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Capacity of DMC

e Capacity: C(Wh1)




Capacity of Orthogonal DMCs

e Independent encoding/decoding:




Capacity of Orthogonal DMCs

e Independent encoding/decoding: C(W7) 4+ C(Ws)




Capacity of Orthogonal DMCs

e Independent encoding/decoding: C(W;) + C(W3)
e Joint encoding/decoding: C(W; @ W3)



Capacity of Orthogonal DMCs

e Independent encoding/decoding: C(W;) + C(W3)
e Joint encoding/decoding: C(W; @ W3)

C(W1 @ W) = C(Wy) + C(Wa) J




Zero Error Capacity

e Shannon conjectured in 1956 the zero-error capacity to be additive:
Co(W7 @ Wa) z Co(W1) + Co(Wa)

Theorem 4, of course, is analogous to
known results for ordinary capacity C, where the
product channel has the sum of the ordinary
capacities and the sum channel has an equivalent
number of letters equal to the sum of the equiva-
lent numbers of letters for the individual
channels. We conjecture but have not been able
to prove that the equalities in Theorem 4 hold
in general, not just under the conditions given.

@ C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inf. Theory, vol. 2, no. 3, pp.
8-19, Sep. 1956

e Subsequently restated in 1979 by Lovész

@ L. Lovasz, “On the Shannon capacity of a graph,” IEEE Trans. Inf. Theory, vol. 25, no. 1, pp. 1-7, Jan.
1979



Zero Error Capacity and AVCs

e Later disproved constructing explicit counter-examples with:
C()(Wl X WQ) > CQ(Wl) + Co(WQ)

e However, complete characterization is still an open problem

W. Haemers, “On some problems of Lovasz concerning the Shannon capacity of a graph,” IEEE Trans.
Inf. Theory, vol. 25, no. 2, pp. 231-232, Mar. 1979

@ N. Alon, “The Shannon capacity of a union,” Combinatorica, vol. 18, no. 3, pp. 301-310, Mar. 1998
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e Zero error capacity and arbitrarily varying channels (AVCs) are related
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" \Worth to study this additivity problem in the context of AVCs! J
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Arbitrarily Varying Channel

State s™

e Uncertainty set S

e actual state sequence s € 8" unknown
e channel may vary in an unknown and arbitrary manner

The arbitrarily varying channel (AVC) 20 is given by the family

W= {Ws}ses = {W('l"s)}ses




List Code

Definition (List-L Code)

A (n, M,,)-list-L code C;, consists of a deterministic encoder at the transmitter
fiM—= "
with a set of messages M = {1,..., M,,} and a list decoder at the receiver
L Y = PLM)

with Bz, (M) the set of all subsets of M with cardinality at most L.

e For a state sequence s™ € S™ the average probability of error of such a list

code is
er(s™ |./\/l| Z Z W™(y™ |, s™).

meMym:méor (y™)



Achievable Rate and Capacity

Definition (Achievable List-L-Rate and Capacity)

A rate R > 0 is an achievable list-L rate for an AVC 2 if for every 7 > 0 there
exists an n(7) € N and a sequence {Cyr ,, }nen such that for all n > n(7) we
have

1 M,
—logc— >R —T1
nog L

5 (gP) <
Slgleagcn er(s™) <\

with \,, — 0 as n — oo.

The list-L capacity C',(20) of an AVC 20 is given by the supremum of all

achievable list-L rates R.

e For list size L = 1 the list-L code Cr, reduces to a traditional deterministic
code C whose decoder outputs only one specific message, i.e., ¢ : V" - M



CR-Assisted Codes

e List codes use pre-specified encoders and decoders

o If coordination resources such as common randomness (CR) are available,
transmitter and receiver can coordinate their choice of encoder and decoder

Definition (CR-Assisted Code)

A CR-assisted (n, M,,,G,, Pr)-code Ccr is given by a family of deterministic
codes {C(7) : v € G, } together with a random variable I" taking values in G,
according to Pr € P(G,,).

e The average error extends to CR-assisted codes as

éCR(s”):Wi| S wrren s P

MEM YEGy y™:m#ApY (y™)
where 7 is decoder for CR realization v € G,, and 7" is the codeword for
message m € M of the encoder f? for CR realization v € G,
e The definitions of a CR-assisted achievable rate and the CR-assisted
capacity C'cr(20) of an AVC 20 follow accordingly.



CR-Assisted Capacity

Theorem (CR-Assisted Capacity [BBT'60])
The CR-assisted capacity Ccr(20) of an AVC 27 is

Ccr(W) = max inf I(X;Y,)
Px€eP(X)qeP(S)

where ?q represents the output of the averaged channel
Woylz) = > ,cs Wylz, s)q(s) for some g € P(S).

y

D. Blackwell, L. Breiman, and A. J. Thomasian, “The capacities of certain channel classes under random
coding,” Ann. Math. Statist., vol. 31, no. 3, pp. 558-567, Sep. 1960



Symmetrizability

e To characterize the list-L capacity, we need the concept of symmetrizability

Definition

An AVC is called L-symmetrizable if there exists a stochastic matrix

o € CH(XL;S8) such that for all permutations 7 € Sym[L + 1] the following
holds:

Z W(y‘xla S)U(S|$27 ) $L+1) - Z W(y|x7r(1)7 S)U(S‘l’ﬂ—(g), ) :IJTr(L+1))
SES seES

for all z1,x9,....,x41 € X and y € Y.

" Roughly speaking, AVC can “simulate” additional valid inputs making it
impossible for the decoder to decide on the correct codeword



List Capacity

Theorem (List-L Capacity [BNP'95], [Hug'97])

The list-L capacity C',(20) of an AVC 25 is

Ccr(20) if 20 is not L-symmetrizable

CrL(20) =
£ (20) 0 otherwise.

V. M. Blinvosky, P. Narayan, and M. S. Pinsker, “Capacity of the arbitrarily varying channel under list
decoding,” Problems Inform. Transmission, vol. 31, no. 2, pp. 99-113, 1995

B. L. Hughes, “The smallest list for the arbitrarily varying channel,” IEEE Trans. Inf. Theory, vol. 43,
no. 3, pp. 803-815, May 1997

e For list size L = 1, this reduces to the characterization of the deterministic
capacity C'(20) of the an AVC 20 as

Ccr(20) if 20 is non-symmetrizable

Cc(w) = .
0 otherwise.

|. Csiszér and P. Narayan, “The capacity of the arbitrarily varying channel revisited: Positivity, cons-
traints,” IEEE Trans. Inf. Theory, vol. 34, no. 2, pp. 181-193, Mar. 1988
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A Fundamental Function

e We introduce the function

Fr(20) = inf max max
oc€CH(XL;S) xLtlcx L+l n€Sym[L+1]

Z ‘ Z W (y|z1,s)o(s|z2, s TLt+1)

yeY sSES

- Z W(ylmw(l)’ S)U(S|m7r(2)’ ey x‘rr(L—i—l))
SES

> \We have F;(20) > 0 with equality if and only if 20 is L-symmetrizable



Distance

e For two DMCs Wy, Wy € CH(X;)) we define the distance between W,
and W, based on the total variation distance as

d(Wy1, W) = glea%( z;} ‘Wl(y|x) - Wg(y|x)‘
ye

e To extend this concept to AVCs, we consider 20; = {W;(+|-, 5i) }s,es,
1= 1,2, and define

G(W1,2,) = Inax sglleigz d(Wr (-], 1), Wa(-|-, 2))

b Describes how well one AVC can be approximated by the other one

e Accordingly, we define the distance between 20; and 20, as

D(25,,205) = max {G(Qﬁl,ﬂﬁg), G(Qﬂz,wﬂ}




Definition of Continuity

Definition (Continuity of C')

Let 20 be a finite AVC. The list-L capacity C,(20) is said to be continuous in
all finite AVCs 20, if for all sequences of finite AVCs {20,,}72 ; with

lim D(20,,20) = 0 (1)

n— oo

we have

lim Cp(20,) = CL(2).

n— oo

e Based on this definition, the list-L capacity Cr,(20) is discontinuous in 20
if and only if there is a sequence {20,,}72, of finite AVCs satisfying (1) but

limsup Cr,(20,,) > liminf Cf,(20,,)

n— 00 =00



Discontinuity Points of List-L Capacity

e With the previous concept, we are now in the position to give a complete
characterization of the discontinuity points of the list-L capacity

Theorem (Discontinuity Points of C})

The list-L capacity C1,(20) is discontinuous in the finite AVC 20 if and only if
the following conditions hold:
0 Ccr(W) >0
® F1(20) = 0 and for every e > 0 there exists a finite AVC 20 with
D(23,20) < € and F,(20) > 0.

e Note that for every list size L € N the set of discontinuity points of Cy, is
non-emtpy!



Robustness Properties of List-L Capacity

Theorem (Robustness of C')

Let 20 be a finite AVC with Fr,(20) > 0. Then there exists an ¢ > 0 such that
all finite AVCs 20 with A
D(25,20) < €

are continuity points of C1,(20).




Super-Additivity and Super-Activation

Definition (Super-Additivity)

Let 20, and 205 be two finite AVCs and 20; ® 205 an orthogonal combination.
Then, the list-L capacity is said to be super-additive if

CrL(; @ Ws) > C(W) + CL(2Ws),

i.e., a joint use of both channels yields a higher list-L capacity than the sum of
their individual uses. )

o If CL(2,) = CL(2W2) = 0 but CL(W; @ Ws) > 0, we have the extreme
case of non-additivity which we call super-activation of 207 ® 0,



Super-Activation Not Possible

Theorem (No Super-Activation for C')
Let 95, and I, be two orthogonal AVCs. Then

CrL (20, ®QH2) =0

if and only if

O (21) = C1,(Ws) = 0.

" Super-activation is not possible for orthogonal AVCs

e This extends previous studies where it has been shown for traditional
decoding, i.e., L = 1, that super-activation is a unique feature of secure
communication and that it is not possible for public communication

R. F. Schaefer, H. Boche, and H. V. Poor, “Super-activation as a unique feature of secure communication
in malicious environments,” Information, vol. 7, no. 2, May 2016



Super-Additivity

Theorem (Super-Additivity of C',)
Let 20, and 25 be two orthogonal AVCs. Then

CL(QB1 ® QBQ) > CL(QUQ aF CL(QUQ)
if and only if

min {FL(QH1),FL(QIT2)} =0,
max {FL(QIH),FL(QIE)}

and

min {CCR(Qﬂl), CCR(QﬁQ)} > 0.

| ist-1, capacity is super-additive

e Set of channels which are super-additive is non-empty!
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Randomized Encoding

e Study the Shannon capacity of AVCs under the maximum error criterion
and randomized encoding

e This concept differs from the previously considered CR-assisted codes in
the sense that the randomization is only performed locally at the encoder
and not available at the decoder

Definition (Code with Randomized Encoding)

A (n, M,,)-code C,a, with randomized encoding consists of a stochastic encoder
at the transmitter

E:M—PAX")
with a set of messages M = {1,..., M,,} and a deterministic decoder at the
receiver
p: YY" = M.

Here, the conditional probability E(z"|m) describes the probability that the
message m € M is encoded into the codeword z € X™.




Randomized Encoding (2)

e For a state sequence s™ € S™ the maximum probability of error of such a
code is
emax(s™) = max Z Z W™(y™|z™, s™)E(z™|m).

meM
ymip(yn)Fmanexn

Definition (Achievable Rate and Capacity)

A rate R > 0 is an achievable rate for an AVC 20 under the maximum error
criterion and randomized encoding if for every 7 > 0 there exists an n(7) € N
and a sequence {Crann fnen such that for all n > n(7) we have

1
—logM, >R—T
n

ax emax(s") < An
with A, — 0 as n — oo. The Shannon capacity Cr20 (23) of an AVC 20 under
the maximum error criterion and randomized encoding is given by the
supremum of all achievable rates R.

v




Capacity

ran

ran () under the maximum error

e The following is known for the capacity
criterion and randomized encoding.

Theorem (Capacity [AhI'78])

The capacity C2 (20) of a finite AVC 20 under the maximum error criterion

and randomized encoding is
Crnax(W) = C1(W)

where C1(20) is the capacity for deterministic encoding under the average error
criterion (i.e., the list-L capacity for L =1).

R. Ahlswede, “Elimination of correlation in random codes for arbitrarily varying channels,” Z. Wahr-
scheinlichkeitstheorie verw. Gebiete, vol. 44, no. 2, pp. 159-175, Jun. 1978



Capacity (2)

e With this we immediately obtain the following corollary

Corollary

The continuity and super-additivity behavior of C2 (-) is completely
characterized by the list-L capacity C,(-) for L = 1.

| A\

Remark
Note that a characterization of Cya(+), I.e., the capacity of an AVC under the
maximum error criterion for deterministic encoding, is unknown and an open
problem. It is an interesting observation that a local random source at the
transmitter allows characterization of the analytical behavior of the Shannon
capacity.




Achievable ¢-Rate

e Shannon e-capacity captures the case of a non-vanishing probability of
decoding error

e We need a slight adaptation of the definition of an achievable rate as
follows

Definition (Achievable e-Rate and Capacity)

Let 0 < € < 1 be fixed. A rate R > 0 is an achievable e-rate for an AVC 20 if
for every 7 > 0 there exists an n(7) € N and a sequence of codes such that for
all n > n(7) we have

1
—logM, > R—1
n

max e(s") <e.
smesn

The Shannon e-capacity C€(20) of an AVC 20 is given by the supremum of all
achievable e-rates R.




Remarks

e For a fixed DMC W we have
C(W)=Ci(W)=C(W), LeN
e Strong converse: there is no gain in rate by allowing a small but

non-vanishing decoding error instead of a vanishing decoding error

e Already for compound channels, the Shannon e-capacity is usually greater
than the Shannon capacity with vanishing decoding error

R. Ahlswede, “Certain results in coding theory for compound channels,” in Proc. Colloquium Inf. Th.
Debrecen, Hungary: Bolyai Mathematical Society, 1967, pp. 35-60



e-Capacity

e For AVCs we obtain the following result for the e-capacity

Let 0 < € < 1/2 be arbitrary. Then the e-capacity C*(20) of a finite AVC 20
satisfies

C(20) = C, ().

e Similarly to the previous discussion, we immediately further obtain

For 0 < € < 1/2, the continuity and super-additivity behavior of C¢(-) is
completely characterized by the list-L capacity Cp,(-) for L = 1.




Ahlswede’s Conjecture

e This characterizes the behavior of the e-capacity C¢(-) in the range
0<e<1/2

e For 1/2 < e < 1 we cannot say anything

The problem is that, to date, there is nothing known about C¢(+) in this range
for finite AVCs which are symmetrizable. Ahlswede conjectured in his 2006
Shannon lecture that “for a finite symmetrizable AVC 20, the e-capacity always
satisfies C°(20) = 0 for all 0 < € < 1.” If this conjecture is true, our results in
this work immediately yield a complete characterization of the continuity and
super-additivity behavior of C¢(-) for all 0 < e < 1.
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Conclusions

e |t has been demonstrated by Haemers and Alon that the zero-error
capacity is super-additive, disproving a previous conjecture of Shannon

e Despite such explicit examples of super-additivity, there is surprisingly little
known in general for non-trivial channels

e In this work, the AVC under list decoding has been studied and a complete
theory has been developed including characterizations of

e Super-additivity behavior and discontinuity points of the list capacity
o Capacity under the maximum error criterion and randomized encoding
e c-capacity of finite AVCs under the average error criterion

Thank you for your attention!
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