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Adaptive vs. Non-Adaptive Approximation

Non-Adaptive Approximation:
Shannon sampling series

(SNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

Approximation SNf uses all samples {f(k)}Nk=−N.

Adaptive Approximation:
Selection of specific samples f(k) for the approximation.

Consequences:
• Non-Adaptive Approximation: sequence of linear operators.

Convergence analysis with Banach–Steinhaus theorem (uniform
boundedness principle).

• Adaptive Approximation: leads to non-linear operators.
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Signal Spaces

Definition (Paley–Wiener Space)
For 1 6 p 6∞ we denote by PWp

σ the Paley-Wiener space of functions f with
a representation f(z) = 1

2π

∫σ
−σ g(ω) eizω dω, z ∈ C, for some g ∈ Lp[−σ,σ].

The norm for PWp
σ is given by ‖f‖PWp

σ
=
(

1
2π

∫σ
−σ |f̂(ω)|p dω

)1/p
.

Properties:
• PWp

σ ⊃ PWs
σ for 1 6 p < s 6∞

• ‖f‖∞ 6 ‖f‖PW1
σ

• PW2
σ is the space of bandlimited functions with finite L2(R)-norm

(finite energy).

Without loss of generality, we can restrict to σ = π.
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Divergence of the Shannon Sampling Series

• For signals f ∈ PWp
π, 1 < p <∞, the Shannon sampling series converges

absolutely and uniformly on all of R.

• However, for p = 1, i.e., for f ∈ PW1
π we have

lim sup
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞, (1)

that is the peak value diverges as N tends to infinity.
• Recently strengthened in [BF14] : There exists a signal f ∈ PW1

π such that

lim
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞. (2)

Important difference in the divergence behavior of (1) and (2)

[BF14] H. Boche and B. Farrell, “Strong divergence of reconstruction procedures for the Paley-Wiener
space PW1

π and the Hardy spaceH1,” Journal of Approximation Theory, vol. 183, pp. 98–117, Jul. 2014

Strong Divergence of the Shannon Sampling Series Holger Boche 4



Divergence of the Shannon Sampling Series

• For signals f ∈ PWp
π, 1 < p <∞, the Shannon sampling series converges

absolutely and uniformly on all of R.
• However, for p = 1, i.e., for f ∈ PW1

π we have

lim sup
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞, (1)

that is the peak value diverges as N tends to infinity.

• Recently strengthened in [BF14] : There exists a signal f ∈ PW1
π such that

lim
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞. (2)

Important difference in the divergence behavior of (1) and (2)

[BF14] H. Boche and B. Farrell, “Strong divergence of reconstruction procedures for the Paley-Wiener
space PW1

π and the Hardy spaceH1,” Journal of Approximation Theory, vol. 183, pp. 98–117, Jul. 2014

Strong Divergence of the Shannon Sampling Series Holger Boche 4



Divergence of the Shannon Sampling Series

• For signals f ∈ PWp
π, 1 < p <∞, the Shannon sampling series converges

absolutely and uniformly on all of R.
• However, for p = 1, i.e., for f ∈ PW1

π we have

lim sup
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞, (1)

that is the peak value diverges as N tends to infinity.
• Recently strengthened in [BF14] : There exists a signal f ∈ PW1

π such that

lim
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞. (2)

Important difference in the divergence behavior of (1) and (2)

[BF14] H. Boche and B. Farrell, “Strong divergence of reconstruction procedures for the Paley-Wiener
space PW1

π and the Hardy spaceH1,” Journal of Approximation Theory, vol. 183, pp. 98–117, Jul. 2014

Strong Divergence of the Shannon Sampling Series Holger Boche 4



Weak Divergence vs. Strong Divergence

We say a sequence {xn}n∈N ⊂ C
• diverges weakly if lim supn→∞|xn| =∞.
• diverges strongly if limn→∞|xn| =∞.

Weak lim sup divergence:
Merely guarantees the existence of a subsequence {Nn}n∈N for which we have
limn→∞ xNn =∞.
Leaves the possibility that there exist a different subsequences {N∗n}n∈N such
that lim supn→∞ xN∗

n
<∞.

Strong lim divergence:
Divergence for all subsequences {Nn}n∈N.

adaptive techniques
not convergent

⇔ strong divergence
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Banach–Steinhaus Theorem, Weak Divergence,
and Residual Sets

Divergence results as in

lim sup
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞

are usually proved by using the Banach–Steinhaus theorem (uniform
boundedness principle).

→ The obtained divergence is in terms of the lim sup (weak divergence) and
not a statement about strong divergence.

→ Strength of the Banach–Steinhaus theorem: the divergence statement
holds for all functions from a residual set.

We cannot use the Banach–Steinhaus theorem to prove strong divergence.
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Historical Remarks

• Paul Erdős seems to be the first who noticed strong divergence for the
Lagrange interpolation in 1941 [E41].

• He later observed that his proof was erroneous. The question remains
unsolved to date.

• To the best of our knowledge the Shannon sampling result is the first
discovery (up to now) of strong divergence for approximation processes
[BF14].

• The result is surprising because the Shannon sampling series is locally
uniformly convergent [B67].

[E41] P. Erdős, “On divergence properties of the Lagrange interpolation parabolas,” Annals of Mathematics,
vol. 42, no. 1, pp. 309–315, Jan. 1941

[BF14] H. Boche and B. Farrell, “Strong divergence of reconstruction procedures for the Paley-Wiener

space PW1
π and the Hardy spaceH1,” Journal of Approximation Theory, vol. 183, pp. 98–117, Jul. 2014

[B67] J. L. Brown, Jr., “On the error in reconstructing a non-bandlimited function by means of the bandpass
sampling theorem,” Journal of Mathematical Analysis and Applications, vol. 18, pp. 75–84, 1967, Erratum,
ibid, vol. 21, 1968, p. 699
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Set of Functions Creating Divergence

We are interested in the the set

Dstr =

{
f ∈ PW1

π : lim
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞}

• Does the set Dstr have further interesting structural properties?
• Does the set Dstr have a linear structure?
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Basic Definition: Lineability and Spaceability

The zero function plays a special role.

Lineability:
A subset S of a Banach space X is said to be lineable if S ∪ {0} contains an
infinite dimensional subspace.

Spaceability:
A subset S of a Banach space X is said to be spaceable if S ∪ {0} contains a
closed infinite dimensional subspace of X.
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Linear Structure

Difficult to show linear structure for Dstr.

The set of convergence has always a linear structure, i.e., is a linear subspace:

• f1, f2 such that SNf1 and SNf2 converge
• SN(f1 + f2) converges

The set of divergence Dstr has no linear structure:

• f1 any function such that SNf1 converges
• g any function such that SNg diverges
• g1 = f1 + g, g2 = f1 − g

• SNg1 and SNg2 diverge
• But SN(g1 + g2) = SN(2f1) converges
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Set of Functions Creating Divergence

Dstr =

{
f ∈ PW1

π : lim
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞}

Theorem
The set Dstr is spaceable, i.e., Dstr ∪ {0} contains an infinite dimensional closed
subspace of PW1

π.

• The above theorem is stronger than the result proved in the proceedings.
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An Infinite Dimensional Closed Subspace U

In the proof we constructed an infinite dimensional closed subspace U of PW1
π

such that

lim
N→∞

(
max
t∈R

N∑
k=−N

f(k)
sin(π(t− k))
π(t− k)

)
=∞

for all f ∈ U, f 6≡ 0.
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U has interesting properties

• U has an unconditional basis {ζn}n∈N: For all f ∈ U there exists a unique
sequence of coefficients {an(f)}n∈N such that

lim
N→∞

∥∥∥∥∥f−
N∑
n=1

aΠ(n)(f)ζΠ(n)

∥∥∥∥∥
PW1

π

= 0

for any permutation Π : N→ N.
• There exists a constant C1 > 0 such that for all f ∈ U we have

C1

( ∞∑
n=1

|an(f)|
2

) 1
2

6 ‖f‖PW1
π
6

( ∞∑
n=1

|an(f)|
2

) 1
2

.

• U is isomorphic to the Hilbert space l2.

• If we equip the space U with the norm ‖f‖U =
(∑∞

n=1|an(f)|
2
) 1

2 then it
becomes a Hilbert space.

• {ζn}n∈N is a Riesz basis for the Hilbert space (U, ‖ · ‖U).
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Conclusions

• Weak divergence→ full theory given by Banach–Steinhaus (residual set)
• Strong divergence⇔ adaptive techniques not convergent
• We proved that the set of signals in PW1

π for which the Shannon sampling
series diverges strongly is spaceable.

• That is, we have strong divergence for all signals (except the zero signal)
from an infinite dimensional closed subspace.
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Thank you!
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