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Signal Model
For UWB Impulse Radio strategies one usually uses M-ary PPM or PAM transmission.

s(t) =VED Janp(t—nTs —daT) , dn€{0,1,...,M -1} @)

Using random polarity an =1 eliminates discrete spectral lines in the PSD.
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» PPM with matched filter receiver
» Ts > (M —1)T +Tpand T > Tp = ISl free orthogonal signals with energy £
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Optimizing Pulse Shape by FIR Prefiltering

Define an objective for the SNR to maximize the power in the passband
Fp = [3.1,10.6]GHz, called the NESP value (Luo et al., 2003):
PNEGIE

— - 2
f,:p Srcc(f)df @
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Idea: FIR prefiltering of g
If we use uniformly shifted translates of a generating pulse q we can express the linear

combination p by a (real) FIR filter g = {gy }_5 with clock rate T = 5t ~ 36ps.
L—-1
p(t) = oka(t —KTo) , teR ®3)
k=0
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combination p by a (real) FIR filter g = {gy }_5 with clock rate T = 5t ~ 36ps.
L—-1
p(t) = oka(t —KTo) , teR ®3)
k=0

If we fix the generating pulse g, time-shift T and filter order L, we get

-1
ma)f/ 16(F) - G(F)[? df max ) m-cn(q)
gert JF, = rert =5 (C)]
16(F) - 4(F)[* < Secc(f) If| < 14Ghz 0 <#(f) <M(f) ,If| < 14Ghz

This convex problem is equivalent to a semi-definite-program (Berger et al., 2006)
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» Advantage:

> finds global optimum and prove feasibility
> no interaction with the designer
> no frequency discretization is necessary

Good, but ...
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Orthogonal Construction

sequential vs. democratic

» Common orthogonalization methods, like Gram-Schmidt are sequential methods
— heavy performance loss (Wu et al., 2004)

» Democratic orthogonalization methods apply simultaneously to an arbitrary set of
pulses.

» For this we introduce a new time-shift T to generate a set of 2M + 1 pulse
translates {pmIM__,, = {p(- —mT)IM__,

The Léwdin’s orthogonalization on this pulse set is then given by (Lowdin, 1950)

M

ety = > [eﬂmkpkm L meE{-M,... M}, )

k=—M
Properties:

1. All orthogonal pulses p; have same energy and support in [-MT — %p, MT + %”]

2. The Lowdin pulses posses minimal variation to the normed optimal pulse p, i.e.
(Aiken et al., 1980)

oy __ : o 2
{pn}farg{pglgNB;Hpn Pall5 (6)
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but: high complexity, not realizable, no PPM,
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AO f) v AO
==L o )= =1 ae ()
>k 1B + k)| k
Problem:
» no compact support — infinite time-duration
» no construction in time domain

Set T := 1 and choose K € Nwith Tp = KT =K.
If p is smooth and decay fast, the set {pn} is a Riesz-basis for V (p) := span {pn} iff

0 <A< Pp(v)=(Zrp)(0,v) <B <0 38)
with Zak Transform  (Zp)(t,v) := > _ pi(t)e®™ . @)
kez

For this set, the Léwdin orthogonalization is a tight-frame construction with
miny, [|p — p’|| (Janssen and Strohmer, 2002)
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kez

For this set, the Léwdin orthogonalization is a tight-frame construction with
miny, [|p — p’|| (Janssen and Strohmer, 2002)

» The samples at n/N of the spectral function ®, are the eigenvalues of the
circulant extension GM of the Gram Matrix

» can be calcualted efficiently with the DFT
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Optimize WB P e P e Orthogonaliza

Stability for Shift-Invariant-Systems

Theorem (Stability of Léwdin Orthogonalization)

Let p be a continuous bounded pulse s.t. there exists K € N with supp(p) C [—%, % ,
the shift-sequence {pn}ncz is a Riesz-basis for the ¢£2—closure of its span V (p) and

p € W(R). Then the limit of the Lowdin orthogonal pulses {pg,} can be approximated
by a set of approximative Léwdin orthogonal ~ (ALO) pulses {5m’M}M:7M, which can

be represented point wise for M > K and each m € Zy, using the Zak Transform in the
following way, N = 2M + 1,

—2ximn
N—1e TN (Zp)(t, &)

o - <M+ %
o (1) = Zn=g )0, §) g z, (10)
0 ,else
such that foreachm € Z
pa(t) = lim prM(t) , teRr (11)
M— oo

converges point wise and defines an orthonormal generator p° := pg for V (p).
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Lowdin Pulses in Time Domain for Decreasing T With Duration Tp. = 5T,
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Strict NESP values of LO with fiter order L=:30 for N=4K+1 pulses.
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Dependence of Filter Order L

PSD of 0. ALO (strict normalized) pulse and FCC mask with N=17
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Observation:

» Increasing L decrease the condition number of Gy, and éM
» Tighter Riesz basis — closer to an ONB — less distortion in time-frequency
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Present and Future Work

Observation:
» For high filter order L — shifts of the optimal pulse p are almost orthogonal.

» Condition number < 3 — distortion in Frequency is minimal, and FCC
optimization is well preserved.
» The Loéwdin transform in the limit corresponds to an IIR filter h with clock rate 1/T.
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» For high filter order L — shifts of the optimal pulse p are almost orthogonal.

» Condition number < 3 — distortion in Frequency is minimal, and FCC
optimization is well preserved.

» The Loéwdin transform in the limit corresponds to an IIR filter h with clock rate 1/T.

Problems:
» Lowdin orthogonalization generates Nyquist pulses only for lIR filters — Ts = co
» The intertwining of the filters g and h is not linear — SDP reformulation?

Goals:

» Optimize problem 1 and 2 simultaneously such that the pulse shape is capable for
an orthogonal PPM transmission.

» Find a condition on the optimized pulse which ensure tight Riesz Bounds A, B,
hence a condition number close to 1.

» Investigate robustness against channel and hardware effects
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Thank you for your attention.

TU Berlin P. Walk Loéwdin Transform on FCC Optimized UWB Pulses 15/16



References

Aiken, G., J. A. Erdos, and J. A. Goldstein. 1980. On Léwdin orthogonalization, Int. J. of Quantum Chemistry 18,
1101 -1108.

Berger, C. R., M. Eisenacher, H. Jakel, and F. Jondral. 2006. Pulseshaping in UWB systems using semidefinite
programming with non-constant upper bounds, IEEE int. symp. on personal, indoor and mobile radio
communications.

Janssen, A. J. E. M. and T. Strohmer. 2002. Characterization and computation of canonical tight windows for gabor
frames, J. Fourier. Anal. Appl. 8(1), 1-28.

Lowdin, P-O. 1950. On the nonorthogonality problem connected with the use of atomic wave functions in the
theory of molecules and crystals, J. Chem. Phys. 18, 367-370.

Luo, X., L. Yang, and G. B. Giannakis. 2003. Designing optimal pulse-shapers for ultra-wideband radios, J.
Commun. Netw. 5, no. 4, 344-353.

Nakache, Y.-P. and A. F. Molisch. 2006. Spectral shaping of uwb signals for time-hopping impulse radio, Selected
Areas in Communications, IEEE Journal on 24, 738 —744.

Parr, B., B. Cho, K. Wallace, and Z. Ding. 2003. A novel ultra-wideband pulse design algorithm, IEEE Commun.
Lett. 7, no. 5, 219-222.

Tian, Z., T. N. Davidson, X. Luo, X. Wu, and G. B. Giannakis. 2006. Ultra wideband wireless communication: Ultra
wideband pulse shaper design, Wiley.

Wang, M., S. Yang, and S. Wu. 2008. A ga-based uwb pulse waveform design method, Digital Signal Processing
18, 65-74.

Wu, X., Z. Tian, T. N. Davidson, and G. B. Giannakis. 2004. Orthogonal waveform design for uwb radios,
Proceedings of the IEEE signal processing workshop on advances in wireless communications, pp. 11-14.

TU Berlin P. Walk Léwdin Transform on FCC Optimized UWB Pulses 16/16



Signal Model
For UWB Impulse Radio strategies one usually uses M-PPM or PAM transmission.

s(t) =VED Janp(t—nTs —daT) , dn€{0,1,...,M -1} (12)

Using random polarity eliminates discrete spectral lines in the
PSD.(Nakache and Molisch, 2006)
Let the basic UWB pulse p be time-limited to T, and normalized to ||p|| = 1.
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Optimal receiver for coherent memoryless AWGN channels: matched filter .
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Optimal receiver for coherent memoryless AWGN channels: matched filter .

Single User: Rp ~ Ti -logM , Ps(é) < (M -1)Q <1 / ’f) (13)
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Motivation FCC Optimized UWB Pulse Pulse Orthogonalization St  ability Future Work  References

Approach for Optimization (Wu, Tian, Davidson and Giannakis , 2003)
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Approach for Optimization (Wu, Tian, Davidson and Giannakis , 2003)
Problem Formulation:

Define an objective for the SNR to maximize the power in the passband
Fp = [3.1,10.6]GHz, called the NESP value (normalized efficient signal power):

Je, 1B(F)[?df
,r) = b
Je, Secc(f)df

Since the FCC mask is fixed, we need only to maximize the power spectrum |p(f)|? of
the pulse in Fp under the FCC mask Sgcc.

~ a 2
= /F 1B(F) 2. (14)
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~ a 2
= /F 1B(F) 2. (14)

maxii(p) , st. IP(F)2 < Spec(f) , f€0,14]GHz. (15)

Idea: FIR prefiltering of q
If we use uniformly shifted translates of a generating pulse g we can express the linear
combination p by a (real) FIR filter g = {gk }l';;cll with clock rate Tg = WlGHZ ~ 36ps.

L-1

p(t) = > oka(t —KTo) := (a #7, 9)(t) , tER, (16)
k=0
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Idea: FIR prefiltering of q
If we use uniformly shifted translates of a generating pulse g we can express the linear
combination p by a (real) FIR filter g = {gk }l';;cll with clock rate Tg = WlGHZ ~ 36ps.

L-1

p(t) = > oka(t —KTo) := (a #7, 9)(t) , tER, (16)
k=0

If we fix the generating pulse g and the time-shift To, we get

max [ |§(f)-4(f)*df ., st [p()* < Secc(f) , f€[0,14GHz],  (17)
geRr- Jr,

which is a semi-infinite non-convex optimization problem, since 7j is quadratic in g.
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Motivation FCC Optimized UWB Pulse Pulse Orthogonalization St  ability Future Work  References

Autocorrelation With LMI as a SDP Problem

1. Reformulate 7 and the constraints in the autocorrelation r = ", gx0k.n Of filter g
2. Solve this convex problem with a semi-definite-program (SDP), e.g. SeDuMi.
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reRr!

TU Berlin P. Walk Léwdin Transform on FCC Optimized UWB Pulses 19/16



Autocorrelation With LMI as a SDP Problem

1. Reformulate 7j and the constraints in the autocorrelation ry = =, gk Qkn Of filter g
2. Solve this convex problem with a semi-definite-program (SDP), e.g. SeDuMi.
Express the power spectrum of g as |§(f)2 = 7(f) = 3_,, rnén(f), with Fourierbasis
¢n(f) = 2cos(2mnTof) forn > 1 and ¢o(f) =1, s.t. ij = [ F(f) - |6(f)2df,
Divide the mask by the PSD of the pulse: M(f) = Sgcc/ \(”1(f)\2 (Berger et al., 2006)

ma>L< - /¢>n(f AP, st 0< og(f) < M(f), f € [0,14]GHz. (18)
reRr!

Approximate M(f) piecewise by: [i(f) = 3, 7 - én(f), s.t. min,; fFi IM(f) — I ()

TU Berlin P. Walk Léwdin Transform on FCC Optimized UWB Pulses 19/16



Optimize WB P e P e Orthogonaliza

Autocorrelation With LMI as a SDP Problem

1. Reformulate 7j and the constraints in the autocorrelation ry = =, gk Qkn Of filter g
2. Solve this convex problem with a semi-definite-program (SDP), e.g. SeDuMi.

Express the power spectrum of g as |§(f)2 = 7(f) = 3_,, rnén(f), with Fourierbasis
¢n(f) = 2cos(2mnTof) forn > 1 and ¢o(f) =1, s.t. ij = [ F(f) - |6(f)2df,

Divide the mask by the PSD of the pulse: M(f) = Sgcc/ \d(f)\z (Berger et al., 2006)

ma>L< - /¢n(f AP, st 0< og(f) < M(f), f € [0,14]GHz. (18)
reRr!

Approximate M (f) piecewise by: [;(f) = 3, 7} - én(f), s.t. min i fFi IM(f) — I ()

dg(f) < Ty(f), feF =]0,1.61]GHz
T g(f) < To(f), f €Fy = [0,1.99]GHz
\ N dy(f) < Ta(f), f eFs=[0,3.1]GHz
Iy g(f) < Ty(f), f €F,=10,10.6]GHz
AN o ®y(f) < Ts(f), f eFs = [10.6,14]GHz
- 0| !
g ryM
-aor r,0
-50 0]
R()

6 8
frequency in Hz

TU Berlin P. Walk Léwdin Transform on FCC Optimized UWB Pulses 19/16



Optimize WB P e P e Orthogonaliza

Autocorrelation With LMI as a SDP Problem

1. Reformulate 7j and the constraints in the autocorrelation ry = =, gk Qkn Of filter g
2. Solve this convex problem with a semi-definite-program (SDP), e.g. SeDuMi.

Express the power spectrum of g as |§(f)2 = 7(f) = 3_,, rnén(f), with Fourierbasis
¢n(f) = 2cos(2mnTof) forn > 1 and ¢o(f) =1, s.t. ij = [ F(f) - |6(f)2df,

Divide the mask by the PSD of the pulse: M(f) = Sgcc/ \d(f)\z (Berger et al., 2006)

ma>L< - /¢n(f AP, st 0< og(f) < M(f), f € [0,14]GHz. (18)
reRr!

Approximate M (f) piecewise by: [;(f) = 3, 7} - én(f), s.t. min i fFi IM(f) — I ()

®g(f) <T1(f), f €Fy =[0,1.61]GHz
of dg(f) < To(f), f eFy =[0,1.99]GHz
) \\ N ®g(f) < T3(f), feFz=[0,3.1]GHz
7 ®g(f) < T4(f), f €Fy4 =[0,10.6]GHz
RN ne dg(f) < Ts(f), f €Fs = [10.6,14]GHz
B :EZ | &
| i) = {1 Sh = )i 2 0.1€ o ]}

O WA B R|(ei)={r z(win—rn)in(f)zo,fe[o,ei]}

TU Berlin P. Walk Léwdin Transform on FCC Optimized UWB Pulses 19/16




LO and ALO Pulses in Time

The centered (0.) LO pulses with L=30, M=2K

“The centered (0.) ALO pulses with L=30, M=2K
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Approach for orthogonalization
Existing orthogonalization methods:

>
>

Standard: non-overlapping pulses in PPM — small Bit-Rates Ry
FSK modulation (complex), yields same energy and cross-correlation properties
—lower energy of single pulse
Gram-Schmidt orthogonalization with respect to minimize L2 distance
(Tian et al., 2006) —NESP decreases fast in M
» SEQ-UWB pulse selection, intelligent way to choose the pulses with largest NESP out of
the orthogonal set.

Hermite polynomials pulses (Quertani et. al 2005) —NESP optimization is hard
Prolate spherical wave functions: strict time-limited, best frequency concentration
7j/Ep — eigenfunctions of integral equation, only numerical solvable — digital
construction — filter clock rate > 64Ghz, bad NESP. (Parr et al., 2003)

B-splines as pulses (Wang et al., 2008) — high complexity, rectangle pulses
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(Tian et al., 2006) —NESP decreases fast in M
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the orthogonal set.

» Hermite polynomials pulses (Quertani et. al 2005) —NESP optimization is hard

» Prolate spherical wave functions: strict time-limited, best frequency concentration
7j/Ep — eigenfunctions of integral equation, only numerical solvable — digital
construction — filter clock rate > 64Ghz, bad NESP. (Parr et al., 2003)

» B-splines as pulses (Wang et al., 2008) — high complexity, rectangle pulses

Goal:

1. Orthogonalize the FCC optimized pulse p such that all generated orthogonal
pulses py; are still close to FCC optimal.

2. All pulses should have the same energy E as high as possible.

3. The orthogonal pulses should be easily to generate: low-cost, analog and PPM.
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» FSK modulation (complex), yields same energy and cross-correlation properties
—lower energy of single pulse

» Gram-Schmidt orthogonalization with respect to minimize L2 distance
(Tian et al., 2006) —NESP decreases fast in M
» SEQ-UWB pulse selection, intelligent way to choose the pulses with largest NESP out of
the orthogonal set.

» Hermite polynomials pulses (Quertani et. al 2005) —NESP optimization is hard
» Prolate spherical wave functions: strict time-limited, best frequency concentration
7j/Ep — eigenfunctions of integral equation, only numerical solvable — digital
construction — filter clock rate > 64Ghz, bad NESP. (Parr et al., 2003)
» B-splines as pulses (Wang et al., 2008) — high complexity, rectangle pulses
Goal:
1. Orthogonalize the FCC optimized pulse p such that all generated orthogonal
pulses py; are still close to FCC optimal.
2. All pulses should have the same energy E as high as possible.
3. The orthogonal pulses should be easily to generate: low-cost, analog and PPM.
New orthogonalization method:
The nonorthogonal problem of overlapping linear independent functions was solved by
Léwdin who extend in 1950 the results of (Landshoff, 1936) to the general case, which
is well-known in the wavelet community (Schweiner, Wigner 1970),
(Janssen and Strohmer, 2002) under the name Lowdin orthogonalization  or
symmetrical orthogonalization, which in fact is an orthonormalization.

TU Berlin P. Walk Léwdin Transform on FCC Optimized UWB Pulses 21/16



Orthogonal Construction
1. Determine an optimal pulse p of design problem (18)
2. Consider 2M + 1 time translates pn(t) := p(t — nT) with time-shift T := Tp /M,
s.t. all pulses have supportin [-Ts/2, Ts/2] with Ts = 3Tp = 2MT + Tp =: Tpo.
The data-rate R = log 3/Ts is hence multiplied by log(2M + 1)/log 3.
3. Obtain the Gram-Matrix Gy with [Gy]nm = (Pm, pn) forn,m € {—M, ... M}
with Matrix dimension N = 2M + 1.

1
4. Derive the inverse square root G,, ? via singular value decomposition
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2. Consider 2M + 1 time translates pn(t) := p(t — nT) with time-shift T := Tp /M,
s.t. all pulses have supportin [-Ts/2, Ts/2] with Ts = 3Tp = 2MT + Tp =: Tpo.
The data-rate R = log 3/Ts is hence multiplied by log(2M + 1)/log 3.

3. Obtain the Gram-Matrix Gy with [Gy]nm = (Pm, pn) forn,m € {—M, ... M}
with Matrix dimension N = 2M + 1.

1
4. Derive the inverse square root G,, ? via singular value decomposition
The orthogonal pulse set {p%}mziM is then given by

M 1
ety = > [Gﬂ Pe(t) . me{-M,....M}. (19)
k=—M mk
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Orthogonal Construction
1. Determine an optimal pulse p of design problem (18)
2. Consider 2M + 1 time translates pn(t) := p(t — nT) with time-shift T := Tp /M,
s.t. all pulses have supportin [-Ts/2, Ts/2] with Ts = 3Tp = 2MT + Tp =: Tpo.
The data-rate R = log 3/Ts is hence multiplied by log(2M + 1)/log 3.
3. Obtain the Gram-Matrix Gy with [Gy]nm = (Pm, pn) forn,m € {—M, ... M}
with Matrix dimension N = 2M + 1.

1
4. Derive the inverse square root G,, ? via singular value decomposition

The orthogonal pulse set {p3 }M is then given by

m=—M
M 1
PR = > [6ut] p . memm). (19)
k=—M mk
Properties:
1. All orthogonal pulses py have energy ||p5|| = 1 (normalization)

2. The py are i.g. not translates of pg, hence differ in frequency domain which can
violate FCC mask, a rescaling results hence in different energies &

— If by > 0 is the maximal scaling factor b s.t. [bpS(f)|*> < Secc(f), then

V€ := min{bn} is the valid scaling factor and energy for all pulses (||p3]| = 1).
3. The Lowdin pulses posses minimal variation to the normed optimal pulse p, i.e.

(Aiken et al., 1980)

(eF} =ara min 5 lon o (20)
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Shift-Invariant-Systems
Problem:

» The orthogonal pulse set is not a shift-sequence of one fixed basis pulse — PPM
Implementation is not possible.

» Calculation of inverse square root of the Gram Matrix is not analytical —
approximation errors.
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Shift-Invariant-Systems
Problem:

» The orthogonal pulse set is not a shift-sequence of one fixed basis pulse — PPM
Implementation is not possible.
» Calculation of inverse square root of the Gram Matrix is not analytical —
approximation errors.
Approach:
Set T :=1 and choose K € N with Ty = KT = K. Then forany M > K and
N := 2M + 1, then the Toeplitz-Gram-Matrix Gy can be extended to a Cyclic-Matrix as
a Strang preconditioner Circulant Matrix Gy . If Gy, is positive, the inverse square root

can be efficiently calculated by the DFT. If M runs to infinity, we yield a
shift-invariant-system

V(p) :=span {pn} C L%(R) {pn} is a Frame of Translates (21)
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Shift-Invariant-Systems
Problem:

» The orthogonal pulse set is not a shift-sequence of one fixed basis pulse — PPM
Implementation is not possible.
» Calculation of inverse square root of the Gram Matrix is not analytical —
approximation errors.
Approach:
Set T :=1 and choose K € N with Ty = KT = K. Then forany M > K and
N := 2M + 1, then the Toeplitz-Gram-Matrix Gy can be extended to a Cyclic-Matrix as
a Strang preconditioner Circulant Matrix Gy . If Gy, is positive, the inverse square root

can be efficiently calculated by the DFT. If M runs to infinity, we yield a
shift-invariant-system

V(p) :=span {pn} C L%(R) {pn} is a Frame of Translates (21)
If p is continuous, the set {pn} is a Riesz-basis for V (p) iff
0<A<S> p(v+K)PP=Z(p+p_)0,v)<B<oo vae (22
i€z
with Zak Transform  (Zp)(t,v) := Y p(t)e*™” and p_(t) =p(-t). (23)
kez

If p is in the Wiener space W (R), then this holds point wise, moreover the samples in v
at n/N are the eigenvalues of Gy
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Shift-Invariant-Systems
Problem:

» The orthogonal pulse set is not a shift-sequence of one fixed basis pulse — PPM
Implementation is not possible.
» Calculation of inverse square root of the Gram Matrix is not analytical —
approximation errors.
Approach:
Set T :=1 and choose K € N with Ty = KT = K. Then forany M > K and
N := 2M + 1, then the Toeplitz-Gram-Matrix Gy can be extended to a Cyclic-Matrix as
a Strang preconditioner Circulant Matrix Gy . If Gy, is positive, the inverse square root

can be efficiently calculated by the DFT. If M runs to infinity, we yield a
shift-invariant-system

V(p) :=span {pn} C L%(R) {pn} is a Frame of Translates (21)
If p is continuous, the set {pn} is a Riesz-basis for V (p) iff
0<A<S> p(v+K)PP=Z(p+p_)0,v)<B<oo vae (22
i€z
with Zak Transform  (Zp)(t,v) := Y p(t)e*™” and p_(t) =p(-t). (23)
kez

If p is in the Wiener space W (R), then this holds point wise, moreover the samples in v

at n/N are the eigenvalues of GM For this set, the Léwdin orthogonalization is a
tight-frame construction with miny,/ ||p — p’|| (Janssen and Strohmer, 2002)
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Stability for shift-invariant-systems

Theorem (Stability of Léwdin Orthogonalization)
Let p be a continuous bounded pulse s.t. there exists K € N with supp(p) C [ %, %],

the shift-sequence {pn}ncz is a Riesz-basis for the ¢2—closure of its span V (p) and
p € W(R). Then We can approximate the limit of the Léwdin orthogonalization {pg,} by

the sequence {pm }mffm- which can be represented point wise for M > K and each
m € Zy using the Zak Transform in the following way, N = 2M + 1,

—2xiM
No1e R (Zp)(ts 1)
. o t|<M+
V(1) = 2n=0 (@(p*_))(0, &) -1t z ; (24
0 ,else
such that foreachm € Z
pm(t) = im Pt . teR (25)

converges point wise and defines an orthonormal generator p° := pg for V (p).
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