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Classical and Quantum IT - Dictionary of Correspondences

Classical Theory
Alphabet X

Probability distribution
pEePWX)

Shannon entropy
H(X)

Classsical mutual informtation
I(X;Y):=H(X)+H(Y)-H(XY)

Decision rule

{Dintmem < 2%, Umem Dm =X

Quantum Theory
Hilbert space H

Quantum state / Density matrix,
p€L(H), ppsd, trp=1

von Neumann entropy

S(p) :=—tr(plogp)

Quantum mutual information

I(A;B,paB) := S(pa) + S(pB) — S(paB)

Positive operator valued measure (POVM)

{EmtmeM, 0<Ep <13, Ypem Em = 1



Introduction

m Common randomness shared by users being secure against eavesdropping third
parties is a valuable resource in information theory.

m A possibility to obtain secret-keys is to generate it from noisy&insecure
correlations distributed by sources.

m We allow public forward communication of classical messages.
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Known results

m In case of perfectly known memoryless sources, the asymptotic key capacities
where determined
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m Assumption of perfect knowledge of the generating p.d. or density matrix is

hardly fulfilled in reality — Need for robust protocols in case of system
uncertainty.



Source model: Compound cqq sources

m 7 outputs of a compound quantum source I = {ps}scs are described by a density
matrix

2" = ps®-+-® pg (n€eN)
N
n times

where s is any of S (unresolved to A and B).

We do not restrict ourselves to |S| < o or S countable!

m A compound classical-quantum-quantum (cqq) source is described by a set
I :={ps}ses of density matrices on H4pg such that

pe= Y puln) lefedloply,
xeX

with ps being a p.d. on X, and pgg,y s a density matrix on Hpg for each x € X.



Forward secret-key distillation protocols
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Ay =1 (public message)

Ks=m

(K., K{) = (m,m")
(key random variable)

=] B
An (1n,M, L, e)-protocol for I = {p}ses is a pair (T, D) with
m (T(I,m|x"))1e[1),me[M],xnexn @ Stochastic matrix
® D ={D; := {Dim}me[m]}i[L] @ collection of POVMs.
such that for alls€ S

1. Pr(Ks = K{) <€, and

2. logM — H(K;) + I(K;E" A, pAKE" s) < €.




Operational Interpretation of the performance criteria

m The expression
logM — H(Ks) + [(K;E" A, pAKE™,5)
quantifies equidistribution and security of the key.

— Quantum version of the security index.

m Operational significance:
I(K;E”A, PAKE”,S) 2> I(KSZKE,S)

for each eavesdropper’s estimate KE of the key random variable (“Holevo bound”,
Holevo '73).



Definitions

R >0 is called an achievable forward secret-key distillation rate for I, if there exists
a sequence of (n, M, L,, €,) secret-key distillation protocols with

1. liminf, %logMn >R,

2. limsupn_mo%logLn<oo

3. lim, 006, =0

The forward secret-key capacity of I is defined by

K_,(I):=sup{R>0: R achievable forward secret-key distillation rate}



Regularity condition

m Define for a set I of cqq density matrices

Pp := {p: p marginal p.d. on the A system}
AE
IP

{paE: p€I A pa=p}

IgB: {paB: p€Il A pa=p}

m Oberservation: Some compound cqq sources resist general protocol structures.

— This happens, if members of I with nearby A-marginals differ much regarding
the sets of AB and AE marginals.

Definition
A set I of cqq density matrices is called regular, if it fulfills

Vp,geP¥e>036>0: llp—qlh <6 = du(I38108)+du(15F,10F) <€

with dg(X,Y) being the Hausdorff distance of sets X, Y.



Main result

Theorem
Let I be a regular set of cqq density matrices in HAgg. It holds

K1) = lim + ke,

where

K(_l,)(I®k):— inf sup inf I(U;BN|T, orr)— sup I(U; ENT, okr)
PEPIT. Ty pk|oelf? oeTAE

with the maximization being over all Markov chains T « U « pk resulting from
application of Markov transition matrices Pr|y, Py|y and

orri= Y Y Y Pryy(tu) Py (uld) pF () 10(H © lu)(ul@ o

xkexk teT ued

I(X;YZ|T) := Y te7 Pr(t)[(X; Y|T = t) conditional quantum mutual information of cqq
state.



Operational significance of regularity

m Regularity of cqqg sources is not only a technical issue.

m If A has additional perfect knowledge of his/her distribution p, regularity plays no
role.

m Define K_, sp; to be the forward secret-key capacity with sender marginal
knowledge.

Theorem
For each set I of cqq density matrices, it holds

o1
Kosur(D) = Jim 2KU)(195)

Consequently

K (I) =K, spmr(1),

if T is regular.



Advantage of SMI - Example

We present, with H4 = Hp = HE = 2o C? example of a compound cqq source I with

0=K_(I) <K, spmi(I)=logdimHy4.

1
Define with 7t being the bit equidistribution, and IT := %2 the maximally mixed qubit
density matrix

a Z,Z(Iyzl 70(x) - 71 (v) - %, v (X, vl 4 ® %) (x|p ®TIE ®TTE @ [v) (vl ifp=m
Pp= ch,y:l 70(x) - p(v) - |, ) (x5, v 4 ®TIR ®[v) (vIg @ |x) (x| @ TIE otherwise,

The compound cqq source generated by I := {Pp}peP([O,l}) has the stated properties.
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