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Motivation Framework Results Circular Convolution Open Problems

Mathematical Framework
Channel action T : Rn

↑
message

× Rn
↑

state

→ Rn bilinear map (1)

Any Product on Rn:
I Point Product in Time T = �, i.e. ∀i ∈ {0, . . . , n − 1} : (x� y)i = xi yi

I Point Product in Frequency (Circular Convolution T = ~)

Channel state y ∈ Σf ⊂ Rn (2)

is an unknown f -sparse configuration vector which can describe
I Fading effects
I Memory
I Jamming, Interference (ISI, ICI)
I Multi-Antenna

Message Signal
x ∈ Σs ⊂ Rn (3)

is an unknown s-sparse signal vector carrying the message, which can be
I sensor, network of sensors
I sparse Pictures: Astrophysics , Medical, etc.
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Motivation Framework Results Circular Convolution Open Problems

Channel Output

What we want?
Find the “best” compressible sensing matrix Φ which allows a stable (noise)
reconstruction of any channel action output z = T (x, y).

What we know?
Assume T is known and fixed. Let {ei}n−1

i=0 be the canonical basis in Rn.

T (Σs,Σf ) =

(
n
s

)⋃
i=1

(
n
f

)⋃
j=1

T (Xi ,Yj )︸ ︷︷ ︸
=:Zi,j

non-linear

(4)

where Xi = span{ei1 , . . . , eis},Yj = span{eji , . . . , ejf } are s resp. f dim. subspaces.

How “sparse” is Z and T (Σs,Σf )?
At least sf -sparse, i.e. T (Σs,Σf ) ⊂ Σsf .

But can we do better, i.e. find (draw randomly) Φ ∈ Rm×n such that with exponential
high probability we can exactly reconstruct z from Φz with m = O((s + f ) log n)
measurements by solving a (convex) optimization problem?

Intuition say yes, since every output is given by an s + f parameter set. But the
properties of Z depend on properties of T and X ,Y .
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Motivation Framework Results Circular Convolution Open Problems

Properties of Z
We have in general not:

I convex or linear properties
I smooth or Ck manifold (Baraniuk and Wakin, 2009)

We have always:
I Linear cone: ∀z ∈ Z : λ ∈ R : λz ∈ Z (homogeneity of T ).
I Connected (simply), star-shaped (T is continuous)
I For fixed x, y: T (X , y) and T (x,Y ) are linear spaces with maximal dim. s resp. f .

Linearization
Tensor Product (Rn ⊗ Rn,⊗) is an n2 dimensional linear space, given as the convex
hull of the bilinear map ⊗ defined by x⊗ y = (x0yT , . . . , xn−1yT )T (Greub, 1967).

Rn × Rn ⊗ //

bilinear T

��

Rn ⊗ Rn

B linear
yyssssssssss

Rn

Any bilinear map T acting on X × Y can be described by a linear map B acting on U:

z = T (x, y) = B(x⊗ y) , (x, y) ∈ X × Y ⊂ Rn × Rn (5)

where U := {x⊗ y | (x, y) ∈ X×Y} is a set of simple tensor products and Z = B(U).
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Motivation Framework Results Circular Convolution Open Problems

Toy Example: Circular Convolution

Using the discrete Fourier transform (Fourier matrix) F we can describe the circular
convolution ~ as the point product � in the frequency domain

T (x, y) :=x ~ y =
√

NF∗(Fx� Fy) (6)

or pointwise by the modulation (l ⊕ k) := l + k mod n as

(x ~ y)k =

n−1∑
l=0

xl yl⊕k (7)

There exist no bases in which T (Σs,Σf ) can be represented by less than sf bases
elements.

Idea:
Use the properties of ~ to transport (s, f )−sparsity in the Cartesian product X × Y to
the output. This is possible for certain canonical subspace pairs which are maximal
separated, i.e. if the image of the canonical basis BX = span {ei | i ∈ I} and
BY = span

{
ej
∣∣ j ∈ J

}
given by

BZ := {ek | k = i ⊕ j for any (i, j) ∈ I × J} (8)

has cardinality equal to sf , (Hegde and Baraniuk, 2011April).
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Motivation Framework Results Circular Convolution Open Problems

Results

For the circular convolution B~:

n2 > n for any n > 1 ⇒ nullspace N (B~) 6= {0} (non-trivial).

There exist maximal separated cano. subspace pairs (X ,Y ) with dim. s resp. f , s.t.

N (B~) ∩ U = {0} (9)

Hence any z is uniquely represented by directions in X and Y (except by scalar
multiple). Now since Z = B~(U) we have

Z ⊂ B~(X ⊗ Y ) subspace of Rn with dim. sf (10)

Seems to be the worst case, since B~(X ⊗ Y ) is the smallest subspace containing Z .

Surprisingly, perfect reconstruction with high probability is possible from only
M = O(s + f ) measurements, (Hegde and Baraniuk, 2011April).
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Motivation Framework Results Circular Convolution Open Problems

Restricted Norm Multiplicativity Property
We could derive a sufficient condition on T ,X ,Y for a δ-stable embedding of Z ⊂ Rn in
an m = O(s + f ) dimension subspace.

Since in general, T has a non-trivial null-space in X × Y it could exist a representation
set O ⊂ X × Y for Z s.t.

α ‖x‖ ‖y‖ ≤ ‖T (x, y)‖ ≤ β ‖x‖ ‖y‖ , (x, y) ∈ O (11)

with 0 < α < β <∞.

Definition (Restricted norm multiplicativity property)
Let X ,Y ⊂ Rn. Then the bilinear map T : X × Y → Rn has the restricted norm
multiplicativity property (RNMP), if

0 < α(X ,Y ) := sup
O⊂X×Y

T (O)=T (X ,Y )

inf
(x,y)∈O\N

‖T (x, y)‖
‖x‖ ‖y‖

. (12)

Moreover, we define the universal upper bound by

β(X ,Y ) := sup
(x,y)∈X×Y

‖T (x, y)‖
‖x‖ ‖y‖

. (13)
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RIP on T (X ,Y )

Theorem
Let s, f , n,m ∈ N with 1 ≤ s ≤ f ≤ sf ≤ n and X ,Y ⊂ Rn s resp. f dim. convex
cones. If the bilinear map T : X × Y → Rn has the restricted norm multiplicativity
property with bounds α and β, then a realization of a sub-Gaussian matrix
Φ: Rn → Rm with m ≤ n and [Φ]ij ∼ N (0, 1/m) fulfills for every z ∈ T (X ,Y )

(1− δ) ‖z‖ ≤ ‖Φz‖ ≤ (1 + δ) ‖z‖ (14)

for any δ ∈ (0, 1) with probability

≥ 1− 2N(X 1,Xδ/d )N(Y 1,Y δ/d )e−c(δ)m (15)

and constants

d = d(α, β) :=

{
7 β
α

(2 +
√
α) , α 6= β

12 , α = β
and c :=

6δ2 − δ3

368
. (16)

Example for T = ~

For any pairs (X ,Y ) which are positive convex cones s.t. dim coX = s, dim coY = f ,
we have α = 1 and β =

√
s, s.t.

p ≥ 1− 2
(

378
δ

√
s
)s+f

e−c(δ)m. (17)
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Proof Idea

Extending proof technique in (Baraniuk et al., 2008January)

Figure: Net construction in the shells for covering the sphere in Z .

I The RNMP allow a representation of the sphere Z 1,1 in Z by the shells X a,b and
Y a,b with

a =
1
√
α

and b =
1
√
β

(18)

I construct a net R = T (P,Q) for Z 1,1 by ε-nets P in X a,b and Q in Y a,b .
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Using Modified Proof Technique in (Baraniuk et al., 2008January)

The Probabilistic Part

1. Measure concentration phenomenon of Gaussian matrices:
For every r ∈ Rn and any δ ∈ (0, 1) it holds

|‖Φr‖ − ‖r‖| ≤ δ ‖r‖ (19)

with probability
> 1− 2e−co(δ/2)m. (20)

The Algebraic Part

3. Any realization of Φ is a linear map on a finite dimensional normed space Rn and
hence bounded, i.e. there exist A ≥ −1 such that

‖Φz‖ ≤ (1 + A) ‖z‖ , z ∈ Z ⊂ Rn (21)

where 1 + A ≥ 0 denotes the smallest upper bound.

4. Show that A ≤ δ with high probability, by using the net and the measure
concentration above. (This gives the upper bound in (14))

5. Use the upper bound to show with the inverse triangular inequality the lower
bound in (14), with same probability.
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Circular Convolution Inequality
What we need for the proof is a global lower bound a(s, f ) := minX ,Y α(X ,Y ). We
could show at least the existence of such an global lower bound.

Theorem (Reverse Young Inequality for sparse circular convolution)
Let s, f , n be integers s.t. 1 ≤ s ≤ f ≤ sf < n, then there exist a = a(s, f ) > 0, s.t. for
all x ∈ Σs and y ∈ Σf it holds

a ‖x‖2 ‖y‖2 ≤ ‖x ~ y‖2 ≤ s ‖x‖2 ‖y‖2 . (22)

Positive Symmetric Toeplitz Matrix vs. Positive Harmonic Functions
To find the lower bound a(s, f ) is an NP-hard problem. It is equivalent to a problem of
Cathedory and Fejer (Caratheodory and Fejer, 1911)

a(f , f ) := min
y∈Sf−1

λ(B(f )
y ) = min

y∈Sf−1
min
r<1

min
ω∈[0,2π)

1 + 2
f−1∑
k=1

bk (y)r k cos(kω)

 . (23)

where the Laurent Polynomial coefficients are

bk (y) =

f−k−1∑
l=0

yl yl+k (24)
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Subexpontenial Decay

Numerically, we could show that a(s, s) decays super exponentially as s−s .

1 2 3 4 5 6

10
−3

10
−2

10
−1

10
0

s=f

a

 

 
a

l,d

a
d

Figure: Approximation results of a for s = f .
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Conclusions

Our Theorem shows a stable embedding of a signal setM if all differences
∆ = {z1 − z2 | z1, z2 ∈M} are contained in the union of images of positive convex
cones X + ~ Y +.

Open Problems:

I Is it possible to show the RIP on ∆ for the circular convolution?

↪→ Leads into an embedding (immersion theory) of each Z . I.e. we need to
characterize the nullspace of T on each X × Y .

I Find additional Restrictions to X and Y such that an useful a(s, f ) exists, e.g.
demand decaying laws of the signals.
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1.Step: Constructing ε-nets

I Since Φ is linear and Z a cone , we can restrict us to all z ∈ ∂Z 1.
I Construct a finite set of points T (p,q) ∈ Z from an ε-net point pair

(p,q) ∈ Qr,R × Pr,R , where Qr,R ⊂ X r,R and Pr,R ⊂ Y r,R are ε-nets for X r,R

resp. Y r,R with ε ∈ (0, 1).
Since

√
r ≤ 1 the net cardinality bound for the ε-net QR for X R is the same as for

Qr,R resp. PR , given by |QR | ≤ N(X R ,X ε) resp. |PR | ≤ N(Y R ,Y ε). Hence we
have constructed a finite set Q with cardinality |QR ||PR | ≤ N(X R ,X ε)N(Y R ,Y ε).
Every z ∈ ∂Z 1 can then be represented by T and a pair (x, y) ∈ X r,R × Y r,R ,
which is at the same time contained in the Cartesian product of one pair of convex
ε environments X ε(p) = X ε + p and Y ε(q) = Y ε + q. The image
T (X ε(p),Y ε(q)) is the covering set of the point T (p,q) and the union forms a
covering for ∂Z 1 by (??). Note that this covering sets in Z are not necessarily
convex!

I By using the triangle inequality and using a zero addition p− p and q− q we have
for an arbitrary T (p,q) ∈ Q that all z ∈ T (X ε(p),Y ε(q)) ∩ ∂Z 1 satisfy:

|‖Φz‖ − ‖ΦT (p,q)‖| ≤ ‖Φ(T (x− p, y− q))‖+ ‖Φ(T (x− p,q))‖+ ‖Φ(T (p, y− q))‖ .
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3.Step: Using Upper bounds for T and Φ

With the the universal bound 1 + A for Φ in (21) we obtain

≤ (1 + A)
(
‖T (p, y− q)‖+ ‖T (x− p,q)‖+ ‖T (x− p, y− q)‖

)

(25)

The upper bound β of the RNMP for T in (12) gives

≤ β(1 + A)
(
‖q‖ ‖y− q‖+ ‖x− q‖ ‖q‖+ ‖x− p‖ ‖y− q‖

)
.

(26)

4.Step: Using net properties
Since p ∈ X R and q ∈ Y R are ε-net points, i.e. ‖x− p‖ ≤ ε and ‖y− q‖ ≤ ε, we get

≤ β(1 + A)
(

Rε+ Rε+ ε2
)

(27)

≤ β(1 + A)(2R + ε)ε
ε≤1
≤ (1 + A)β(2R + 1)ε. (28)

If we define the constant

c = c(α, β) := β(2R + 1) = β
(
2/
√
α+ 1

)
> 1, (29)

we obtain the upper bound

‖Φz‖ ≤ (1 + A)cε+ ‖ΦT (p,q)‖ . (30)
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2.Step: Measure Concentration
Unfortunately, the nesting r/R ≤ ‖T (p,q)‖ ≤ R/r is independent of ε(δ) and hence
not useful for establishing a δ-RIP. To obtain an useful nesting, we can use the
continuity property (bilinarity) of T to upper and lower bound ‖T (p,q)‖ in terms of ε for
every Cartesian product of two convex covering sets X ε(p),Y ε(q).

Let us define the preimage of T (X ε(p),Y ε(q)) ∩ ∂Z 1 by

Z−1(q,p) := { (x, y) ∈ X ε(p)× Y ε(q) | ‖T (x, y)‖ = 1} .

If this set is not empty, just grap one pair (x, y) ∈ Z−1(q,p), then we know that there
is 1 an c ∈ X ε s.t. p + c = x and d ∈ Y ε s.t. q + d = y. If we insert this we get

‖T (p,q)‖ = ‖T (x− c, y− d)‖ = ‖T (x, y)− T (x,d)− T (c, y) + T (c,d)‖ . (31)

Since 0 ≤ ‖c‖ , ‖d‖ ≤ ε we get with the RNMP as lower bound

‖T (q,p)‖ ≥ ‖T (x, y)‖−‖T (x,d)‖−‖T (c, y)‖−‖T (c,d)‖
≥ 1− 2βRε− βε2 ≥ 1− β(2R + 1)ε = 1− cε

and the upper bound

‖T (p,q)‖ ≤ ‖T (x, y)‖+‖T (x,d)‖+‖T (c, y)‖+‖T (c,d)‖
≤ 1 + 2βRε+ βε2 ≤ 1 + β(2R + 1)ε = 1 + cε.

1If X is a convex cone, then p is the aphex point of the covering set Xε which is again a convex cone
(non-symmetrical), precisely εX1 = Xε. Hence x− q ∈ Xε(p). If X is a linear space, then Xε is a ball (symmetric)
with center p and so x− p ∈ Xε(p) again.
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Let us discuss the discontinuity of this norm estimation. If we have α = β, hence norm
multiplicativity, then we would get c = 3. But in fact, this is to bad, since the shells are
now unit spheres and every p,q is normalized and hence by the norm multiplicativity
T (p,q). But this gives c = 0. To respect this fact we define c̃ and get for all point pairs

1− c̃ε ≤ ‖T (p,q)‖ ≤ 1 + c̃ε , c̃ :=

{
c , α 6= β

0 , α = β
. (32)

4.Step: Upper Bound for RIP
Then we can use the measure concentration in (19) to obtain with probability larger
than in (20)

‖Φz‖ ≤ (1 + A)cε+ (1 + δ/2)(1 + c̃ε) (33)

= 1 + Acε+ cε+ c̃ε+ δ(c̃ε+ 1)/2. (34)

Now there exist a maximal z′ ∈ ∂Z 1 s.t. equality in (21) is achieved. Hence we get

A(1− cε) ≤
2cε+ 2c̃ε+ δ(c̃ε+ 1)

2
(35)

⇔ A ≤
2cε+ c̃ε(2 + δ) + δ

2(1− cε)
. (36)

Let us proceed by case distinction. If α = β then c̃ = 0, c = 3 and

A ≤
3ε+ δ

2
1− 3ε

. (37)
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Defining ε = δ
12 ≤ 1 with δ ∈ (0, 1) we get

A ≤
δ
4 + δ

2

1− δ
4

δ<1
≤

3
4 δ
3
4

= δ. (38)

If we have α 6= β then c̃ = c = c(α, β) and we get

A ≤
cε(4+δ)

2 + δ
2

1− cε

δ<1
≤

5cε
2 + δ

2
1− cε

. (39)

Defining ε = δ
7c ≤ 1 with δ ∈ (0, 1) we get

A ≤
5δ+7δ

14

1− δ
7

δ<1
≤

12
14 δ

6
7

= δ. (40)

This upper bound holds with probability larger than

> 1− 2N(X R ,X
δ
d )N(Y R ,Y

δ
d )e−c0(δ/2)M ,

with constant

d̃ := d̃(α, β) =

{
7β(2/

√
α+ 1) , α 6= β

12 , α = β
. (41)
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12 ≤ 1 with δ ∈ (0, 1) we get
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δ
4 + δ

2

1− δ
4

δ<1
≤

3
4 δ
3
4

= δ. (38)

If we have α 6= β then c̃ = c = c(α, β) and we get

A ≤
cε(4+δ)

2 + δ
2

1− cε

δ<1
≤

5cε
2 + δ

2
1− cε

. (39)
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5.Step: Lower Bound for RIP
The lower bound 1− δ follows from this with

‖Φz‖ ≥ ‖ΦT (p,q)‖ − (1 + A)cε (42)

Considering all z ∈ ∂Z 1 we get by inserting (40) and (32) with same probability (41)

‖Φz‖ ≥
(

1−
δ

2

)(
1− c̃

δ

d̃(α, β)

)
− (1 + δ)

cδ

d̃(α, β)
. (43)

Case α = β: Then c̃ = 0, c = 3 and d̃ = 12. This gives

‖Φz‖ ≥ 1− δ/2− δ/2 = 1− δ. (44)

Case α 6= β: Then c̃ = c, d̃ = 7c and

‖Φz‖ ≥ 1−
δ − cεδ

2
− cε−

2cδ
7c
≥ 1−

1− δ
7

2
δ −

δ

7
−

2δ
7

δ>0
≥ 1− (7 + 6)δ/14 ≥ 1− δ.

Since the covering number N(X R ,X ε) remains the same if we scale both sets X R ,X ε
by 1/R =

√
α, (?Pis89, Lemma 4.16), we have finally granted the RIP with probability

> 1− 2N(X 1,X
δ
d )N(Y 1,Y

δ
d )e−c0( δ2 )M , d :=

√
αd̃

21 / 15 M15 - Seminar 2013 P. Walk



5.Step: Lower Bound for RIP
The lower bound 1− δ follows from this with

‖Φz‖ ≥ ‖ΦT (p,q)‖ − (1 + A)cε (42)

Considering all z ∈ ∂Z 1 we get by inserting (40) and (32) with same probability (41)

‖Φz‖ ≥
(

1−
δ

2

)(
1− c̃

δ

d̃(α, β)

)
− (1 + δ)

cδ

d̃(α, β)
. (43)

Case α = β: Then c̃ = 0, c = 3 and d̃ = 12. This gives

‖Φz‖ ≥ 1− δ/2− δ/2 = 1− δ. (44)

Case α 6= β: Then c̃ = c, d̃ = 7c and

‖Φz‖ ≥ 1−
δ − cεδ

2
− cε−

2cδ
7c
≥ 1−

1− δ
7

2
δ −

δ

7
−

2δ
7

δ>0
≥ 1− (7 + 6)δ/14 ≥ 1− δ.

Since the covering number N(X R ,X ε) remains the same if we scale both sets X R ,X ε
by 1/R =

√
α, (?Pis89, Lemma 4.16), we have finally granted the RIP with probability

> 1− 2N(X 1,X
δ
d )N(Y 1,Y

δ
d )e−c0( δ2 )M , d :=

√
αd̃

21 / 15 M15 - Seminar 2013 P. Walk



5.Step: Lower Bound for RIP
The lower bound 1− δ follows from this with

‖Φz‖ ≥ ‖ΦT (p,q)‖ − (1 + A)cε (42)

Considering all z ∈ ∂Z 1 we get by inserting (40) and (32) with same probability (41)

‖Φz‖ ≥
(

1−
δ

2

)(
1− c̃

δ

d̃(α, β)

)
− (1 + δ)

cδ

d̃(α, β)
. (43)

Case α = β: Then c̃ = 0, c = 3 and d̃ = 12. This gives

‖Φz‖ ≥ 1− δ/2− δ/2 = 1− δ. (44)

Case α 6= β: Then c̃ = c, d̃ = 7c and

‖Φz‖ ≥ 1−
δ − cεδ

2
− cε−

2cδ
7c
≥ 1−

1− δ
7

2
δ −

δ

7
−

2δ
7

δ>0
≥ 1− (7 + 6)δ/14 ≥ 1− δ.

Since the covering number N(X R ,X ε) remains the same if we scale both sets X R ,X ε
by 1/R =

√
α, (?Pis89, Lemma 4.16), we have finally granted the RIP with probability

> 1− 2N(X 1,X
δ
d )N(Y 1,Y

δ
d )e−c0( δ2 )M , d :=

√
αd̃

21 / 15 M15 - Seminar 2013 P. Walk



5.Step: Lower Bound for RIP
The lower bound 1− δ follows from this with

‖Φz‖ ≥ ‖ΦT (p,q)‖ − (1 + A)cε (42)

Considering all z ∈ ∂Z 1 we get by inserting (40) and (32) with same probability (41)

‖Φz‖ ≥
(

1−
δ

2

)(
1− c̃

δ

d̃(α, β)

)
− (1 + δ)

cδ

d̃(α, β)
. (43)

Case α = β: Then c̃ = 0, c = 3 and d̃ = 12. This gives

‖Φz‖ ≥ 1− δ/2− δ/2 = 1− δ. (44)

Case α 6= β: Then c̃ = c, d̃ = 7c and

‖Φz‖ ≥ 1−
δ − cεδ

2
− cε−

2cδ
7c
≥ 1−

1− δ
7

2
δ −

δ

7
−

2δ
7

δ>0
≥ 1− (7 + 6)δ/14 ≥ 1− δ.

Since the covering number N(X R ,X ε) remains the same if we scale both sets X R ,X ε
by 1/R =

√
α, (?Pis89, Lemma 4.16), we have finally granted the RIP with probability

> 1− 2N(X 1,X
δ
d )N(Y 1,Y

δ
d )e−c0( δ2 )M , d :=

√
αd̃

21 / 15 M15 - Seminar 2013 P. Walk



5.Step: Lower Bound for RIP
The lower bound 1− δ follows from this with

‖Φz‖ ≥ ‖ΦT (p,q)‖ − (1 + A)cε (42)

Considering all z ∈ ∂Z 1 we get by inserting (40) and (32) with same probability (41)

‖Φz‖ ≥
(

1−
δ

2

)(
1− c̃

δ

d̃(α, β)

)
− (1 + δ)

cδ

d̃(α, β)
. (43)

Case α = β: Then c̃ = 0, c = 3 and d̃ = 12. This gives

‖Φz‖ ≥ 1− δ/2− δ/2 = 1− δ. (44)

Case α 6= β: Then c̃ = c, d̃ = 7c and

‖Φz‖ ≥ 1−
δ − cεδ

2
− cε−

2cδ
7c
≥ 1−

1− δ
7

2
δ −

δ

7
−

2δ
7

δ>0
≥ 1− (7 + 6)δ/14 ≥ 1− δ.

Since the covering number N(X R ,X ε) remains the same if we scale both sets X R ,X ε
by 1/R =

√
α, (?Pis89, Lemma 4.16), we have finally granted the RIP with probability

> 1− 2N(X 1,X
δ
d )N(Y 1,Y

δ
d )e−c0( δ2 )M , d :=

√
αd̃

21 / 15 M15 - Seminar 2013 P. Walk



Possible Structures for X × Y

topological manifold

X × Y

OO

multi-linear //

linear

��

X ⊗ Y ' Rsf

X ⊕ Y ' Rs+f

atlas
66mmmmmmmmmmmmm
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