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Motivation – Orthogonal Transmission Scheme

� Orthogonal transmission scheme:

s(t) =

N∑
k=1

akφk(t), t ∈ [0, Ts].

• N – Number of carriers/wavefunctions,
• Ts – Duration of a communication symbol (w.l.o.g. Ts = 1),
• {φn}Nn=1 – (Bounded) Orthonormal system (ONS) in L2([0, Ts]),

• {ak}Nk=1 – Transmit data.

� Orthogonal transmission scheme plays an important role for present -, and
future communications standards, e.g.:
• Orthogonal frequency division multiplexing (OFDM):

φn(·) = ei2π(n−1)(·) =: en−1(·).

Applications: DSL, IEEE 802.11, DVB-T, LTE, and LTE-advanced/4G.
• Code division multiple access (CDMA):

φn −Walsh function (Defined later).

Applications: 3G, UMTS, GPS, and Galileo.
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Orthogonal Transmission Scheme - Sketch
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Motivation – Dynamics of Orthogonal
Transmission Scheme

� Major drawback of orthogonal transmission scheme is its high dynamics,
which is measured by the so-called Peak-to-Average-Power-Ratio (PAPR):

PAPR({φn}Nn=1 ,a) :=

∥∥∥∑N
k=1 akφk

∥∥∥
L∞([0,1])∥∥∥∑N

k=1 akφk

∥∥∥
L2([0,1])

= ess sup
t∈[0,1]

∣∣∣∣ ∞∑
k=1

akφk(t)

∣∣∣∣
‖a‖l2(N)

,

for a sequence/data a in C.

� High PAPR value of orthogonal transmission scheme have in particular
negative impacts to the reliability -, energy efficiency -, and cost efficiency
of a communications system.
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Example of an Orthogonal Transmission Scheme -
OFDM
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Drawback of OFDM - The Effect of Clipping

(OFDM) Symbol/Waveform

Amplifier
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� Occurence of clipping in case that the waveforms possess high dynamics,
and the linear range of the used amplifier is not sufficiently large.

� Out-of-band radiation of the transmit signal.
⇒ Need for costly analog filter, to ensure that the transmit signal lies within a

regulated frequency mask.
� Alteration of the transmit signal.
⇒ Error occurs!

� Amplifier with high linear range is expensive, and might cause high
maintenance cost.
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Drawback of OFDM

� Reports of consulting firms: 2% of global CO2 emissions are attributable
to the use of information and communication technology, which is
comparable to the CO2 emissions due to avionic activities.

� Energy cost of network operation can even make up to 50% of the total
operational cost.

B. Boccaletti, M. Löffler, and J. Oppenheim,
How IT can cut carbon emmisions.

McKinsey Quarterly, October (2008)

Parliamentary Office of Science and Technology (UK),
ICT and CO 2 emmissions.

Postnote, December (2008)
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Motivation – High Dynamics of Orthogonal
Transmission Scheme

� PAPR values of order
√
N can occur for any orthonormal system

{φn}n∈[N ]:

There exists a sequence a ∈ l2([N ]), with ‖a‖l2([N ]) = 1, such that:

√
N ≤ PAPR({φk}k∈[N ],a).

� For instance, there are up to 2048 wave functions used for the downlink
communication in the LTE standard (OFDM).

⇒ Important to control the PAPR behaviour of orthogonal transmission
scheme!

H. Boche and V. Pohl,
Signal representation and approximation - fundamental limits.

European Trans. Telecomm. (ETT) 5 (2007), 445–456.
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Motivation – Tone Reservation method

� Tone reservation (Tellado and Cioffi):
• Reserve one subset of functions of an ONS for carrying the

information-bearing coefficients.
• Determine coefficients for the remaining tones, s.t. the combined sum has a

small peak value, below a certain desired threshold value.

� Tone reservation method is canonical, since the only knowledge needed by
receiver is the (fixed) location of information-bearing coefficients.

� Our goal: To show that the tone reservation is not applicable for arbitrary
threshold value.

J. Tellado, Peak to average power reduction for multicarrier modulation,

Ph.D. Thesis Stanford University, (1999)

J. Tellado and J.M. Ciofi, Peak to average power ratio reduction,

U.S. patent application Ser., No. 09/062, 867, Apr. 20, 1998

J. Tellado and J.M. Ciofi, Efficient algorithms for reducing PAR in

multicarrier systems, Proc. IEEE ISIT (1998), 191.
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PAPR Reduction Problem - Formulation

� Given a desired threshold constant CEx > 0. We aim to analyze, whether
the tone reservation method is applicable in this case for a certain ONS.

Definition 1.1 (PAPR Reduction Problem)

Given K ⊂ N. Let {φn}n∈K be an ONS, and I ⊂ K. We say the PAPR
reduction problem is solvable for the pair ({φn}n∈K , I) with constant CEx > 0,
if for every a ∈ l2(I), there exists b ∈ l2(Ic) (the complementation is w.r.t.
K), satisfying ‖b‖l2(Ic) ≤ CEx ‖a‖l2(I), for which it holds:

ess sup
t∈[0,1]

∣∣∣∣∣∑
k∈I

akφk(t) +
∑
k∈Ic

bkφk(t)

∣∣∣∣∣ ≤ CEx ‖a‖l2(I) .

We call I the information set, Ic the compensation set, CEx the
extension constant.
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PAPR Reduction Problem - Remarks

� Mostly: K = N. Thus, the compensation set is allowed to be infinite. In
particular, we aim to show, that the PAPR reduction problem is not
solvable for arbitrary extension constant.
⇒ Restriction in the case that the compensation set is finite.

� PAPR reduction Problem can also be formulated by means of an extension
operator (not necessarily linear!):

EI : l2(I)→ L∞([0, 1]), a 7→
∑
k∈I

akφk +
∑
k∈Ic

bkφk,

for suitable coefficients b (depend on the choice of a!):

Given K ⊂ N. Let {φn}n∈K be an ONS, and I ⊂ K. The PAPR reduction
problem is solvable for the pair ({φn}n∈K , I) with constant CEx > 0, if there
exists an extension operator, for which it holds:

‖EIa‖L∞([0,1]) ≤ CEx ‖a‖l2(I) .
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Necessary and Sufficient Conditions - Essential
Subspaces

� Plan: Derive (especially necessary) conditions for the solvability of PAPR
reduction problem, suitable for our approach to show the limitation of the
PAPR reduction problem
The following subspaces of L1([0, 1]) plays an important role:

Definition 2.1

For an I ⊂ N, and an ONS {φn}n∈N, we define the following subspaces of
L1([0, 1]):

F1(I) :=

{
f ∈ L1([0, 1]) : f =

∑
k∈I

akφk, for a {ak}k∈I in C

}

F1
c(I) :=

{
f ∈ L1([0, 1]) : f =

∑
k∈I

akφk, ak 6= 0, for finitely many k ∈ I

}
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Necessary and Sufficient Conditions - Essential
Subspaces

� Basic properties of F1(I) and F1
c(I):

• F1(I) is a closed subspace of L1([0, 1]).
• F1

c(I) is a dense subspace of F1(I).
� It turns out that the solvability of the PAPR reduction problem is

connected to the Embedding problem of F1(I) into L2(I).
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Necessary Condition

Theorem 2.2 (B. and Farell)

Let {φn}n∈N be a complete ONS in L2([0, 1]). Given a subset I ⊂ N and a
constant CEx > 0. Assume that the PAPR reduction problem is solvable for
({φn}n∈N , I) with extension constant CEx. Then:

‖f‖L2([0,1]) ≤ CEx ‖f‖L1([0,1]) , ∀f ∈ F1(I).

H. Boche and B. Farell,
On the Peak-to-Average Power Ratio Reduction Problem for Orthogonal
Transmission Schemes.

Internet Mathematics, 9 (2–3) (2013), 265–296
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Necessary Condition - Sketch of Proof

� By density arguments, it is sufficient to show the inequality for all
f ∈ F1

c(I).
� By the assumption of the solv. of the PAPR red. prob., and the Parseval’s

id., for arb. f ∈ F1
c(I), f =

∑
k∈I ckφk, and a ∈ l2(I), one can obtain the

following equality:∣∣∣∣∣∑
k∈I

ckak

∣∣∣∣∣ =
∣∣∣∣∣∑
k∈I

ckak +
∑
k∈Ic

ckak

∣∣∣∣∣ =
∣∣∣∣∫ 1

0

f(t)(EI(a))(t)dt

∣∣∣∣ ,
where ck := 0, ∀k ∈ Ic, and ak, k ∈ Ic, are the coeff. determined by a
suitable extension operator EI .

� Parseval’s identity, and the Hölder’s inequality give further hints:∣∣∣∣∣∑
k∈I

ckak

∣∣∣∣∣ =
∣∣∣∣∫ 1

0

f(t)(EI(a))(t)

∣∣∣∣ ≤ ‖f‖L1[0,1] ‖EI(a)‖L∞([0,1])

≤ CEx ‖f‖L1([0,1]) ‖a‖l2(I) .

� Finally, by setting a = c, and Parseval’s identity, the desired statement can
be obtained.
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Sufficient Condition

Theorem 2.3 (B. and Farell)

Let {φn}n∈N be a complete ONS for L2([0, 1]), and let be I ⊂ N, and CEx > 0.
If the following condition is fulfilled:

‖f‖L2([0,1]) ≤ CEx ‖f‖L1([0,1]) , ∀f ∈ F1(I),

then the PAPR reduction problem is solvable for ({φn}n∈N , I) with extension
constant CEx.

Main ingredients of the proof:

� Hahn-Banach Theorem.

� L∞([0, 1]) is the dual space of L1([0, 1])/ Representation of functionals on
L1([0, 1]).

H. Boche and B. Farell,
On the Peak-to-Average Power Ratio Reduction Problem for Orthogonal
Transmission Schemes.

Internet Mathematics, 9 (2–3) (2013), 265–296
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Solvability of PAPR Problem - OFDM

� Recall: The solvability of PAPR reduction problem is connected with
embedding problem of a closed subspace F1(I) of L1([0, 1]) into L2([0, 1]).

� Explicitly: For sake that the PAPR reduction problem is solvable for
({φn}n∈N , I) with a given extension constant CEx > 0, it is necessary that
the following inequality holds:

‖f‖L2([0,1]) ≤ CEx ‖f‖L1([0,1]) , ∀f ∈ F1(I), (1)

⇒ To show that the PAPR reduction problem is not solvable for ({φn}n∈N , I)
with a given extension constant CEx > 0, it is sufficient to search functions
in F1(I), for which (1) does not hold.

� Later: The existence of such functions is connected to the existence of
certain combinatorials objects in the information set I, viz.:
• Arithmetic progression in the OFDM case,
• Perfect Walsh sum in the CDMA case.
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Szemerédi Theorem on Arithmetic Progressions

Definition 3.1 (Arithmetic Progression)

Let be m ∈ N. An arithmetic progression of length m is defined as a subset of
Z, which has the form:

{a, a+ d, a+ 2d, . . . , a+ (m− 1)d} ,

for some integer a and some positive integer d.

� For sets with specific structures, such as sum sets A+A, A+A+A,
2A− 2A, for a A ⊂ N, there are some results concerning to the existence
of arithmetic progressions within those sets.

� Those results require some insights into the structure of A
� Is it possible to give a statement on the existence of arithmetic

progression(s) within a set A, only by knowing the size of A?
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Szemerédi Theorem on Arithmetic Progressions

Definition 3.2 ((δ,m)-Szemerédi Set)

Let I be a set of integers, δ ∈ (0, 1), and m ∈ N. The set I is said to be
(δ,m)-Szemerédi, if every subset of I of cardinality at least δ |I| contains an
arithmetic progression of length m.

Theorem 3.3 (Szeméredi Theorem)

For any m ∈ N, and any δ ∈ (0, 1), there exists NSz ∈ N, which depends on m
and δ, s.t. for all N ≥ NSz, [N ] is (δ,m)-Szemerédi.

E. Szemerédi,
On sets of integers containing no k elements in arithmetic progressions.

Acta Arith., 27 (1975), 199–245.
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Szemerédi Theorem - Historical Remarks

• The case m = 3 was established in 1953 by Klaus Roth (mentioned in his
Fields medal citation in 1958).

• The case m = 4 was established in 1969 by Endre Szemerédi.
• The case m ∈ N was proven in 1975, also by Szemerdi (mentioned in his

Abel prize citation in 2012).
Erdös: ”a masterpiece of combinatorial reasoning”.

• Several alternative proof, e.g. by Timothy Gowers for m = 4 (mentioned in
his Fields medal citation in 1998) and generally for m ∈ N.

K. Roth, On certain sets of integers. Journal of the London Mathematical
Society, 28 (1953), 104-109

E. Szemerédi, On sets of integers containing no four elements in arithmetic
progression. Acta Math. Acad. Sci. Hung., 20 (1969), 89 – 104

E. Szemerédi, on sets of integers containing no k elements in arithmetic
progression. Acta Arithmetica, 27 (1975).

W. T. Gowers, A New Proof of Szemerdi’s Theorem for Arithmetic
Progressions of Length Four. Geom. Funct. Anal., 8 (1998), 529 – 551.

W. T. Gowers, A New Proof of Szemerdi’s Theorem. Geom. Funct. Anal., 11
(2001), 465–588.
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Szemerédi Theorem - Asymptotic Case

� For asymptotic case, Szemerédi Thm. is somehow unsatisfying. It only
ensures the existence of arithmetic progressions of arbitrary length for
subsets A of N with positive upper density, i.e.:

The set A ⊂ N contains arithmetic progressions of arbitrary length if:

lim sup
N→∞

(|A ∩ [N ]| /N) > 0.

� A tightening of the Szemerédi is due to Green and Tao. They prove the
existence of a subset A of N with density 0, i.e.
limn→∞(|A ∩ [N ]| /N) = 0, containing arithmetic progressions of arbitrary
length:

Theorem 3.4 (Green and Tao)

The set of prime numbers P contains arithmetic progressions of arbitrary length.

B. Green and T. Tao,
The primes contain arbitrarily long arithmetic progressions.

Annals of Mathematics 167 (2008), 481–547.
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Szemerédi Theorem - Asymptotic Case and
Probabilistic Case

� Another asymptotic tightening of Szemerédi Thm. is the following:

Theorem 3.5 (Conlon, Gowers)

Given δ > 0, and a natural number m ∈ N. There exists a constant C > 0, s.t.:

lim
N→∞

P([N ]p is (δ,m)-Szemerédi) = 1, if p > CN
−1

(m−1) .

� Above Thm. ensures the existence of a sequence {pN} in (0, 1) tending to
0, for which:

lim
N→∞

P([N ]pN is (δ,m)-Szemerédi) = 1.

� In particular, the sets constructed by means {pN}N∈N has density zero.

D. Conlon and W. T. Gowers,
Combinatorial theorems in sparse random sets.

arXiv:1011.4301, (2011).
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Szemerédi Theorem - Asymptotic case

� Given a subset A of N, which is not too small (but possibly: A has density
0 in N). Is one able to guarantee the existence of arithmetic progressions of
arbitrary length within this set?

Erdös Conjecture on Arithmetic Progressions

Let A be a set of positive integers s.t.
∑
n∈A 1/n =∞. Then A contains an

arbitrarily long arithmetic progressions.

� Erdös Conjecture on arithmetic progressions remain unsettled.
It is even not known, whether A must contain arithmetic progressions of
length 3.

� A set which fulfills the requirement of above conjecture, and contain an
arbitrarily long arithmetic progressions: The set of prime numbers.

P. Erdös and R. L. Graham,
Old and New Problems and Results in Combinatorial Number Theory.

L’Enseignement Mathématique Université de Genève, 28 (1980).
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Solvability of PAPR reduction problem &
Arithmetic Progressions

Lemma 3.6

Let be I ⊂ N. Assume that there exists an arithmetic progression of length m
in I. Then, if the PAPR reduction problem is solvable for ({en}n∈N , I) with a
given extension constant CEx > 0, it follows:

CEx >

√
m

4
π2 log

(
m
2

)
+ C

,

for an absolute constant C > 0.

Sketch of Proof:
� Consider the signal f =

∑m−1
k=0

1√
m
ea+dk ∈ F1(I), for some a, d ∈ N.

� By Parseval’s inequality, and usual bound for Dirichlet kernel, we have:

‖f‖L2([0,1]) = 1, ‖f‖L1([0,1]) <

4
π2 log

(
m
2

)
+ C

√
m

,

for an absolute constant C > 0 (for instance: C = 5 + 2
24−π2 ).

� Necess. cond. for the solv. of PAPR reduction prob. gives the remaining.
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Solvability of PAPR reduction problem &
Arithmetic Progressions

Theorem 3.7

Given δ ∈ (0, 1) and m ∈ N, then there exists an NSz ∈ N, depending on δ and
m, s.t. for all N ≥ NSz, the following holds:
If the PAPR reduction problem is solvable for ({en}n∈N , I) with CEx > 0,
where I ⊂ [N ], with |I| ≥ δN , then:

CEx >

√
m

4
π2 log

(
m
2

)
+ C

, (2)

for an absolute constant C > 0.

� Proof ingredients: Previous Lemma and Szemerédi Thm.

� Above Thm. asserts, that there is a restriction to the size of the
information set such that the PAPR reduction problem is solvable.
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Asymptotic Tightenings of Thm. 3.7

� By Green and Tao’s Thm.:

There exists a set A (the set of prime numbers) of density 0 in N, s.t. for every
CEx > 0, there exists n0 ∈ N, s.t. the PAPR reduction problem is not solvable
for ({en}n∈N ,A ∩ [n0]) with CEx.
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Asymptotic Tightenings of Thm. 3.7

� By Conlon and Gowers Thm.:

Theorem 3.8

Let be m ∈ N, and δ ∈ (0, 1). Given a constant CEx > 0. Then, there is a
constant C, s.t.:

lim
N→∞

P (AN,m,p) = 1, if p >
C

N
1

m−1

,

where AN,m,p denotes the event: ”The PAPR problem is not solvable for
({en}n∈N , I) with

CEx ≤
√
m

4
π2 log

(
m
2

)
+ C

,

where C > is an absolute constant, for every subset I ⊂ [N ]p of size
|I| ≥ δ |[N ]p|.”

Notation: For N ∈ N and p ∈ [0, 1], [N ]p denotes a random set in which
each element of [N ] is chosen independently with probability p.
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Walsh functions

Definition 4.1 (Rademacher -, Walsh Functions)

The Rademacher functions rn, n ∈ N, on [0, 1] are defined as the functions:

rn(·) := sign[sin(π2n(·))],

where sign denotes simply the signum function, with sign(0) = −1.
By means of the Rademacher functions, we can define the so called Walsh
Functions wn, n ∈ N, on [0, 1] iteratively by:

w2k+m = rkwm, k ∈ N0 and m ∈ [2k],

where w1 is given by w1(t) = 1, t ∈ [0, 1].

Basic Properties:

• {wn}n∈N forms a multiplicative self-inverse group with the identity w1.
Furthermore, each element is self-inverse.

• {wn}n∈N is a complete ONS in L2([0, 1]).

• For n ∈ N \ 1,
∫ 1

0
wn(t)dt = 0.
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Perfect Walsh Sum

� The following object plays an important role for the derivation of
solvability of PAPR problem for CDMA systems.

Definition 4.2 (Perfect Walsh Sum (PWS))

Let be I ⊂ N finite. In case that the Walsh sum f indexed by I, i.e.
f =

∑
k∈I wk can be represented as:

f = wl∗

m∏
n=1

(1 + wkn) = wl∗(1 +

2m−1∑
n=1

wln) (3)

for a l∗ ∈ N, l1, . . . , l2m−1 ∈ N \ {1} mutually distinct, and kn ∈ N, for
n ∈ [m], we say f is a perfect Walsh sum (PWS) of size 2m.

� With abuse of terminology, I in above Def. is also called PWS of size 2m.
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� The adjective perfect is due to the following elementary property:

Lemma 4.3

Let m ∈ N. For an perfect Walsh sum f of the size 2m, it holds:

‖f‖L1([0,1]) = 1 and ‖f‖L2([0,1]) = 2
m
2

� As an immediate consequence of previous Lemma and the Theorem on the
necessary condition for the solvability of PAPR reduction problem, we have:

Lemma 4.4
Let be I ⊂ N. Assume that I contains a PWS of size 2m. If the PAPR
reduction problem is solvable for ({wn}n∈N , I) with a given extension constant
CEx > 0, then it follows:

CEx ≥ 2
m
2 .

� Thus, for a CEx > 0, to show that the PAPR reduction problem is not
solvable for ({wn}n∈N , I) with CEx, one needs to check whether a PWS of
size 2m exists in the information set, with 2

m
2 > CEx.
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Existence of PWS in an Information Set

Theorem 4.5

Let be N = 2n, n ∈ N, and δ ∈ (0, 1). Then, for every subset I ⊂ [N ] fulfilling:

|I| ≥ δN and |I| ≥ 3

(
2

δ

)2m−1

,

for an m ∈ N, I contains a PWS of size 2m.
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Proof of Thm. 4.5 (Idea)

� The following quantity and sets play an important rule for the proof:

Definition 4.6
Let be I ⊂ N finite, and r ∈ N. The correlation between wr and I is defined as
the quantity:

Corr(wr, I) =
1∫

0

wr(t)

∣∣∣∣∣∑
k∈I

wk(t)

∣∣∣∣∣
2

dt.

Furthermore, for wr, r 6= 1, and I, we define the following sets:

• M(wr, I) :=
{
k ∈ I : wkwk̃ = wr, for a k̃ ∈ I

}
• M(wr, I) :=

{
k ∈ I : wkwk̃ = wr, for a k̃ ∈ I, with k̃ > k

}
• M(wr, I) :=M(wr, I) \M(wr, I)
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Proof of Thm. 4.5 (Idea)

� Straightforward to show the following relation between the correlation and
subsets defined previously by means of the basic properties of Walsh
functions:

Lemma 4.7

Let be N = 2n, n ∈ N, I ⊂ [N ], and r ∈ [N ]. The following holds:

1 |M(wr, I)| = 2 |M(wr, I)| = 2
∣∣M(wr, I)

∣∣
2 Corr(wr, I) = |M(wr, I)|

3
∑N
r=1 Corr(wr, I) = |I|2

4 argmaxr∈[N ]\{1} Corr(wr, I) ≥ (|I|2 − |I|)/N
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Proof of Thm. 4.5 (Idea)

� Take a suitable δ ∈ (0, 1), and let for now N := 2n, n ∈ N be arbitrary.
Further, take an arbitrary I ⊂ [N ], which satisfies |I| ≥ δN .

� 1. step:
• Compute r1 := argmaxr∈[N ]\{1} Corr(wr, I), and define I1 :=M(wr1 , I).
• By Lemma 4.7, we can relate I1 to Corr(wr1 , I), and subsequently to |I|

and N :

|I1| =
1

2
|M(wr1 , I)| =

1

2
Corr(wr1 , I) ≥

|I| (|I| − 1)

2N

• By assumption, we continue:

|I1| ≥
δ

2
(|I| − 1) >

δ

2
(|I| − 2), (4)

• If I1 is non-empty (By (4), |I| ≥ 3(2/δ) sufficient), we can write:∑
k∈M(wr1

,I)

wk =
∑

k∈M(wr1 ,I)

wk+
∑

k∈M(wr1
,I)

wk = (1+wr1)
∑
k∈I1

wk. (5)

⇒ ∀k ∈ I, f
(1)
k := (1 + wr1 )wk is a Walsh sum indexed by a subset of

M(wr1 , I).
⇒ I ⊃M(wr1 , I) contains a PWS of size 2.
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Proof of Thm. 4.5 (Idea)

� 2. step:

• Assume that |I1| > (δ/2)(|I| − 2).
• Compute r2 := argmaxr∈[N ]\{1} Corr(wr, I1) (Possible to show: r2 6= r1),

and define I2 :=M(wr2 , I1).
• By similar argument as in the 1. step, assumption on |I1|, and some

computations:
|I2| >

(
δ
2

)3 |I| − 2. (6)

• If I2 6= ∅ (By (6), |I| ≥ 3(2/δ)3 sufficient), we have∑
r∈M(wr2

,I1)

wr = (1 + wr2)
∑

r∈M(wr2
,I1)

wr,

by similar splitting of the sum as done in the 1. step.
• As a consequence, we can continue to expand (5) as:∑

r∈M(wr1
,I)

wr = (1 + wr1)(1 + wr2)
∑
k∈I2

wk + f (2)
rem ,

where f
(2)
rem is simply some summands in

∑
k∈M(wr1

,I) wk.

⇒ ∀k ∈ I, f
(2)
k := (1 + wr1 )(1 + wr2 )wk a Walsh sum indexed by a subset of

M(wr1 , I).
⇒ I ⊃M(wr1 , I) contains a PWS of size 22.

� The remaining follows by repeating the previous 2 steps and by induction.
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PAPR reduction problem for CDMA Case - PWS

Theorem 4.8

Given δ ∈ (0, 1), and assume that N := 2n, n ∈ N fulfills:

N ≥ 3

2

(
2

δ

)2m

for some m ∈ N.

If the PAPR problem is solvable for ({wn}n∈N , I) with constant CEx, for a
subset I ⊂ [N ] having the density |I| /N ≥ δ, then it holds:

CEx ≥ 2
m
2 .

proof idea:

• |I| ≥ δN ≥ 3(2/δ)2
m−1.

• Apply Thm. 4.5.
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PWS - Asymptotic result

The following consequence of Thm. 4.5 shall be used to give analogons of
Conlon and Gower’s -, Green and Tao asymptotic results on arithmetic
progressions, for PWS:

Corollary 4.9

Let be m ∈ N and N ∈ N be sufficiently large, s.t.:

δN := 2

(
3

2N

) 1
2m

∈ (0, 1).

Then all subsets I ⊂ [N ], with |I| ≥ δNN , contains a PWS of size 2m.

Proof:
• by Thm. 4.5, a sufficient condition for δ ∈ (0, 1), s.t. I ⊂ [N ], with
|I| ≥ δN , contains a PWS of size 2m:

δN ≥ 3

(
2

δ

)2m−1

. (7)

• Equality in (7) is achieved by setting δ = δN
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PWS - Asymptotic and Probabilistic result

Theorem 4.10

Let be m ∈ N. Then there is a sequence {pN}, with N large enough, in (0, 1]
tending to zero, for which it holds:

lim
N→∞

P [[N ]pN contains a PWS of size 2m] = 1

Sketch of Proof:

• For m ∈ N, and τ > 1, choose N ∈ N large enough, s.t. pN := τδN , where
δN is given as in Cor. 4.9.

• Since |[N ]pN | is binomially distributed, Chernoff’s bound asserts that the
probability of |[N ]pN | is getting more concentrated near
E[|[N ]pN |] = τδNN as N gets larger.

• Cor. 4.9 gives the remaining.
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PWS - Asymptotic and Probabilistic result

By some efforts, one can even show a stronger statement:

Theorem 4.11

Let m ∈ N, and δ ∈ (0, 1). Then there is a sequence {pN}, with N large
enough, in (0, 1], tending to zero, for which it holds:

lim
N→∞

P [AN,m,δ] = 1,

where AN,m,δ denotes the event:
”Every subset I of [N ]pN , with |I| ≥ δ |[N ]pN | contains a PWS of size 2m.”
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PWS & Solvability of PAPR Reduction Problem -
Asymptotic and Probabilistic result

Theorem 4.12

Let be m ∈ N. Given an extension constant CEx > 0, with CEx < 2
m
2 . Then

there exists a sequence {pN}, with N large enough, in (0, 1], tending to zero,
s.t.:

lim
N→∞

P
[
The PAPR problem is not solvable for ({wn}n∈N , [N ]pN ) with CEx

]
= 1
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PWS & Solvability of PAPR Reduction Problem -
Asymptotic and Probabilistic result

Theorem 4.13

Let be m ∈ N. Given an extension constant CEx > 0, with CEx < 2
m
2 , and

δ > 0. Then there exists a sequence {pN}, with N large enough, in (0, 1],
tending to 0, for which it holds:

lim
N→∞

P [BN,δ] = 1,

where BN,δ denotes the event:
”The PAPR problem is not solvable for all ({wn}n∈N , I) with CEx, where
I ⊂ [N ]pN , |I| ≥ δ |[N ]pN |.”
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Asymptotic results for PWS

� Erdös Conjecture on arithmetic progressions:

If A ⊂ N fulfills
∑
k∈A 1/k =∞, then A contains arithmetic progressions of

arbitrary length.

� Still widely open. Even unknown for arithmetic progressions of length 3

� By means of Cor. 4.9, we are able to give the solution of Erdös problem for
PWS:

Theorem 4.14 (Solution of Erdös Problem for PWS)

Let be I ⊂ N, for which it holds:
∑
k∈I

1
k =∞. Then, I contains a PWS of

arbitrary size. Specifically: For each m ∈ N, there exists n0 ∈ N, such that
I ∩ [2n0 ] contains a PWS of size m.
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Asymptotic results for PWS

� As an immediate consequence, we obtain the analogon of Green and Tao’s
Thm. on the existence of arithmetic progressions for PWS:

Corollary 4.15

Let P ⊂ N denotes the set of prime numbers. Then, P contains an PWS of
arbitrary length, i.e. for every m ∈ N, there exists n0 ∈ N, s.t. P ∩ [2n0 ]
contains a PWS of size 2m.
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Asymptotic results for PWS

� As an immediate consequence, we obtain the analogon of Green and Tao’s
Thm. on the existence of arithmetic progressions for PWS:

Corollary 4.16

Let P ⊂ N denotes the set of prime numbers. Then, P contains an PWS of
arbitrary length, i.e. for every m ∈ N, there exists n0 ∈ N, s.t. P ∩ [2n0 ]
contains a PWS of size 2m.

� Immediate consequence for the Solvability of PAPR Problem for CDMA:

For an information set I ⊂ N, with
∑
k∈I 1/k =∞, the PAPR reduction is not

solvable for ({wn}n∈N , I) with any extension constant CEx > 0.
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Summary and Conclusions

� High dynamics of orthogonal transmission scheme is a serious problem.
� Tone reservation gives a canonical method to control the peak value of

waveforms of orthogonal transmission scheme.
� Not applicable for arbitrary cases, specifically: for any desired threshold

value!

� PAPR reduction problem is related to several interesting mathematical
fields, such as functional analysis, (additive) combinatorics, trigonometric
-, and non-trigonometric analysis.

� The solvability of PAPR reduction problem for an orthogonal transmission
scheme with a given extension constant (resp. the applicability of tone
reservation method for a given threshold value) depends on the existence
of certain combinatorial objects:
• In the OFDM/Fourier case: Arithmetic progressions
⇒ The famous Szemerédi Thm. and several tightening due to Green and Tao,

Conlon and Gowers can be applied.
� The deterministic asymptotic case still open (Erdös Conjencture).

• In the CDMA/Walsh case: Perfect Walsh sum
⇒ Szémeredi-like Theorem and several tightening for the asymptotic case can

be derived.
⇒ A solution to the Erdös problem can even be given in this case.
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