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The classical jammer is basically a multiple 
access channel, but with one sender (A) 
cooperating with the receiver (B), and the 
other sender (J) acting adversarially.
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Generalise it to a quantum channel N, i.e. cptp 
(completely positive, trace preserving) linear 
map; maps states on A⊗J to states on B:
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Generalise it to a quantum channel N, i.e. cptp 
(completely positive, trace preserving) linear 
map; maps states on A⊗J to states on B:




*Systems described by (complex) Hilbert spaces

 A, B, J, …, usually of finite dimension |A|, etc;

*States are density matrices ρ ≥ 0, Tr ρ = 1

 (for diagonal matrices recover probability

 distributions); state space S(A), etc;

*von Neumann entropy S(ρ) = - Tr ρ log ρ, i.e.

 the Shannon entropy of the spectrum;

*State transformations are completely positive,

 trace preserving linear (cptp) maps acting on

 density matrices - quantum channels;

*Composition of systems by tensor product.

Quantum info primer:
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 channel uses = tensor product N  ; however, 
jammer is not restricted to product states!
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Arbitrary jammer states σ: QAVC 

                            - correlated noise

Tensor power states σ  : compound channel

                  - effective channels all i.i.d.

N ⊗ ⊗

⊗



Previously considered models were hybrids: 
link from A is modelled quantumly, but 
jammer has a discrete state set (s).

               [Ahlswede/Blinovsky, IEEE-IT 2007;

                         Ahlswede et al., CMP 2013]

NA B

J (a set)

1. Quantum jammer channels

ρ

N (ρ)

s

s



2. Capacities: C & Q
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2. Capacities: C & Q
We regard these codes as deterministic, 
but note that the encoder in a certain 
sense is stochastic; no analogue of the 
classical distinction det.-vs-stoch. encoder.


In contrast, a random code is a family of 
codes (C ), where λ is a random variable, 
shared between sender and receiver.

λ
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We regard these codes as deterministic, 
but note that the encoder in a certain 
sense is stochastic; no analogue of the 
classical distinction det.-vs-stoch. encoder.


In contrast, a random code is a family of 
codes (C ), where λ is a random variable, 
shared between sender and receiver.

We call C a random ( ,ε)-code if for 

all σ ∈ S(J  ), 𝔼 P (C ,σ) ≤ ε.err

⊗
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2. Capacities: C & Q
Leads to three potentially different 
capacities (maximum rate for , while 
ε→0): C  (N) ≤ C   (N) ≤ C({N })det rand σ
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2. Capacities: C & Q
Leads to three potentially different 
capacities (maximum rate for , while 
ε→0): C  (N) ≤ C   (N) ≤ C({N })det rand σ

deterministic

QAVC capacity

random QAVC

capacity

compound

capacity (equal

det./random)

What is the status of the inequality signs?



2. Capacities: C & Q
The compound capacity C({N }) is the 
easiest to characterise:

σ

   C({N }) = sup - max  min I(X:B ),1
σ{p ,ρ }x x

where the max is over all ensembles of 
input states ρ  ∈ S(A ), and the min is 
over all jammer states σ ∈ S(J);

x

σ

[Bjelaković et al., CMP 2009;

Mosonyi, IEEE-IT 2015]



2. Capacities: C & Q
The compound capacity C({N }) is the 
easiest to characterise:

σ

   C({N }) = sup - max  min I(X:B ),1
σ{p ,ρ }x x
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I(X:B ) = S(∑ p ω ) - ∑ p S(ω ) is the 
Holevo information of the ensemble of 
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Main results (spoilers!):
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Main results (spoilers!):



      Q  (N) = Q   (N) = Q({N })det rand σ

Result 1: always =

(OK, that was known

before, but we show

how from any decent

compound code to 

build a random code)

Result 2: always =, 

unless C  (N) = 0

(This is a quantum

version of Ahlswede’s

capacity dichotomy)

det

’‘

Works the same for quantum capacity Q 
(high-fidelity transm. of qubits):



3. Compound to QAVC codes
To prove C   (N) = C({N }), we use anyrand σ
( ,ε)-compound code C, and as shared 
randomness a random permutation λ of 
[ ]; used to permute the input registers 
and to un-permute the outputs.
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Finally, observe that P (C,σ) is linear in σ.err



3. Compound to QAVC codes
To prove C   (N) = C({N }), we use anyrand σ
( ,ε)-compound code C, and as shared 
randomness a random permutation λ of 
[ ]; used to permute the input registers 
and to un-permute the outputs.

Proposition 1: If C has error probability ε, 
then the above random code (C ) has 
error ε’ ≤ poly( ).ε.

λ

Now, only need compound codes with 
super-polynomially fast error convergence ✓



4. Elimination of correlation
To prove C  (N) = C   (N), if the former 
is positive, we show that negligible (to be 
precise, O(log )) randomness is required 
to achieve the latter.
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Idea: 𝔼 P (C ,σ), for every jammer state σ, 
is average of values in [0;1], so we can 
exponentially approximate it using n i.i.d. 
samples λ , λ , …, λ  (Hoeffding bound);
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then union bound over σ. Fails, because 
discretisation requires exp(|J| ) states
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4. Elimination of correlation
Better idea: P (C ,σ) is a linear function 
of σ, with values in [0;1], so it can be 
written P (C ,σ) = Tr σE , with some 
operator 0 ≤ E  ≤ I.

err λ

err λ λ

λ



4. Elimination of correlation
Better idea: P (C ,σ) is a linear function 
of σ, with values in [0;1], so it can be 
written P (C ,σ) = Tr σE , with some 
operator 0 ≤ E  ≤ I.

err λ

err λ λ

λ

Hence, 𝔼 P (C ,σ) = 𝔼 Tr σE  = Tr σ(𝔼 E ), 
and it is enough to bound the largest 
eigenvalue of the average of E …

err λλ λ λ λ λ

λ



4. Elimination of correlation
Better idea: P (C ,σ) is a linear function 
of σ, with values in [0;1], so it can be 
written P (C ,σ) = Tr σE , with some 
operator 0 ≤ E  ≤ I.

err λ

err λ λ

λ

Hence, 𝔼 P (C ,σ) = 𝔼 Tr σE  = Tr σ(𝔼 E ), 
and it is enough to bound the largest 
eigenvalue of the average of E …

Now use the matrix Hoeffding bound to 
show that average of E  (i=1,…,n) is small!λi

[Ahlswede/AW, IEEE-IT 2002]
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4. Elimination of correlation

Matrix Hoeffding bound: Let X  be i.i.d 
random Hermitian dxd-matrices (i=1,…,n), 
with 0 ≤ X  ≤ I. If 𝔼X ≤ εI, then

  Pr{-∑X ≰ (ε+δ)I} ≤ d.exp(-c.δ n)

[Ahlswede/AW, IEEE-IT 2002;

see also Tropp, User-Friendly Matrix Tail Bounds]
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4. Elimination of correlation
To prove C  (N) = C   (N), if the former 
is positive, we show that negligible (to be 
precise, O(log )) randomness is required 
to achieve the latter.
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Proposition 2: If there is a random code 
with error ≤ ε, then there exists one with 
error ≤ ε+δ, where the random variable 
takes only n ≤ O( /δ ) values.2



4. Elimination of correlation
To prove C  (N) = C   (N), if the former 
is positive, we show that negligible (to be 
precise, O(log )) randomness is required 
to achieve the latter.

det rand

Proposition 2: If there is a random code 
with error ≤ ε, then there exists one with 
error ≤ ε+δ, where the random variable 
takes only n ≤ O( /δ ) values.2

If C  (N)>0, this can be generated 
inefficiently, not losing any rate.

det



5. Reflections/Conclusion
1) Random permutations provide a 

systematic link between compound and 
arbitrarily varying jammer, explaining why 
the capacity formulas are the same


2)Matrix tail bounds establish the fully 
quantum analogue of the Ahlswede 
dichotomy, showing that the required 
randomness is always logarithmic in the 
block length.



5. Reflections/Conclusion

3) Both results rely on the linearity of the 
error in σ, and more specifically that it 
is given by an observable 0 ≤ E ≤ I, 
which works for both C and Q. This is 
non-trivial and may not be the case for 
other channel capacities.



5. Reflections/Conclusion
4)Don’t take it for granted! Consider the 

private capacity P(N), introducing an 
eavesdropper informed by the jammer:
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  The problem is that the privacy criterion

  (trace norm) isn’t linear in σ…



5. Reflections/Conclusion

5)We also used finiteness of |A|, |B| and 
most importantly |J|. If we keep input 
and output finite, can we also allow 
infinite dimensional J? This presents a 
problem both for the de Finetti 
reduction to compound, as well as for 
the elimination of correlation         
[Cf. Ahlswede, Z. Wahrsch. Verw. Geb. 1978]



Thanks for watching!


