number of code points remaining is just e O. At 
this time, the computed probability of error must 
be at least (enR _ enCo)e-nR pn 

min 

Channelswith a Feedback Link 

We now consider the corresponding problem 
for channels with complete feedback. By this we 
mean that there exists a return channel sending 
back from the receiving point to the transmitting 
point, without error, the letters actually 
received. It is assumed that this information is 
received at the transmitting point before the next 
letter is transmitted, and can be used, therefore, 
if desired, in choosing the next transmitted 
letter. 

It is interesting that for a memory-less 
channel the ordinary forward capacity is the same 
with or without feedback. This will be shown in 
Theorem 6. On the other hand, the zero error 
capacity may, in some cases, be greater witi 
feedback than without. In the channel shown in 
Fig. 5, for example, Co = log 2. However, we 
will see as a result of Theorem 7 that with 
feedback the zero error capacity COP = log 2.5. 

p, 

p2 

p3 z 

p4 - 

Fig. 5 

We first define a block code of length n 
for a feedback system. This means that at the 
transmitting point there is a device with two 
inputs. or, mathematically, a function with two 
arguments. One argument is the message to be 
transmitted, the other. the past received letters 
(which have come in over the feedback link). The 
value of the function is the next letter to be 
transmitted. Thus, the function may be thought 
of as x j+l = f(k, vj) where x. 

J+l 
is the j + 1 

transmitted letter in a block, k is an index 
ranging from 1 to M, and represents the 
specific message, and v j is a received word of 
length j. Thus j ranges from 0 to n - 1 and vj 
over all received words of these lengths. 

In operation, 'if message mk is to be sent 
f is evaluated for f(k -) where the - means "no = (1 - en(Co - R)) pzin. 

1.5 

C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inf. Theory, vol. 2, no. 3, pp.
8–19, Sep. 1956

• Subsequently restated in 1979 by Lovász

L. Lovász, “On the Shannon capacity of a graph,” IEEE Trans. Inf. Theory, vol. 25, no. 1, pp. 1–7, Jan.
1979
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Zero Error Capacity and AVCs

• Later disproved constructing explicit counter-examples with:

C0(W1 ⊗W2) > C0(W1) + C0(W2)

• However, complete characterization is still an open problem

W. Haemers, “On some problems of Lovász concerning the Shannon capacity of a graph,” IEEE Trans.
Inf. Theory, vol. 25, no. 2, pp. 231–232, Mar. 1979

N. Alon, “The Shannon capacity of a union,” Combinatorica, vol. 18, no. 3, pp. 301–310, Mar. 1998

• Zero error capacity and arbitrarily varying channels (AVCs) are related

R. Ahlswede, “A note on the existence of the weak capacity for channels with arbitrarily varying channel
probability functions and its relation to Shannon’s zero error capacity,” Ann. Math. Stat., vol. 41, no. 3,
pp. 1027–1033, 1970

w Worth to study this additivity problem in the context of AVCs!
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Arbitrarily Varying Channel

M̂M W
Xn Y n

State sn

Enc E Dec '

• Uncertainty set S
• actual state sequence sn ∈ Sn unknown
• channel may vary in an unknown and arbitrary manner

The arbitrarily varying channel (AVC) W is given by the family

W :=
{
Ws

}
s∈S =

{
W (·|·, s)

}
s∈S
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List Code

Definition (List-L Code)

A (n,Mn)-list-L code CL consists of a deterministic encoder at the transmitter

f :M→ Xn

with a set of messages M = {1, ...,Mn} and a list decoder at the receiver

ϕL : Yn → PL(M)

with PL(M) the set of all subsets of M with cardinality at most L.

• For a state sequence sn ∈ Sn the average probability of error of such a list
code is

ēL(sn) =
1

|M|
∑
m∈M

∑
yn:m/∈ϕL(yn)

Wn(yn|xnm, sn).

10



Achievable Rate and Capacity

Definition (Achievable List-L-Rate and Capacity)

A rate R > 0 is an achievable list-L rate for an AVC W if for every τ > 0 there
exists an n(τ) ∈ N and a sequence {CL,n}n∈N such that for all n ≥ n(τ) we
have

1

n
log

Mn

L
≥ R− τ

max
sn∈Sn

ēL(sn) ≤ λn

with λn → 0 as n→∞.
The list-L capacity CL(W) of an AVC W is given by the supremum of all
achievable list-L rates R.

• For list size L = 1 the list-L code CL reduces to a traditional deterministic
code C whose decoder outputs only one specific message, i.e., ϕ : Yn →M

11



CR-Assisted Codes

• List codes use pre-specified encoders and decoders

• If coordination resources such as common randomness (CR) are available,
transmitter and receiver can coordinate their choice of encoder and decoder

Definition (CR-Assisted Code)

A CR-assisted (n,Mn,Gn, PΓ)-code CCR is given by a family of deterministic
codes {C(γ) : γ ∈ Gn} together with a random variable Γ taking values in Gn
according to PΓ ∈ P(Gn).

• The average error extends to CR-assisted codes as

ēCR(sn) =
1

|M|
∑
m∈M

∑
γ∈Gn

∑
yn:m6=ϕγ(yn)

Wn(yn|xγnm , sn)PΓ(γ)

where ϕγ is decoder for CR realization γ ∈ Gn and xγnm is the codeword for
message m ∈M of the encoder fγ for CR realization γ ∈ Gn

• The definitions of a CR-assisted achievable rate and the CR-assisted
capacity CCR(W) of an AVC W follow accordingly.

12



CR-Assisted Capacity

Theorem (CR-Assisted Capacity [BBT’60])

The CR-assisted capacity CCR(W) of an AVC W is

CCR(W) = max
PX∈P(X )

inf
q∈P(S)

I(X;Y q)

where Y q represents the output of the averaged channel
W q(y|x) =

∑
s∈S W (y|x, s)q(s) for some q ∈ P(S).

D. Blackwell, L. Breiman, and A. J. Thomasian, “The capacities of certain channel classes under random
coding,” Ann. Math. Statist., vol. 31, no. 3, pp. 558–567, Sep. 1960
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Symmetrizability

• To characterize the list-L capacity, we need the concept of symmetrizability

Definition
An AVC is called L-symmetrizable if there exists a stochastic matrix
σ ∈ CH(XL;S) such that for all permutations π ∈ Sym[L+ 1] the following
holds:∑

s∈S
W (y|x1, s)σ(s|x2, ..., xL+1) =

∑
s∈S

W (y|xπ(1), s)σ(s|xπ(2), ..., xπ(L+1))

for all x1, x2, ..., xL+1 ∈ X and y ∈ Y.

w Roughly speaking, AVC can “simulate” additional valid inputs making it
impossible for the decoder to decide on the correct codeword

14



List Capacity

Theorem (List-L Capacity [BNP’95], [Hug’97])

The list-L capacity CL(W) of an AVC W is

CL(W) =

{
CCR(W) if W is not L-symmetrizable

0 otherwise.

V. M. Blinvosky, P. Narayan, and M. S. Pinsker, “Capacity of the arbitrarily varying channel under list
decoding,” Problems Inform. Transmission, vol. 31, no. 2, pp. 99–113, 1995

B. L. Hughes, “The smallest list for the arbitrarily varying channel,” IEEE Trans. Inf. Theory, vol. 43,
no. 3, pp. 803–815, May 1997

• For list size L = 1, this reduces to the characterization of the deterministic
capacity C(W) of the an AVC W as

C(W) =

{
CCR(W) if W is non-symmetrizable

0 otherwise.

I. Csiszár and P. Narayan, “The capacity of the arbitrarily varying channel revisited: Positivity, cons-
traints,” IEEE Trans. Inf. Theory, vol. 34, no. 2, pp. 181–193, Mar. 1988
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A Fundamental Function

• We introduce the function

FL(W) = inf
σ∈CH(XL;S)

max
xL+1∈XL+1

max
π∈Sym[L+1]∑

y∈Y

∣∣∣ ∑
s∈S

W (y|x1, s)σ(s|x2, ..., xL+1)

−
∑
s∈S

W (y|xπ(1), s)σ(s|xπ(2), ..., xπ(L+1))
∣∣∣

w We have FL(W) ≥ 0 with equality if and only if W is L-symmetrizable

17



Distance

• For two DMCs W1,W2 ∈ CH(X ;Y) we define the distance between W1

and W2 based on the total variation distance as

d(W1,W2) := max
x∈X

∑
y∈Y

∣∣W1(y|x)−W2(y|x)
∣∣.

• To extend this concept to AVCs, we consider Wi = {Wi(·|·, si)}si∈Si ,
i = 1, 2, and define

G(W1,W2) := max
s1∈S1

min
s2∈S2

d
(
W1(·|·, s1),W2(·|·, s2)

)
w Describes how well one AVC can be approximated by the other one

• Accordingly, we define the distance between W1 and W2 as

D(W1,W2) := max
{
G(W1,W2), G(W2,W1)

}
18



Definition of Continuity

Definition (Continuity of CL)

Let W be a finite AVC. The list-L capacity CL(W) is said to be continuous in
all finite AVCs W, if for all sequences of finite AVCs {Wn}∞n=1 with

lim
n→∞

D(Wn,W) = 0 (1)

we have
lim
n→∞

CL(Wn) = CL(W).

• Based on this definition, the list-L capacity CL(W) is discontinuous in W
if and only if there is a sequence {Wn}∞n=1 of finite AVCs satisfying (1) but

lim sup
n→∞

CL(Wn) > lim inf
n→∞

CL(Wn)

19



Discontinuity Points of List-L Capacity

• With the previous concept, we are now in the position to give a complete
characterization of the discontinuity points of the list-L capacity

Theorem (Discontinuity Points of CL)

The list-L capacity CL(W) is discontinuous in the finite AVC W if and only if
the following conditions hold:

1 CCR(W) > 0

2 FL(W) = 0 and for every ε > 0 there exists a finite AVC Ŵ with

D(W, Ŵ) < ε and FL(Ŵ) > 0.

• Note that for every list size L ∈ N the set of discontinuity points of CL is
non-emtpy!

20



Robustness Properties of List-L Capacity

Theorem (Robustness of CL)

Let W be a finite AVC with FL(W) > 0. Then there exists an ε̂ > 0 such that

all finite AVCs Ŵ with
D(Ŵ,W) < ε̂

are continuity points of CL(W).

21



Super-Additivity and Super-Activation

Definition (Super-Additivity)

Let W1 and W2 be two finite AVCs and W1 ⊗W2 an orthogonal combination.
Then, the list-L capacity is said to be super-additive if

CL(W1 ⊗W2) > CL(W1) + CL(W2),

i.e., a joint use of both channels yields a higher list-L capacity than the sum of
their individual uses.

• If CL(W1) = CL(W2) = 0 but CL(W1 ⊗W2) > 0, we have the extreme
case of non-additivity which we call super-activation of W1 ⊗W2

22



Super-Activation Not Possible

Theorem (No Super-Activation for CL)

Let W1 and W2 be two orthogonal AVCs. Then

CL(W1 ⊗W2) = 0

if and only if
CL(W1) = CL(W2) = 0.

w Super-activation is not possible for orthogonal AVCs

• This extends previous studies where it has been shown for traditional
decoding, i.e., L = 1, that super-activation is a unique feature of secure
communication and that it is not possible for public communication

R. F. Schaefer, H. Boche, and H. V. Poor, “Super-activation as a unique feature of secure communication
in malicious environments,” Information, vol. 7, no. 2, May 2016
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Super-Additivity

Theorem (Super-Additivity of CL)

Let W1 and W2 be two orthogonal AVCs. Then

CL(W1 ⊗W2) > CL(W1) + CL(W2)

if and only if

min
{
FL(W1), FL(W2)

}
= 0,

max
{
FL(W1), FL(W2)

}
> 0,

and

min
{
CCR(W1), CCR(W2)

}
> 0.

w List-L capacity is super-additive

• Set of channels which are super-additive is non-empty!

24



Outline

1 Motivation

2 Arbitrarily Varying Channel Under List Decoding

3 Discontinuity and Super-Additivity Behavior
Characterization of Discontinuity Behavior
Super-Additivity for Orthogonal AVCs

4 Further Applications
Capacity under the Maximum Error Criterion and Randomized Encoding
ε-Capacity

5 Conclusions

25



Randomized Encoding

• Study the Shannon capacity of AVCs under the maximum error criterion
and randomized encoding

• This concept differs from the previously considered CR-assisted codes in
the sense that the randomization is only performed locally at the encoder
and not available at the decoder

Definition (Code with Randomized Encoding)

A (n,Mn)-code Cran with randomized encoding consists of a stochastic encoder
at the transmitter

E :M→ P(Xn)

with a set of messages M = {1, ...,Mn} and a deterministic decoder at the
receiver

ϕ : Yn →M.

Here, the conditional probability E(xn|m) describes the probability that the
message m ∈M is encoded into the codeword xn ∈ Xn.

26



Randomized Encoding (2)

• For a state sequence sn ∈ Sn the maximum probability of error of such a
code is

emax(sn) = max
m∈M

∑
yn:ϕ(yn)6=m

∑
xn∈Xn

Wn(yn|xn, sn)E(xn|m).

Definition (Achievable Rate and Capacity)

A rate R > 0 is an achievable rate for an AVC W under the maximum error
criterion and randomized encoding if for every τ > 0 there exists an n(τ) ∈ N
and a sequence {Cran,n}n∈N such that for all n ≥ n(τ) we have

1

n
logMn ≥ R− τ

max
sn∈Sn

emax(sn) ≤ λn

with λn → 0 as n→∞. The Shannon capacity Cran
max(W) of an AVC W under

the maximum error criterion and randomized encoding is given by the
supremum of all achievable rates R.

27



Capacity

• The following is known for the capacity Cran
max(·) under the maximum error

criterion and randomized encoding.

Theorem (Capacity [Ahl’78])

The capacity Cran
max(W) of a finite AVC W under the maximum error criterion

and randomized encoding is

Cran
max(W) = C1(W)

where C1(W) is the capacity for deterministic encoding under the average error
criterion (i.e., the list-L capacity for L = 1).

R. Ahlswede, “Elimination of correlation in random codes for arbitrarily varying channels,” Z. Wahr-
scheinlichkeitstheorie verw. Gebiete, vol. 44, no. 2, pp. 159–175, Jun. 1978
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Capacity (2)

• With this we immediately obtain the following corollary

Corollary

The continuity and super-additivity behavior of Cran
max(·) is completely

characterized by the list-L capacity CL(·) for L = 1.

Remark

Note that a characterization of Cmax(·), i.e., the capacity of an AVC under the
maximum error criterion for deterministic encoding, is unknown and an open
problem. It is an interesting observation that a local random source at the
transmitter allows characterization of the analytical behavior of the Shannon
capacity.

29



Achievable ε-Rate

• Shannon ε-capacity captures the case of a non-vanishing probability of
decoding error

• We need a slight adaptation of the definition of an achievable rate as
follows

Definition (Achievable ε-Rate and Capacity)

Let 0 < ε < 1 be fixed. A rate R > 0 is an achievable ε-rate for an AVC W if
for every τ > 0 there exists an n(τ) ∈ N and a sequence of codes such that for
all n ≥ n(τ) we have

1

n
logMn ≥ R− τ

max
sn∈Sn

ē(sn) ≤ ε.

The Shannon ε-capacity Cε(W) of an AVC W is given by the supremum of all
achievable ε-rates R.

30



Remarks

• For a fixed DMC W we have

Cε(W ) = C1(W ) = CL(W ), L ∈ N

• Strong converse: there is no gain in rate by allowing a small but
non-vanishing decoding error instead of a vanishing decoding error

• Already for compound channels, the Shannon ε-capacity is usually greater
than the Shannon capacity with vanishing decoding error

R. Ahlswede, “Certain results in coding theory for compound channels,” in Proc. Colloquium Inf. Th.
Debrecen, Hungary: Bolyai Mathematical Society, 1967, pp. 35–60
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ε-Capacity

• For AVCs we obtain the following result for the ε-capacity

Theorem

Let 0 < ε < 1/2 be arbitrary. Then the ε-capacity Cε(W) of a finite AVC W
satisfies

Cε(W) = C1(W).

• Similarly to the previous discussion, we immediately further obtain

Corollary

For 0 < ε < 1/2, the continuity and super-additivity behavior of Cε(·) is
completely characterized by the list-L capacity CL(·) for L = 1.

32



Ahlswede’s Conjecture

• This characterizes the behavior of the ε-capacity Cε(·) in the range
0 < ε < 1/2

• For 1/2 ≤ ε < 1 we cannot say anything

The problem is that, to date, there is nothing known about Cε(·) in this range
for finite AVCs which are symmetrizable. Ahlswede conjectured in his 2006
Shannon lecture that “for a finite symmetrizable AVC W, the ε-capacity always
satisfies Cε(W) = 0 for all 0 < ε < 1.” If this conjecture is true, our results in
this work immediately yield a complete characterization of the continuity and
super-additivity behavior of Cε(·) for all 0 < ε < 1.
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Conclusions

• It has been demonstrated by Haemers and Alon that the zero-error
capacity is super-additive, disproving a previous conjecture of Shannon

• Despite such explicit examples of super-additivity, there is surprisingly little
known in general for non-trivial channels

• In this work, the AVC under list decoding has been studied and a complete
theory has been developed including characterizations of

• Super-additivity behavior and discontinuity points of the list capacity
• Capacity under the maximum error criterion and randomized encoding
• ε-capacity of finite AVCs under the average error criterion

Thank you for your attention!
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