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Eigen- and singular values

I Singular value decomposition of a matrix X 2 Mk⇥n(C)

X =
Xp

�i (X )ei ⌦ f ⇤i ,

where ei , fi are orthonormal families in Ck , Cn, and
�
1

(X ) � �
2

(X ) � · · · � 0 are the singular values of X .

I The eigenvalues of the matrix XX ⇤ are �i (x).

I Question: What are the singular values of a random matrix ?



Singular values of random matrices, k fixed, n ! 1 regime

I Let X be a k ⇥ n Ginibre random matrix, i.e. {Xij} are i.i.d.
complex Gaussian random variables.

I We are interested in long matrices: k fixed, n ! 1.

I We normalize our matrices, by taking them on the unit
Euclidean sphere TrXX ⇤ = 1.

I Thus, the singular values vector �(X ) is a probability vector

�(X ) 2 �#
k = {y 2 Rk : yi � 0,

X

i

yi = 1, y
1

� · · · � yk}.

I It is an easy exercise to show that, almost surely,

8i , �i (X ) ! 1/k .



Vector formulation

I Recall: SVD of X 2 Mk⇥n(C)

X =
Xp

�i (X )ei ⌦ f ⇤i .

I Using the isomorphism Ck ⌦ Cn ' Mk⇥n(C), X can be seen
as a vector in a tensor product x 2 Ck ⌦ Cn.

I The vector x admits a Schmidt decomposition
x =

P
i

p
�i (x)ei ⌦ fi .

I The eigenvalues of the matrix XX ⇤ = [idk ⌦Trn]Px are �i (x).

I Problem: What are the singular values of ALL vectors
[matrices] inside a (random) subspace V of a tensor product
[matrix space] ?

I This is a simple question about subspaces of tensor products
(equivalently, about the singular values of matrices inside a
given subspace V ).



Singular values of vectors from a subspace

I For a subspace V ⇢ Ck ⌦ Cn of dimension d , define the set
eigen-/singular values or Schmidt coe�cients

KV = {�(x) : x 2 V , kxk = 1}.

I Our goal is to understand KV .

I The set KV is a compact subset of the ordered probability
simplex �#

k .

I Local invariance: K
(U

1

⌦U
2

)V = KV , for unitary matrices
U
1

2 U(k) and U
2

2 U(n).
I Monotonicity: if V

1

⇢ V
2

, then KV
1

⇢ KV
2

.

I Example: d = 1, V = Cx . We have KV = {�(x)}.
I Example: if d > (k � 1)(n � 1), then (1, 0, . . . , 0) 2 KV .
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Why do we care ? Quantum channels !

I Quantum states with d degrees of freedom are described by
density matrices

X 2 Msa(Cd); TrX = 1 and X � 0.

I Quantum channels N : M(Cd) ! M(Ck) are completely
positive, trace-preserving maps. In particular, they send
quantum states to quantum states.

I Complete positivity CP: N ⌦ idn preserves positivity.
I Trace preservation TP: Tr[N (X )] = Tr(X ) for all X .

I Quantum channels describe the most general physical
transformations a quantum system can undergo.



The additivity problem

I The von Neumann entropy of X 2 M1,+(Cd)

H(X ) = �Tr(X logX ).

I The entropy is additive: H(X
1

⌦ X
2

) = H(X
1

) + H(X
2

).

I The minimum output entropy of a quantum channel is

Hmin(N ) = min
X2M1,+

(Cd
)

H(N (X )).

Conjecture (Amosov, Holevo, and Werner ’00)

For any channels N
1

,N
2

Hmin(N
1

⌦N
2

) = Hmin(N
1

) + Hmin(N
2

).

I Given N
1

,N
2

, the  direction of the equality is trivial, take
X
12

= X
1

⌦ X
2

.



An important problem

I Additivity of MOE is equivalent to other additivity conjectures
in quantum information theory [Shor ’03], such as the
additivity of Holevo capacity for quantum channels or the
additivity of entanglement of formation for quantum bipartite
states.

I Additivity has been shown to hold for a large class of
channels: unitary, unital qubit, depolarizing, dephasing,
entanglement breaking, ...

I But ... the Additivity Conjecture is false!
I How to get counter-examples:

1. Lower bound Hmin(N
1,2);

2. Upper bound Hmin(N
1

⌦N
2

), eg. by finding a particular input
X
12

with low entropy;
3. Conclude by

Hmin(N
1

⌦N
2

)  UB<LB
1

+ LB
2

 Hmin(N
1

) + Hmin(N
2

).

I In this talk, we focus on lower bounding the MOE of a
quantum channel.



Channels as subspaces

I Let V ⇢ Ck ⌦ Cn be a subspace of dimension d and consider
an isometry W : Cd ! Ck ⌦ Cn with ImW = V .

I One can define a channel N : M(Cd) ! M(Ck) by

N (X ) = [id
k

⌦ Tr
n

](WXW ⇤).

I Every channel can be defined in this way (by choosing n large
enough).

I By convexity properties, the MOE is attained on pure states
i.e. rank one projectors.

I Since N (Px) = [id
k

⌦ Tr
n

](WPxW
⇤) = [idk ⌦ Trn]PWx , the

minimal entropies of the channel N are determined by the
image subspace V = ImW .



Random subspaces

I Idea: when you do not know how to find a subspace having
some nice properties, pick one at random!

I There is an uniform (or Haar) measure on the set of
d-dimensional subspaces of Ckn.

I Take a kn ⇥ kn Haar distributed random unitary matrix
U 2 U(kn) and take V to be the span of its first d columns.

I Alternatively, if W is a kn ⇥ d truncation of U, then
V = ImW is uniform.

I From such a radom isometry W , one can construct random
quantum channels N (X ) = [idk ⌦ Trn](WXW ⇤).

I There are other measures on the Grassmannian one can
consider, the one above being the simplest and the most
natural.



Main result

I For the rest of the talk, we consider the following asymptotic
regime: k fixed, n ! 1, and d ⇠ tkn, for a fixed parameter
t 2 (0, 1).

Theorem (Belinschi, Collins, N. ’10)

For a sequence of uniformly distributed random subspaces Vn, the
set KVn of singular values of unit vectors from Vn converges
(almost surely, in the Hausdor↵ distance) to a deterministic convex
subset Kk,t of the probability simplex �k

Kk,t := {� 2 �k | 8x 2 �k , h�, xi  kxk
(t)}.



Corollary: exact limit of the MOE

I By the previous theorem, in the specific asymptotic regime
t, k fixed, n ! 1, d ⇠ tkn, we have the following a.s.
convergence result for random quantum channels:

lim
n!1

Hmin(N ) = min
�2Kk,t

H(�).

I It is not just a bound, the exact limit value is obtained ,
I However, the set Kk,t is not explicit, and minimizing entropy

functions is di�cult /



Idea of the proof

I Question: what is the maximum singular value
maxx2V ,kxk=1

�
1

(x) of a unit vector from V ?

I Compute

max
x2V ,kxk=1

�
1

(x) = max
x2V ,kxk=1

�
1

([idk ⌦ Trn]Px)

= max
x2V ,kxk=1

k[idk ⌦ Trn]Pxk

= max
x2V ,kxk=1

max
y2Ck ,kyk=1

Tr [([idk ⌦ Trn]Px) · Py ]

= max
x2V ,kxk=1

max
y2Ck ,kyk=1

Tr [Px · Py ⌦ In]

= max
y2Ck ,kyk=1

max
x2V ,kxk=1

Tr [Px · Py ⌦ In]

= max
y2Ck ,kyk=1

kPV · Py ⌦ Ink1.

I Limit of kPV · Py ⌦ Ink1 for fixed y and random V ?



Theorem (Collins ’05)

In Cn, choose at random according to the Haar measure two
independent subspaces Vn and V 0

n of respective dimensions
qn ⇠ ↵n and q0n ⇠ �n where ↵,� 2 (0, 1). Let Pn (resp. P 0

n) be
the orthogonal projection onto Vn (resp. V 0

n). Then,

lim
n

kPnP
0
nPnk1 = '(↵,�).

I One can compute
'(↵,�) = ↵+ � � 2↵� + 2

p
↵�(1� ↵)(1� �) if ↵+ �  1

and '(↵,�) = 1 if ↵+ � > 1 (subspaces Vn and V 0
n have

non-trivial intersection).



t-norms

Definition
For a positive integer k , embed Rk as a self-adjoint real subalgebra
R of a II

1

factor (A, ⌧), so that ⌧(x) = (x
1

+ · · ·+ xk)/k . Let pt
be a projection of rank t 2 (0, 1) in A, free from R. On the real
vector space Rk , we introduce the following norm, called the
(t)-norm:

kxk
(t) := kptxptk1,

where the vector x 2 Rk is identified with its image in R.

Proposition
The distribution µt�1ptxpt of the (non-commutative) random
variable t�1ptxpt in the II

1

factor reduced by the projection pt is

µt�1ptxpt = µ�1/t
x , t 2 (0, 1], where � denotes the free additive

convolution of Voiculescu.



The set Kk ,t and t-norms

I Kk,t := {� 2 �k | 8x 2 �k , h�, xi  kxk
(t)}.

I Recall that

max
x2V ,kxk=1

�
1

(x) = max
y2Ck ,kyk=1

kPVPy ⌦ Ink1.

I For fixed y , PV and Py ⌦ In are independent projectors of
relative ranks t and 1/k respectively.

I Thus, kPV · Py ⌦ Ink1 ! '(t, 1/k) = k(1, 0, . . . , 0)k
(t).

I We can take the max over y at no cost, by considering a finite
net of y ’s, since k is fixed.

I To get the full result, use h�, xi (for all directions x) instead
of �

1

.

I Unfortunately, it is di�cult to compute (t)-norms, so we do
not have an explicit formula for Kk,t .



Thank you !

Collins, N. - Random quantum channels II: Entanglement of
random subspaces, Rényi entropy estimates and additivity

problems.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and
eigenvalues associated to random subspaces in a tensor product.


