Stable Embedding of Sparse Convolutions

Philipp Walk^{1,*}

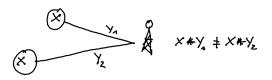
¹Technische Universität München Fakultät Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Informationstechnik

* joint work with *Peter Jung*, Technische Universität Berlin Fachgebiet Informationstheorie und theoretische Informationstechnik

Matheon Workshop on Compressed Sensing and its Applications
Berlin, December 13, 2013

Linear Time Invariant System: x * y

When is the LTI System stable? (\Rightarrow injectivity)



Possible if convolution has the Restricted Norm Multiplicativity Property, i.e.

$$\alpha \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\| \leq \left\| \mathbf{x} * \mathbf{y} \right\| \leq \beta \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\|$$

for some $\alpha, \beta > 0$.

Convolution on Abelian Groups

Let G = (G, +) be a *torsion free*, discrete, abelian group.

- Set G with group action + (addition)
- $g_1, g_2 \in G: g_1 + g_2 = g_2 + g_2 \in G$
- ► Exists identity 0 ∈ G
- ► Exists inverse element -g for each $g \in G$ s.t. g g = 0.
- $ng \neq 0$ for all $g \in G \setminus \{0\}, n \in \mathbb{Z} \setminus \{0\}$

Examples

- Z
- Q

We define for an integer $s \le |G|$ the set of s-sparse sequences:

$$\ell_s^2(G) := \left\{ \mathbf{x} : G \to \mathbb{C} \mid \|\mathbf{x}\|^2 := \sum_{i \in G} |x_i|^2 < \infty, |\operatorname{supp} \mathbf{x}| \le s \right\}. \tag{1}$$

For $\mathbf{x} \in \ell^2_s(G)$ and $\mathbf{y} \in \ell^2_f(G)$ its *convolution* is given element wise as:

$$(\mathbf{x} * \mathbf{y})_j = \sum_{i \in G} x_i y_{j-i}$$
 for all $j \in G$. (2)

Hermitian Toeplitz Matrices

► For $A \in [0, n-1]_s = \{A \subset [0, n-1] \mid |A| = s\}$ we define the projection

$$\mathbf{P}_A:\mathbb{C}^n\to\mathbb{C}^s. \tag{3}$$

From any $n \times n$ -matrix **B** we get a $s \times s$ principal submatrix

$$\mathbf{B}^{A} = \mathbf{P}_{A}\mathbf{B}\mathbf{P}_{A}^{*} \tag{4}$$

Further, we denote by $\mathbf{B_a}$ an $n \times n$ - Hermitian Toeplitz matrix generated by $\mathbf{a} \in \Sigma_k^n$ with symbol for $\omega \in [0, 2\pi)$

$$b(\mathbf{a},\omega) = \sum_{k=1-n}^{n-1} b_k(\mathbf{a}) e^{ik\omega} = 1 + \sum_{k=1}^{n-1} (\mu_k \cos(k\omega) + \nu_k \sin(k\omega))$$
 (5)

with

$$\mu_k := 2\Re(b_k(\mathbf{a})), \quad \nu_k := -2\Im(b_k(\mathbf{a})) \quad \text{and} \quad b_k(\mathbf{a}) := \sum_{i=0}^{n-1} a_i a_{i+k}$$

FEJÉR-RIESZ factorization:

non-negative trigonometric polynomial of order not larger than n.

Theorem ([W. & Jung,'13])

Let s and f be natural numbers and G a torsion-free, discrete, abelian group. Then there exist constants $0 < \alpha(s,f) \le \beta(s,f) < \infty$ depending solely on s and f, s.t. for all $\mathbf{x} \in \ell_s^2(G)$ and $\mathbf{y} \in \ell_f^2(G)$ it holds:

$$\alpha(s, f) \|\mathbf{x}\| \|\mathbf{y}\| \le \|\mathbf{x} * \mathbf{y}\| \le \beta(s, f) \|\mathbf{x}\| \|\mathbf{y}\|.$$
 (6)

Moreover, we have $\beta^2(s, f) = \min\{s, f\}$ and with $n = \lfloor 2^{2(s+f-2)\log(s+f-2)} \rfloor + 1$:

$$\alpha^{2}(s, f) = \min \left\{ \min_{\substack{\vec{y} \in \Sigma_{f}^{n}, ||\tilde{y}|| = 1\\ l \in [0, n-1]_{s}}} \lambda(\mathbf{B}_{\tilde{y}}^{l}), \min_{\substack{\tilde{\mathbf{x}} \in \Sigma_{g}^{n}, ||\tilde{\mathbf{x}}|| = 1\\ J \in [0, n-1]_{f}}} \lambda(\mathbf{B}_{\tilde{\mathbf{x}}}^{J}) \right\}, \tag{7}$$

which is a decreasing sequence in s and f. If $\beta(s, f) = 1$ we get equality with $\alpha(s, f) = 1$.

- Upper bound trivial, CAUCHY-SCHWARZ inequality
- Lower bound, given by a NP-hard bi-quadratic optimization problem:

$$\alpha(\mathbf{S}, f) := \min_{\substack{\mathbf{x} \in \ell_S^2(G) \\ \mathbf{y} \in \ell_f^2(G)}} \frac{\|\mathbf{x} * \mathbf{y}\|}{\|\mathbf{x}\| \|\mathbf{y}\|} = \min_{\substack{\mathbf{x} \in \ell_S^2(G), \mathbf{y} \in \ell_f^2(G) \\ \|\mathbf{x}\| = \|\mathbf{y}\| = 1}} \|\mathbf{x} * \mathbf{y}\|$$
(8)

- ► For each (\mathbf{x}, \mathbf{y}) it exists $I, J \subset G$, s.t. supp $\mathbf{x} \subseteq I$, supp $\mathbf{y} \subseteq J$ and |I| = s, |J| = f.
- Let $I = \{i_0, \dots, i_{s-1}\}$ and $J = \{j_0, \dots, j_{t-1}\}$ then (\mathbf{x}, \mathbf{y}) can be represented by $\mathbf{u} \in \mathbb{C}^s$ and $\mathbf{v} \in \mathbb{C}^t$ component-wise as:

$$x_i = \sum_{\theta=0}^{s-1} u_{\theta} \delta_{i,i_{\theta}} \quad , \quad y_j = \sum_{\gamma=0}^{f-1} v_{\gamma} \delta_{j,j_{\gamma}} \quad \text{for all} \quad i,j \in G$$
 (9)

Ok, let's start!

$$\|\mathbf{x} * \mathbf{y}\|^{2} = \sum_{j \in G} \left| \sum_{i \in G} x_{i} y_{j-i} \right|^{2} = \sum_{j \in G} \left| \sum_{i \in G} \left(\sum_{\theta=0}^{s-1} u_{\theta} \delta_{i, i_{\theta}} \right) \left(\sum_{\gamma=0}^{f-1} v_{\gamma} \delta_{j-i, j_{\gamma}} \right) \right|^{2}$$

$$= \sum_{j \in G} \left| \sum_{\theta=0}^{s-1} \sum_{\gamma=0}^{f-1} \left(\sum_{i \in G} u_{\theta} \delta_{i, i_{\theta}} v_{\gamma} \delta_{j, j_{\gamma}+i} \right) \right|^{2}$$

$$(i \to i + i_{0}) \to = \sum_{j \in G} \left| \sum_{\theta} \sum_{\gamma} \left(\sum_{i \in G} u_{\theta} \delta_{i+i_{0}, i_{\theta}} v_{\gamma} \delta_{j, j_{\gamma}+i+i_{0}} \right) \right|^{2}$$

$$(j \to j + i_{0} + j_{0}) \to = \sum_{j \in G} \left| \sum_{\theta} \sum_{\gamma} \left(\sum_{i \in G} u_{\theta} \delta_{i, i_{\theta}-i_{0}} v_{\gamma} \delta_{j, j_{\gamma}-j_{0}+i} \right) \right|^{2}$$

Therefore we can allways assume for the support $I, J \subset G$ that $i_0 = j_0 = 0$.

$$= \sum_{j \in G} \left| \sum_{\theta} \sum_{\gamma} \left(u_{\theta} v_{\gamma} \delta_{j, j_{\gamma} + i_{\theta}} \right) \right|^{2} = \sum_{j \in G} \sum_{\theta, \theta'} \sum_{\gamma, \gamma'} u_{\theta} \overline{u_{\theta'}} v_{\gamma} \overline{v_{\gamma'}} \delta_{j, j_{\gamma'} + i_{\theta'}}$$

$$= \sum_{\theta, \theta'} \sum_{\gamma, \gamma'} u_{\theta} \overline{u_{\theta'}} v_{\gamma} \overline{v_{\gamma'}} \delta_{j, j_{\gamma'} + i_{\theta'}} =: b_{I, J}(\mathbf{u}, \mathbf{v})$$

Fourth order tensor $A_{I,J}$

Infinite Many Problems

$$\begin{split} \mathcal{A}_{I,J} &= \left(\delta_{i_{\theta}+j_{\gamma},i_{\theta'}+j_{\gamma'}}\right) \in \left\{0,1\right\}^{sf \times sf} \\ & \underset{\substack{I,J \subset G \\ |I| = s, |J| = f \\ \|\mathbf{u}\| = \|\mathbf{v}\| = 1}}{\min} b_{I,J}(\mathbf{u},\mathbf{v}) \end{split}$$

- Each (I, J) generates an NP-hard problem [Ling et al., '09]
- Find the minimum over all these NP hard problems (countable many)!

Wow, is that maybe somehow easier? Are there finite many problems?

 $(sf)^2$ elements each equal 0 or 1 \Rightarrow Not more than $2^{(sf)^2}$ problems

Problem: How can the additive structure be represented by finite many numbers?

Additive Combinatoric

Let us consider a mapping ϕ of the indices. For $I, J \subset G$ with $0 \in I \cap J$ an injective map:

$$\phi: I + J \to \mathbb{Z} \tag{10}$$

which additional satisfies (preserves additive structure of the indices):

$$\forall i, i' \in I, j, j' \in J : i + j = i' + j' \stackrel{\Rightarrow}{\rightleftharpoons} \phi(i) + \phi(j) = \phi(i') + \phi(j')$$

$$\tag{11}$$

is called a Freiman homomorphism on I, J resp. a Freiman isomorphism

Show for any $I, J \subset G$ with |I| = s, |J| = f the existence of a Freiman isomorphism ϕ such that $\phi(I), \phi(J) \subset [0, n-1] = \{0, 1, \dots, n-1\}$ with n = n(s, f).

Indeed, for $A = I \cup J$ with $|A| \le s + f - 1$ one may find:

Conjecture ([Konyagin and Lev, '00])

Let $A \subset \mathbb{Z}$ with |A| = m then there exist an Freiman isomorphism ϕ s.t. $\phi(A) \subset [0, 2^{m-2}]$.

Still unsolved!

Lemma ([Grynkiewicz, '13])

Let G be a torsion-free additive abelian group and $A \subset G$ be finite sets containing zero with m := |A| and Freiman dimension $d = \dim^+(A + A)$. Then there exists an injective Freiman homomorphism:

$$\phi: A + A \rightarrow \mathbb{Z}$$

such that

$$diam(\phi(A)) \le d!^2 \left(\frac{3}{2}\right)^{d-1} 2^{m-2} + \frac{3^{d-1}-1}{2}.$$

- ► $A = I \cup J$ with diam($\Phi(A)$) = max($\phi(A)$) min($\phi(A)$).
- ▶ Using a result of [Tao & Vu, '06] to find $d \le |A| 2 \le m 2$
- ϕ bijective Freiman homomorphism on $A + A \Rightarrow$ Freiman isomorphism on A
- Setting $\phi' = \phi c^*$ (still Freiman) with

$$c^* := \min_{a \in I \cup J} \phi(a). \tag{12}$$

- $\tilde{I} := \phi'(I)$ and $\tilde{J} := \phi'(J)$ with $|\tilde{I} \cup \tilde{J}| \le s + f 1$
- Using some log estimates gives finally

$$diam(\phi(A)) < \lfloor 2^{2(s+f-2)\log(s+f-2)} \rfloor + 1 =: n$$
 (13)

▶ Hence we can represent the addition by subsets $0 \in \tilde{I} \cup \tilde{J} \subset [0, n-1]$.

Bi-Quadratic Problem

$$b_{l,J}(\mathbf{u},\mathbf{v}) = \sum_{\theta,\theta'} \sum_{\gamma,\gamma'} u_{\theta} \overline{u_{\theta'}} v_{\gamma} \overline{v_{\gamma'}} \delta_{\tilde{l}_{\theta}+\tilde{l}_{\gamma},\tilde{l}_{\gamma'}+\tilde{l}_{\theta'}}.$$
 (14)

Define **new** embedding of \mathbf{u}, \mathbf{v} into \mathbb{C}^n by:

$$\tilde{\mathbf{x}}_{i} = \sum_{\theta=0}^{s-1} u_{\theta} \delta_{i,\tilde{i}_{\theta}}, \ \tilde{\mathbf{y}}_{j} = \sum_{\gamma=0}^{f-1} v_{\gamma} \delta_{j,\tilde{j}_{\gamma}} \quad \text{for all} \quad i, j \in [0, n-1].$$

which implies the projection identities

$$u_{\theta} = \sum_{i=0}^{n-1} \tilde{x}_i \delta_{i,\tilde{i}_{\theta}} \quad , \quad v_{\gamma} = \sum_{j=0}^{n-1} \tilde{y}_j \delta_{j,\tilde{j}_{\gamma}}, \tag{16}$$

Philipp Walk

And going backwards, i.e.

$$b_{l,J}(\mathbf{u},\mathbf{v}) = \sum_{\theta,\theta'} \sum_{i,i'=0}^{n-1} u_{\theta} \overline{u_{\theta'}} \delta_{i,\tilde{i}_{\theta}} \delta_{i',\tilde{i}_{\theta'}} \sum_{\gamma,\gamma'} \sum_{j,j'=0}^{n-1} v_{\gamma} \overline{v_{\gamma'}} \delta_{j,\tilde{j}_{\gamma}} \delta_{j',\tilde{j}_{\gamma'}} \delta_{\tilde{j}_{\gamma}+(\tilde{i}_{\theta}-\tilde{i}_{\theta'}),\tilde{j}_{\gamma'}}$$
(17)

$$(15) \to = \sum_{i,i'=0}^{n-1} \tilde{X}_i \overline{\tilde{X}}_{i'} \sum_{j,j'=0}^{n-1} \tilde{y}_j \overline{\tilde{y}}_{j'} \delta_{j+(i-i'),j'}$$

$$(18)$$

$$= \sum_{i,i'=0}^{n-1} \widetilde{\mathbf{x}}_{i} \overline{\widetilde{\mathbf{x}}_{i'}} \sum_{j=0}^{n-1} \widetilde{\mathbf{y}}_{j} \overline{\widetilde{\mathbf{y}}_{j+(i-i')}} = \left\langle \widetilde{\mathbf{x}}, \mathbf{B}_{\widetilde{\mathbf{y}}} \widetilde{\mathbf{x}} \right\rangle$$

$$= \underbrace{\left\langle \widetilde{\mathbf{x}}, \mathbf{B}_{\widetilde{\mathbf{y}}} \widetilde{\mathbf{x}} \right\rangle}_{=:(\mathbf{B}_{\widetilde{\mathbf{y}}})_{i',i}}$$
(19)

- ▶ $\mathbf{B}_{\tilde{\mathbf{y}}}$ is a $n \times n$ Hermitian Toeplitz matrix with first row $(\mathbf{B}_{\tilde{\mathbf{y}}})_{0,k} = \sum_{j=0}^{n-k} \overline{\tilde{y}_j} \tilde{y}_{j+k} =: b_k(\tilde{\mathbf{y}})$ resp. first column $(\mathbf{B}_{\tilde{\mathbf{y}}})_{k,0} =: b_{-k}$ for $k \in [0, n-1]$ and symbol $b(\tilde{\mathbf{y}}, \omega)$ given by (5), see e.g. [Böttcher & Grudsky, '05]
- $b(\tilde{\mathbf{y}},\omega)$ is normalized non-negative trigonometric polynomial of order n-1.
- ▶ For fixed $\tilde{\mathbf{y}} \in \mathbb{C}^n$: smallest eigenvalue of $\mathbf{B}_{\tilde{\mathbf{y}}}$, quadratic optimization (SDP) Problem:

$$\lambda(\mathbf{B}_{\tilde{\mathbf{y}}}) := \min_{\tilde{\mathbf{x}} \in \mathbb{C}^n, \|\tilde{\mathbf{x}}\| = 1} \langle \tilde{\mathbf{x}}, \mathbf{B}_{\tilde{\mathbf{y}}} \tilde{\mathbf{x}} \rangle. \tag{20}$$

Eigenvalue Problem

 $0 \le \min_{\omega} b(\tilde{\mathbf{y}}, \omega) \Rightarrow \text{By the spectral theory of Toeplitz matrices we then have } \lambda(\mathbf{B}_{\tilde{\mathbf{v}}}) > 0.$ Hence $\mathbf{B}_{\tilde{\mathbf{v}}}$ is invertible and the *determinant* $\det(\mathbf{B}_{\tilde{\mathbf{v}}}) \neq 0$. Using:

$$\frac{1}{\lambda(\mathbf{B}_{\tilde{\mathbf{y}}})} = \left\| \mathbf{B}_{\tilde{\mathbf{y}}}^{-1} \right\| \tag{21}$$

we can estimate the smallest eigenvalue (singular value) by the determinant as:

$$\lambda(\mathbf{B}_{\tilde{\mathbf{y}}}) \ge |\det(\mathbf{B}_{\tilde{\mathbf{y}}})| \frac{1}{\sqrt{n}(\sum_{k} |b_{k}(\tilde{\mathbf{y}})|^{2})^{(n-1)/2}}.$$
 (22)

Philipp Walk

The ℓ^2 -norm of the sequence $b_k(\tilde{\mathbf{y}})$ can be upper bounded for n > 1 by the CAUCHY-SCHWARZ inequality (instead one may also utilize the upper bound of the theorem):

$$\sum_{k} |b_{k}(\tilde{\mathbf{y}})|^{2} \le 1 + 2 \sum_{k=1}^{n-1} |\sum_{j=0}^{n-1} \tilde{y}_{j} \overline{\tilde{y}}_{j+k}|^{2} \le 1 + 2 \sum_{k=1}^{n-1} ||\tilde{\mathbf{y}}||^{4} = 1 + 2(n-1) < 2n,$$
 (23)

which is independent of $\tilde{\mathbf{y}} \in \mathbb{C}^n$ with $\|\tilde{\mathbf{y}}\| = 1!$

Since the determinant is a continuous function in $\tilde{\mathbf{y}}$ over a compact set, the minimum is attained and is denoted by $0 < d_n \coloneqq \min_{\tilde{\mathbf{y}}} |\det(\mathbf{B}_{\tilde{\mathbf{y}}})|$. Note, that d_n is a decreasing sequence, since we extend the minimum to a larger set by increasing n. Hence we get:

$$\min_{\tilde{\mathbf{y}} \in \mathbb{C}^n, \|\tilde{\mathbf{y}}\| = 1} \left(|\det(\mathbf{B}_{\tilde{\mathbf{y}}})| \frac{1}{\sqrt{n}(2n)^{(n-1)/2}} \right) = \frac{\sqrt{2}}{(2n)^{n/2}} d_n. \tag{24}$$

This is a valid lower bound by (22) for the smallest eigenvalue of all ${f B}_{\ddot{y}}.$ Hence we have

$$\min_{\tilde{\mathbf{y}} \in \mathbb{C}^n, \|\tilde{\mathbf{y}}\| = 1} \lambda(\mathbf{B}_{\tilde{\mathbf{y}}}) > \sqrt{2}(2n)^{-\frac{n}{2}} d_n > 0. \tag{25}$$

Now, bringing the support back into play, we see that $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ are fully realized by the Freiman isomorphism as $\tilde{I} = \phi'(I)$, $\tilde{J} = \phi'(J)$, where $\tilde{\mathbf{x}}$ cuts out (in a symmetrical way) for a fixed $\tilde{\mathbf{y}} \in \mathbb{C}^n$ an $s \times s$ Hermitian matrix $\mathbf{B}_{\tilde{\mathbf{v}}}^{\tilde{\jmath}} = \mathbf{P}_{\tilde{\jmath}} \mathbf{B}_{\tilde{\mathbf{v}}} \mathbf{P}_{\tilde{\jmath}}^*$ (principal submatrix, actually also Toeplitz) given by the green elements (here we have re-ordered I such that \tilde{I} is ordered)

Philipp Walk

15/18

Minimizing over all $\mathbf{u} \in \mathbb{C}^s$ we have by CAUCHY's Interlacing Theorem, see e.g. [6, Prop.9.19], for all $s \le n \in \mathbb{N}$

$$\lambda(\mathbf{B}_{\tilde{\mathbf{y}}}^{\tilde{I}}) \ge \lambda(\mathbf{B}_{\tilde{\mathbf{y}}}) > 0 \quad , \quad \tilde{\mathbf{y}} \in \mathbb{C}^n, \tilde{I} \in [n]_s.$$
 (26)

Hence, this also holds for $\tilde{\mathbf{y}} \in \Sigma_f^n$ and we get for our problem in (8)

$$\begin{split} \alpha^2(s,f) &= \min_{\substack{\mathbf{x} \in \ell_s^2, \mathbf{y} \in \ell_f^2 \\ \|\mathbf{x}\| = \|\mathbf{y}\| = 1}} \|\mathbf{x} * \mathbf{y}\| \geq \min \left\{ \min_{\substack{\tilde{I} \in [0,n-1]_s \\ \|\tilde{\mathbf{y}}\| = 1}} \min_{\substack{\tilde{\mathbf{y}} \in \Sigma_f^n \\ \|\tilde{\mathbf{y}}\| = 1}} \lambda(\mathbf{B}_{\tilde{\mathbf{y}}}^{\tilde{I}}), \min_{\substack{\tilde{J} \in [0,n-1]_f \\ \|\tilde{\mathbf{x}}\| = 1}} \lambda(\mathbf{B}_{\tilde{\mathbf{y}}}^{\tilde{I}}) \right\} \\ &\geq \min_{\substack{\mathbf{a} \in \Sigma_g^n \\ \|\mathbf{a}\| = 1}} \lambda(\mathbf{B}_{\mathbf{a}}) \geq \min_{\substack{\mathbf{a} \in \mathbb{C}^n \\ \|\mathbf{a}\| = 1}} \lambda(\mathbf{B}_{\mathbf{a}}) =: \alpha_{n(s,f)}^2. \end{split}$$

- ▶ We know, that if $I \cup J$ is a *Sidon set*, then we need indeed $n = 2^{s+f-3} + 1$ natural numbers to express the combinatoric of the convolution (Konyagin-Lev Conjecture holds). Nevertheless, the set over which we minimze is much larger then the combinatorics of the supports. Hence this is only an lower bound for $\alpha^2(s, f)$.
- Unfortunately, the combinatoric can only be removed by using the CAUCHY Interlacing theorem, which obtains only a lower bound α_n for $\alpha(s, f)$.

Application: Zero-Padded Circular Convolution

Consider the (cyclic, torsion) group $\mathbb{Z}/n\mathbb{Z}$ then the (circular) convolution is given by

$$(\mathbf{x} \otimes \mathbf{y})_j = \sum_{i=0}^{n-1} x_i y_{j \ominus i} , \quad j \in [0, n-1]$$
 (27)

Appending n-1 zeros to \mathbf{x} , \mathbf{y} circular convolution equals regular convolution

$$((\mathbf{x},\mathbf{0}) \otimes (\mathbf{y},\mathbf{0}))_j = \sum_{i=0}^{2n-2} x_i y_{j \ominus i} , \quad j \in [0,2n-2]$$
 (28)

$$= \begin{cases} \sum_{i=0}^{n-1} x_i y_{2n-1-j-i} &, & j \in [0, n-1] \\ \sum_{i=0}^{n-1} x_i y_{j-i} &, & j \in [n, 2n-2] \end{cases}$$
(29)

Corrolary (RNMP for Sparse ZP Circular Convolutions [W & Jung, '13])

Let $s,f,n\in\mathbb{N}$ with $\beta^2(s,f)\leq n$ and $n'(s,f,n)\coloneqq\min\{\lfloor 2^{2(s+f-2)\log(s+f-2)}\rfloor+1,n\}$. Then it exists $\alpha_{n'}>0$ such that for all $\mathbf{x}\in\Sigma^n_s,\mathbf{y}\in\Sigma^n_f$ it holds

$$\alpha_{n'} \|\mathbf{x}\| \|\mathbf{y}\| \le \|(\mathbf{x}, \mathbf{0}) \circledast (\mathbf{y}, \mathbf{0})\| \le \beta \|\mathbf{x}\| \|\mathbf{y}\|,$$
 (30)

where $(\mathbf{x}, \mathbf{0}), (\mathbf{y}, \mathbf{0}) \in \mathbb{C}^{2n-1}$ denotes the vectors padded by n-1 zeros.

Phase Retrieval from Magnitude Fourier Measurements

- ▶ Zero Padding : $\mathbf{x} \to (\mathbf{x}, \mathbf{0}) \in \mathbb{C}^{n'=2n-1}$
- ▶ Symmetrize (not complex–linear, but linear in $\mathbb{R}^{n'}$)

$$\mathbf{x} \to \mathcal{S}(\mathbf{x}) := (0, x_0, x_1, \dots, x_{n-1}, \overline{x}_{n-1}, \dots, \overline{x}_1, \overline{x}_0)^T \in \mathbb{C}^{2n'+1}$$

$$\Rightarrow \quad \mathcal{S}(\mathbf{x}) \otimes \mathcal{S}(\mathbf{y}) = \mathcal{S}(\mathbf{x}) \otimes \mathcal{S}(\mathbf{y})$$

▶ What if **x** = **y**?

$$\begin{aligned} \boldsymbol{A}(\boldsymbol{x}) &= \mathcal{S}(\boldsymbol{x}) \circledast \mathcal{S}(\boldsymbol{x}) = \mathcal{S}(\boldsymbol{x}) \circledast \mathcal{S}(\boldsymbol{x}) \\ &= \boldsymbol{F}^*(\boldsymbol{F}\mathcal{S}(\boldsymbol{x}) \odot \overline{\boldsymbol{F}\mathcal{S}(\boldsymbol{x})}) = \boldsymbol{F}^* |\boldsymbol{F}(\mathcal{S}(\boldsymbol{x})|^2 \\ &\Rightarrow \quad \boldsymbol{A}(\boldsymbol{x}_1) - \boldsymbol{A}(\boldsymbol{x}_2) = \mathcal{S}(\boldsymbol{x}_1 - \boldsymbol{x}_2) \circledast \mathcal{S}(\boldsymbol{x}_1 + \boldsymbol{x}_2) \end{aligned}$$

Theorem ([W & Jung, '13])

Let $n \in \mathbb{N}$, then m = 4n - 1 absolute-square Fourier measurements of ZP and symmetrized vectors are **stable up to a global sign** for $\mathbf{x} \in \mathbb{C}^n$, i.e. for all $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{C}^n$ it holds

$$\left\| \left| \mathbf{F} \mathcal{S} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{0} \end{pmatrix} \right|^2 - \left| \mathbf{F} \mathcal{S} \begin{pmatrix} \mathbf{x}_2 \\ \mathbf{0} \end{pmatrix} \right|^2 \right\| \ge c \|\mathbf{x}_1 - \mathbf{x}_2\| \|\mathbf{x}_1 + \mathbf{x}_2\|$$
 (31)

with $c = c(m) = \frac{\alpha_m}{2\sqrt{m}} > 0$ and $\mathbf{F} = \mathbf{F}_m$. If $x_0 \in \mathbb{R}$ one can reduce to m = 4n - 3.

References

- [1] P. Walk and P. Jung. "On a Reverse ℓ₂—inequality for Sparse Circular Convolutions". In: *IEEE International Conference on Acoustics, Speech, and Signal Processing.* 2013, pp. 4638 –4642.
- [2] C. Ling et al. "Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations". In: *SIAM J. Optim.* 20 (2009), pp. 1286–1310.
- [3] S. Konyagin and V. Lev. "Combinatorics and linear algebra of Freiman's Isomorphism". In: *Mathematika* 47 (2000), pp. 39–51.
- [4] D. J. Grynkiewicz. *Structural Additive Theory*. Developments in Mathematics: Volume 30. Springer, 2013.
- [5] T. Tao and V. Vu. Additive Combinatorics. Cambridge University Press, 2006.
- [6] A. Böttcher and S. M. Grudsky. *Spectral Properties of Banded Toeplitz Matrices*. SIAM, 2005.
- [7] P. Walk and P. Jung. "Stable Recovery from the Magnitude of Symmetrized Fourier Measurements". In: *Arxiv* (2013).
- ⇒ http://arxiv.org/abs/1312.2222

Thanks for Your Attention!