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Motiviation

Linear Time Invariant System: x ∗ y

When is the LTI System stable? (⇒ injectivity)

Possible if convolution has the Restricted Norm Multiplicativity Property, i.e.

α ∥x∥ ∥y∥ ≤ ∥x ∗ y∥ ≤ β ∥x∥ ∥y∥

for some α,β > 0.
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Convolution on Abelian Groups

Let G = (G,+) be a torsion free, discrete, abelian group.

▸ Set G with group action + (addition)
▸ g1,g2 ∈ G∶g1 + g2 = g2 + g2 ∈ G
▸ Exists identity 0 ∈ G
▸ Exists inverse element −g for each g ∈ G s.t. g − g = 0.
▸ ng /= 0 for all g ∈ G ∖ {0},n ∈ Z ∖ {0}

Examples
▸ Z
▸ Q

We define for an integer s ≤ ∣G∣ the set of s–sparse sequences:

`2
s(G) ∶= {x ∶ G → C ∣ ∥x∥2 ∶= ∑

i∈G
∣xi ∣2 < ∞, ∣ supp x∣ ≤ s} . (1)

For x ∈ `2
s(G) and y ∈ `2

f (G) its convolution is given element wise as:

(x ∗ y)j = ∑
i∈G

xiyj−i for all j ∈ G. (2)
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Hermitian Toeplitz Matrices

▸ For A ∈ [0,n − 1]s = {A ⊂ [0,n − 1] ∣ ∣A∣ = s} we define the projection

PA ∶ Cn → Cs. (3)

▸ From any n × n−matrix B we get a s × s principal submatrix

BA = PABP∗
A (4)

▸ Further, we denote by Ba an n × n− Hermitian Toeplitz matrix generated by a ∈ Σn
k

with symbol for ω ∈ [0,2π)

b(a, ω) =
n−1

∑
k=1−n

bk(a)eıkω = 1 +
n−1

∑
k=1

(µk cos(kω) + νk sin(kω)) (5)

with

µk ∶= 2R(bk(a)), νk ∶= −2I(bk(a)) and

�
�

�
�

�
�

�
�bk(a) ∶=

n−1

∑
i=0

aiai+k

FEJÉR-RIESZ factorization:
non-negative trigonometric polynomial of order not larger than n.
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Main Result

Theorem ([W. & Jung,’13])

Let s and f be natural numbers and G a torsion-free, discrete, abelian group. Then
there exist constants 0 < α(s, f ) ≤ β(s, f ) < ∞ depending solely on s and f , s.t. for all
x ∈ `2

s(G) and y ∈ `2
f (G) it holds:

α(s, f ) ∥x∥ ∥y∥ ≤ ∥x ∗ y∥ ≤ β(s, f ) ∥x∥ ∥y∥ . (6)

Moreover, we have β2(s, f ) = min{s, f} and with n = ⌊22(s+f−2) log(s+f−2)⌋ + 1 ∶

α2(s, f ) = min{ min
ỹ∈Σn

f ,∥ỹ∥=1
I∈[0,n−1]s

λ(BI
ỹ), min

x̃∈Σn
s ,∥x̃∥=1

J∈[0,n−1]f

λ(BJ
x̃)}, (7)

which is a decreasing sequence in s and f . If β(s, f ) = 1 we get equality with
α(s, f ) = 1.
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Proof

▸ Upper bound trivial, CAUCHY-SCHWARZ inequality
▸ Lower bound, given by a NP-hard bi-quadratic optimization problem:

α(s, f ) ∶= min
x∈`2

s(G)

y∈`2
f (G)

∥x ∗ y∥
∥x∥ ∥y∥

= min
x∈`2

s(G),y∈`2
f (G)

∥x∥=∥y∥=1

∥x ∗ y∥ (8)

▸ For each (x,y) it exists I, J ⊂ G, s.t. supp x ⊆ I, supp y ⊆ J and ∣I∣ = s, ∣J ∣ = f .
▸ Let I = {i0, . . . , is−1} and J = {j0, . . . , jf−1} then (x,y) can be represented by u ∈ Cs

and v ∈ Cf component-wise as:

xi =
s−1

∑
θ=0

uθδi,iθ , yj =
f−1

∑
γ=0

vγδj,jγ for all i, j ∈ G (9)

Ok, let’s start!
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∥x ∗ y∥2 = ∑
j∈G

∣∑
i∈G

xiyj−i ∣
2

= ∑
j∈G

RRRRRRRRRRR
∑
i∈G

(
s−1

∑
θ=0

uθδi,iθ)
⎛
⎝

f−1

∑
γ=0

vγδj−i,jγ
⎞
⎠

RRRRRRRRRRR

2

= ∑
j∈G

RRRRRRRRRRR

s−1

∑
θ=0

f−1

∑
γ=0

(∑
i∈G

uθδi,iθvγδj,jγ+i)
RRRRRRRRRRR

2

(i → i + i0) → =∑
j∈G

RRRRRRRRRRR
∑
θ

∑
γ

(∑
i∈G

uθδi+i0,iθvγδj,jγ+i+i0)
RRRRRRRRRRR

2

(j → j + i0 + j0) → =∑
j∈G

RRRRRRRRRRR
∑
θ

∑
γ

(∑
i∈G

uθδi,iθ−i0 vγδj,jγ−j0+i)
RRRRRRRRRRR

2

Therefore we can allways assume for the support I, J ⊂ G that i0 = j0 = 0.

= ∑
j∈G

RRRRRRRRRRR
∑
θ

∑
γ

(uθvγδj,jγ+iθ)
RRRRRRRRRRR

2

= ∑
j∈G
∑
θ,θ′
∑
γ,γ′

uθuθ′vγvγ′δj,jγ+iθδj,jγ′+iθ′

= ∑
θ,θ′
∑
γ,γ′

uθuθ′vγvγ′ δjγ+iθ,jγ′+iθ′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fourth order tensorAI,J

=∶ bI,J(u,v)
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Infinite Many Problems

AI,J = (δiθ+jγ ,iθ′+jγ′ ) ∈ {0,1}sf×sf

⇓
min
I,J⊂G

∣I∣=s,∣J ∣=f

min
u∈Cs,v∈Cf

∥u∥=∥v∥=1

bI,J(u,v)

▸ Each (I, J) generates an NP-hard problem [Ling et al., ’09]
▸ Find the minimum over all these NP hard problems (countable many)!

Wow, is that maybe somehow easier? Are there finite many problems?

(sf )2 elements each equal 0 or 1⇒ Not more than 2(sf)2
problems

Problem: How can the additive structure be represented by finite many numbers?
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Additive Combinatoric

Let us consider a mapping φ of the indices. For I, J ⊂ G with 0 ∈ I ∩ J an injective map:

φ ∶ I + J → Z (10)

which additional satisfies (preserves additive structure of the indices):

∀i, i ′ ∈ I, j, j ′ ∈ J ∶ i + j = i ′ + j ′ ⇒⇔ φ(i) + φ(j) = φ(i ′) + φ(j ′) (11)

is called a Freiman homomorphism on I, J resp. a Freiman isomorphism

Show for any I, J ⊂ G with ∣I∣ = s, ∣J ∣ = f the existence of a Freiman isomorphism φ
such that φ(I), φ(J) ⊂ [0,n − 1] = {0,1, . . . ,n − 1} with n = n(s, f ).

Indeed, for A = I ∪ J with ∣A∣ ≤ s + f − 1 one may find:

Conjecture ([Konyagin and Lev, ’00])

Let A ⊂ Z with ∣A∣ = m then there exist an Freiman isomorphism φ s.t. φ(A) ⊂ [0,2m−2].

Still unsolved!
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Lemma ([Grynkiewicz, ’13])

Let G be a torsion-free additive abelian group and A ⊂ G be finite sets containing zero
with m ∶= ∣A∣ and Freiman dimension d = dim+(A + A). Then there exists an injective
Freiman homomorphism:

φ ∶ A + A→ Z

such that

diam(φ(A)) ≤ d!2 (3
2
)

d−1

2m−2 + 3d−1 − 1
2

.

▸ A = I ∪ J with diam(Φ(A)) = max(φ(A)) −min(φ(A)).
▸ Using a result of [Tao & Vu, ’06] to find d ≤ ∣A∣ − 2 ≤ m − 2
▸ φ bijective Freiman homomorphism on A + A⇒ Freiman isomorphism on A
▸ Setting φ′ = φ − c∗ (still Freiman) with

c∗ ∶= min
a∈I∪J

φ(a). (12)

▸ Ĩ ∶= φ′(I) and J̃ ∶= φ′(J) with ∣̃I ∪ J̃ ∣ ≤ s + f − 1
▸ Using some log estimates gives finally

diam(φ(A)) < ⌊22(s+f−2) log(s+f−2)⌋ + 1 =∶ n (13)

▸ Hence we can represent the addition by subsets 0 ∈ Ĩ ∪ J̃ ⊂ [0,n − 1].
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Bi-Quadratic Problem

bI,J(u,v) = ∑
θ,θ′
∑
γ,γ′

uθuθ′vγvγ′ δ̃iθ +̃jγ ,̃jγ′ +̃iθ′
. (14)

Define new embedding of u,v into Cn by:

x̃i =
s−1

∑
θ=0

uθδi ,̃iθ
, ỹj =

f−1

∑
γ=0

vγδj ,̃jγ for all i, j ∈ [0,n − 1]. (15)

which implies the projection identities

uθ =
n−1

∑
i=0

x̃iδi ,̃iθ
, vγ =

n−1

∑
j=0

ỹjδj ,̃jγ , (16)
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And going backwards, i.e.

bI,J(u,v) = ∑
θ,θ′

n−1

∑
i,i′=0

uθuθ′δi ,̃iθ
δi′ ,̃iθ′

∑
γ,γ′

n−1

∑
j,j′=0

vγvγ′δj ,̃jγ δj′ ,̃jγ′
δ̃jγ+(̃iθ −̃iθ′ ),̃jγ′

(17)

(15)→ =
n−1

∑
i,i′=0

x̃i x̃i′
n−1

∑
j,j′=0

ỹj ỹj′δj+(i−i′),j′ (18)

=
n−1

∑
i,i′=0

x̃i x̃i′
n−1

∑
j=0

ỹj ỹj+(i−i′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶(Bỹ)i′,i

= ⟨x̃,Bỹx̃⟩ (19)

▸ Bỹ is a n × n Hermitian Toeplitz matrix with first row (Bỹ)0,k = ∑n−k
j=0 ỹj ỹj+k =∶ bk(ỹ)

resp. first column (Bỹ)k,0 =∶ b−k for k ∈ [0,n − 1] and symbol b(ỹ, ω) given by (5),
see e.g. [Böttcher & Grudsky, ’05]

▸ b(ỹ, ω) is normalized non-negative trigonometric polynomial of order n − 1.
▸ For fixed ỹ ∈ Cn: smallest eigenvalue of Bỹ, quadratic optimization (SDP) Problem:

λ(Bỹ) ∶= min
x̃∈Cn,∥x̃∥=1

⟨x̃,Bỹx̃⟩ . (20)
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Eigenvalue Problem

0 ≤ minω b(ỹ, ω) ⇒ By the spectral theory of Toeplitz matrices we then have λ(Bỹ) > 0.
Hence Bỹ is invertible and the determinant det(Bỹ) /= 0.
Using:

1
λ(Bỹ)

= ∥B−1
ỹ ∥ (21)

we can estimate the smallest eigenvalue (singular value) by the determinant as:

λ(Bỹ) ≥ ∣det(Bỹ)∣
1√

n(∑k ∣bk(ỹ)∣2)(n−1)/2
. (22)
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The `2–norm of the sequence bk(ỹ) can be upper bounded for n > 1 by the
CAUCHY-SCHWARZ inequality (instead one may also utilize the upper bound of the
theorem):

∑
k

∣bk(ỹ)∣2 ≤ 1 + 2
n−1

∑
k=1

∣
n−1

∑
j=0

ỹj ỹ j+k ∣
2 ≤ 1 + 2

n−1

∑
k=1

∥ỹ∥4 = 1 + 2(n − 1) < 2n, (23)

which is independent of ỹ ∈ Cn with ∥ỹ∥ = 1!
Since the determinant is a continuous function in ỹ over a compact set, the minimum is
attained and is denoted by 0 < dn ∶= minỹ ∣det(Bỹ)∣. Note, that dn is a decreasing
sequence, since we extend the minimum to a larger set by increasing n. Hence we get:

min
ỹ∈Cn,∥ỹ∥=1

(∣det(Bỹ)∣
1√

n(2n)(n−1)/2
) =

√
2

(2n)n/2
dn. (24)

This is a valid lower bound by (22) for the smallest eigenvalue of all Bỹ. Hence we have

min
ỹ∈Cn,∥ỹ∥=1

λ(Bỹ) >
√

2(2n)−
n
2 dn > 0. (25)
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Combinatoric in Finite Section Method

Now, bringing the support back into play, we see that x̃ and ỹ are fully realized by the
Freiman isomorphism as Ĩ = φ′(I), J̃ = φ′(J), where x̃ cuts out (in a symmetrical way)
for a fixed ỹ ∈ Cn an s × s Hermitian matrix BĨ

ỹ = PĨBỹP∗

Ĩ (principal submatrix, actually
also Toeplitz) given by the green elements (here we have re-ordered I such that Ĩ is
ordered)

Bỹ ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b0 ⋯ bĩ0
⋯ bĩ1

⋯ bĩs−1
⋯ bn−1

⋮ Ó ⋮ ⋮ ⋮ ⋮
bĩ0

⋯ bĩ0−̃i0
⋯ bĩ1−̃i0

⋯ bĩs−1−̃i0
⋯ bn−1−̃i0

⋮ ⋮ Ó ⋮ ⋮ ⋮
bĩ1

⋯ bĩ1−̃i0
⋯ bĩ1−̃i1

⋯ bĩs−1−̃i1
⋯ bn−̃i1

⋮ ⋮ ⋮ Ó ⋮ ⋮
bĩs−1

⋯ bĩs−1−̃i0
⋯ bĩ1−̃is−1

⋯ bĩs−1−̃is−1
⋯ bn−̃is−1

⋮ ⋮ ⋮ ⋮ Ó ⋮
bn−1 ⋯ bn−1−̃i0

⋯ bn−1−̃i1
⋯ bn−1−̃is−1

⋯ b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Minimizing over all u ∈ Cs we have by CAUCHY’s Interlacing Theorem, see e.g. [6,
Prop.9.19], for all s ≤ n ∈ N

λ(BĨ
ỹ) ≥ λ(Bỹ) > 0 , ỹ ∈ Cn, Ĩ ∈ [n]s. (26)

Hence, this also holds for ỹ ∈ Σn
f and we get for our problem in (8)

α2(s, f ) = min
x∈`2

s ,y∈`
2
f

∥x∥=∥y∥=1

∥x ∗ y∥ ≥ min{ min
Ĩ∈[0,n−1]s

min
ỹ∈Σn

f
∥ỹ∥=1

λ(BĨ
ỹ), min

J̃∈[0,n−1]f

min
x̃∈Σn

s
∥x̃∥=1

λ(BĨ
ỹ)}

≥ min
a∈Σn

β2

∥a∥=1

λ(Ba) ≥ min
a∈Cn

∥a∥=1

λ(Ba) =∶ α2
n(s,f).

▸ We know, that if I ∪ J is a Sidon set, then we need indeed n = 2s+f−3 + 1 natural
numbers to express the combinatoric of the convolution (Konyagin-Lev Conjecture
holds). Nevertheless, the set over which we minimze is much larger then the
combinatorics of the supports. Hence this is only an lower bound for α2(s, f ).

▸ Unfortunately, the combinatoric can only be removed by using the CAUCHY
Interlacing theorem, which obtains only a lower bound αn for α(s, f ).
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Application: Zero-Padded Circular Convolution

Consider the (cyclic, torsion) group Z/nZ then the (circular) convolution is given by

(x⊛ y)j =
n−1

∑
i=0

xiyj⊖i , j ∈ [0,n − 1] (27)

Appending n − 1 zeros to x,y circular convolution equals regular convolution

((x,0) ⊛ (y,0))j =
2n−2

∑
i=0

xiyj⊖i , j ∈ [0,2n − 2] (28)

=
⎧⎪⎪⎨⎪⎪⎩

∑n−1
i=0 xiy2n−1−j−i , j ∈ [0,n − 1]
∑n−1

i=0 xiyj−i , j ∈ [n,2n − 2]
(29)

Corrolary (RNMP for Sparse ZP Circular Convolutions [W & Jung, ’13] )

Let s, f ,n ∈ N with β2(s, f ) ≤ n and n′(s, f ,n) ∶= min{⌊22(s+f−2) log(s+f−2)⌋ + 1,n}. Then it
exists αn′ > 0 such that for all x ∈ Σn

s ,y ∈ Σn
f it holds

αn′ ∥x∥ ∥y∥ ≤ ∥(x,0) ⊛ (y,0)∥ ≤ β ∥x∥ ∥y∥ , (30)

where (x,0), (y,0) ∈ C2n−1 denotes the vectors padded by n − 1 zeros.
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Phase Retrieval from Magnitude Fourier Measurements

▸ Zero Padding : x→ (x,0) ∈ Cn′=2n−1

▸ Symmetrize (not complex–linear, but linear in Rn′ )

x→ S(x) ∶ = (0, x0, x1, . . . , xn−1, x̄n−1, . . . , x̄1, x̄0)T ∈ C2n′+1

⇒ S(x) ⊛ S(y) = S(x) ⍟ S(y)

▸ What if x = y?

A(x) = S(x) ⊛ S(x) = S(x) ⍟ S(x)

= F∗(FS(x) ⊙ FS(x)) = F∗∣F(S(x)∣2

⇒ A(x1) − A(x2) = S(x1 − x2) ⊛ S(x1 + x2)

Theorem ([W & Jung, ’13])

Let n ∈ N, then m = 4n − 1 absolute-square Fourier measurements of ZP and
symmetrized vectors are stable up to a global sign for x ∈ Cn, i.e. for all x1,x2 ∈ Cn it
holds XXXXXXXXXXX

∣FS (x1

0 )∣
2

− ∣FS (x2

0 )∣
2XXXXXXXXXXX

≥ c ∥x1 − x2∥ ∥x1 + x2∥ (31)

with c = c(m) = αm
2
√

m
> 0 and F = Fm. If x0 ∈ R one can reduce to m = 4n − 3.
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