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Motivation

Phase Retrieval - Motivation
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Motivation

Phase Retrieval - Motivation

Signal processing approach: n-dimensional

Problem Given ¢, = [{(am, x)|? for m=1,..., M
eIVl sl Recover x € Cn

¢ Specific and multiple measurements

Whenis x — (an, x) e Choose {a,}, as basis
injective? e M=n(e.g. DFT)

When is x — [{am, x)|?> @ Choose {a,} ., as MUB or as a
injective? 2-uniform M/n tight frame
with M = n?
e Genericframe: M 24n-2 g0 etal 2009]

¢ Efficient reconstruction algorithm: convex optimization techniques

R. Balan, B. G. Bodmann, P. G. Casazza, D. Edidin, ,,Painless reconstruction from magnitudes of frame coefficients “ J. Fourier Anal.
Appl., vol. 15 (Aug. 2009), no. 4, 488-501.
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Phase Retrieval - Motivation

n dimensions — oo dimensions ?



Motivation

Phase Retrieval — co-dimensional

Time (spatially) limited signals x € £2(T) with T = [—Z, Z]

m=) [somorphic, Fourier Transform™:

x i+ X(z) = /X(t) e'?dt ,Vze C
T

Theorem (Paley-Wiener)

For all x € L3(T) : /x(t) e dt =: %(z) € PWr/s
T

— 5\((2) is an entire function with |)’2(z)| < Ce§|2|

and [ [X(w)]Pdw < o0




Motivation

Phase Retrieval — co-dimensional

S Given Cm = |dm(X)[*for m=1,..., M
(T DIEWIIM Recover X € PWr /o

@ Find ®m(am, An)such that m=) Measurement setup

@ Kn ++ [{am, %q)[?injective for X, € C" mmp MUB, 2-uniform ... a,

@ X {)?n}nEZ injective —> Sampling points A,



Main results Setup

Our approach — Measurement setup

= [9(N(nB)2
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Za Mt m=1 ..M X eC| o™=
K

(m) .__ 2 (m) &
c, kz_: X(”B + 212 = [{\™, K)o 2 ~ For fix n as in k-dimensional
= phase retrieval!
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Main results Setup

Our approach — Measurement setup

o YW eyl 2 (51 (np)P2
~ (X _ " x
al™ %(nB + A1) T
(m) . : o . x(t) pA(t)
(@7 — Xn = : —_— :
a&(m) )?(nJB _|_ AK) = y(M >{ C,(,M) — |9(M)(nﬁ)\2
pM(t)
: m o\ |2 _
Problem Given ") = (™) )2 form=1,.., M
(e BIEM Recover X € PWr )2
CD For each n solve m=) Choice of vectors o™ ?
{|{ (m) Xn>’2}m LM = R How big is M?

@ Xn 1%(An)tnez — ®5\< ==) Choice of 4;,?



Main results Parameters

Choice of modulator coefficients o.(™m

(1) Foreachnsolve ==) Choice of vectors o™ ?
How big is M?

Sufficient condition: o™ is 2-uniform M/K-tight, M = K2

Instead of Xx,obtain Q; = X,X*

A M M [Balan et al., 2009]
(K +1) (m) 1 (m)
Q= DS Q2> e

. " [Candes et al., 2013]
min trace(Qx = xx™)
X

s.t. trace(a!Ma!™* Q) = ¢ YMm=1,..., M
Q>0

Eigenvectors of Qg = %,%*: X, V0 € [, 7]

==) Finite dimensional signal recovery only up to constant phase

R. Balan et al., ,Painless reconstruction from magnitudes of frame coefficients “ J. Fourier Anal. Appl., vol. 15 (Aug. 2009), no. 4, 488-501.
E. J. Candes, Y. C. Eldar, T. Strohmer, V. Voroninski, ,,Phase Retrieval via Matrix Completion “ SIAM J. Imaging Sci. vol. 6 (2013), no. 1, 199-255.



Main results Parameters

Sampling in the complex plane
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Main results

Parameters

Sampling in the complex plane

) =

X(nB + A1)
Rl = e
X(nB + k)

k
2
\> M (np)[? = Za %(nB+ )| = [{al™, %,) 2 -/
7™ (w)] :I
nP (nJIrl)B (ﬂ-ll-Z)B Frequenc; (o)
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Main results Parameters

Phase propagation

@

Q) {(&(nB+ M) neZ k=1,.., K} = {&n)}nez — &

The constant phases are generally different!
=) 0, =0, £ncl

A Im(z)
/o \ 0\ o
o o o
o o o
o o o Re(z,)
\ o / / o o
)?neiG,, 5‘<n+1ei9”+1 5‘<n+2ei9”+2

Choice of A,: @ Consecutive finite blocks should have at
Ieaslt one overlap

o X 7é 0 atthese overlaps!



Main results Parameters

Sampling in the complex plane

Im(z)
ns gt A=\ o o
° ° °
) ) ) .
° ° ° Re(zS
- ° ° °
ng+ X =: XA

Relabelling all sampling points A = {)\n}nEZ



Main results Parameters

Choice of A,

b

{X(A\n)}nez = % == Choice of 1,,?



Choice of A,

=

Main results Parameters

Interpolation condition: 533(/\”) = 5?(/\,,) VneZ
(An)

Solved by X,(z) = ZnEZ X(An)n(2)
A Z—A\m
with Lagrange interpolator ¥n(z) = X\
m#n n — “‘\m

Choice of A, for perfect reconstruction such that
%2(2) = X(z) Vze C
= X, (\)=%x(\,)VneZ solved uniquely

({)\n}nez is a complete interpolating sequence)

Nice result for Paley Wiener spaces




Main results Parameters

Choice of A,

For X € PWT/Q

Theorem (Complete Interpolating Sequence)

Let X € PWT/2 and {Cn}nEZ € £2.
The interpolation problem X(A,) = ¢, Vn € Z has a unique solution
({)\n}nez is a complete interpolating sequence)

&= {M'} ;7 is a Riesz basis for £3(T)

One example: Zeros of sine-type functions of type >T/2

Definition (Sine-type functions)
An entire function of exponential type T/2 5(z) = P.V. ][ cz(1 — &)
is called sine-type of type T/2 if it has simple and separated zeros A, for
which there exist A, B, H s.t.

Aezll < |S(¢+in)| < Bezl" | for |n| > H.

B. Y. Levin, ,Lectures on entire functions”, American Mathematical Society, Providence, RI, 1997.



Main results Reconstruction

Main Theorem

*ﬁg IM

(M) p(M) (M) _ o (M) 2 (m) . . o . .
o Y [ B0 s @ =™ ms) ol . %

pM(2)

Given the measurement setup and p'™ as above.

Then X € PWr /2 can be perfectly recovered from ™ = [{al™), %, |2
for m=1,..., Mwhenever

oM constitute a 2-uniform - > Ko .c,(,”’)
M/K tight frame with M = K? injective
Aj s.t._consecutive blocks have at - % = {X(An)}nez
¢Z[east one overlap withx # 0 " ™> well-defined
@D {An}nez is an complete > {X(An) bnez — X

Interpolating sequence unique




Corollary Result

Corollary

How can we ensure that X(A) # 0 at the overlapping sampling points?

Corollary

Let the maximal energy of x be known ||x||z2(1) < Wa.
By the Plancherel Polya Theorem

AM Vx 1 |%(2)] < MWgez!n
Now consider the following function as our signal in the Fourier
domain with T>T

0(z) = Dcos(L-z) — X(2)

Then the zeros are concentrated in a strip |n| > H, such that
given H, one can construct a complete interpolating sequence
which enables perfect reconstruction from the samples
clm = 1(a!™ ¥,)|? up to a constant phase.

Example construction of feasible A,, )



Corollary

Proof- Zeros of sine-type functions

Theorem (Levin)

By shifting zeros of a sine-type function (e.g. such that |k| > H for all k),

the corresponding function S(z)=P.V. H(l _ i)
nez )\n
remains to be a sine- type function, i.e. the resulting zeros are still a

complete interpolating sequence.

A
Im(z)
H
o o o o o
— o
o o
° o © ° °
o) - >
o o
~ o g o Re(z)
o o = o o
o (- o
-H
B. Y. Levin, ,Lectures on entire functions”, American Mathematical Society, Providence, RI, 1997.



Discussion

Summary and outlook

Perfect signal reconstruction from magnitude measurements of the
Fourier Transform for x € £L3(T) <+ X € PWr/»
using the special structure of the modulators

(m) Za el Mkt m=1 ..M, A\ €C

Overlap condition unnecessary when maximal energy ||X||ﬁ2('IF) < Wo
of the signal is given

For K=2and a =1, we obtain the minimal overall sampling rate R = 4Ry,

where Ry, is the Nyquist rate.
Compare to n-dimensional case: 4n-2 and 4n-4 (sufficient)

Remaining questions:

m==) How does robustness compare to existing algorithms?

m=) How can we extend this formalism to continuous functions
on a 2-dimensional case?



Discussion
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