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Mathematical Framework
Channel action T: R" X R" R bilnear map (1)
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Any Product on R":
» Point Productin Time T = ®,i.e. Vi€ {0,...,n—1}: (X®OVY); = X;¥;
» Point Product in Frequency (Circular Convolution T = ®)
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Mathematical Framework

Channel action T: R?” x R" - R" bilinear map (1)
mesgage state
Any Product on R":
» Point Productin Time T = ®,i.e. Vi€ {0,...,n—1}: (X®OVY); = X;¥;
» Point Product in Frequency (Circular Convolution T = ®)

Channel state yET;CR" @)

is an unknown f-sparse configuration vector which can describe
» Fading effects
» Memory
» Jamming, Interference (ISI, ICI)
> Multi-Antenna
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Mathematical Framework

Channel action T: R?” x R" - R" bilinear map (1)

+
message  state

Any Product on R":
» Point Productin Time T = ®,i.e. Vi€ {0,...,n—1}: (X®OVY); = X;¥;
» Point Product in Frequency (Circular Convolution T = ®)

Channel state yET;CR" @)

is an unknown f-sparse configuration vector which can describe

» Fading effects

» Memory

» Jamming, Interference (ISI, ICI)

> Multi-Antenna
Message Signal

ge sl XETsCR @)

is an unknown s-sparse signal vector carrying the message, which can be

» sensor, network of sensors

» sparse Pictures: Astrophysics , Medical, etc.
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Channel Output

What we want?
Find the “best” compressible sensing matrix ¢ which allows a stable (noise)
reconstruction of any channel action output z = T(x, y).
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What we want?
Find the “best” compressible sensing matrix ® which allows a stable (noise)
reconstruction of any channel action output z = T(x, y).

What we know?
Assume T is known and fixed. Let {e,—}f':’o1 be the canonical basis in R".

©
T(Zx) = J U T %) (4)
=1 j=1 W—’:: .

non-linear

where X; = span{e;,,...,e;}, Y; = span{e;,...,e;} are s resp. f dim. subspaces.
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reconstruction of any channel action output z = T(x, y).
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Assume T is known and fixed. Let {e;}7 7 ' be the canonical basis in R".

UlY)
i=1 j=1 ::Vv v

non-linear
where X; = span{e;,,...,e;}, Y; = span{e;,...,e;} are s resp. f dim. subspaces.

How “sparse”is Z and T(Xs, X¢)?
At least sf-sparse, i.e. T(Xs, Xf) C Zg.

M15 - Seminar 2013 P. Walk



Channel Output

What we want?
Find the “best” compressible sensing matrix ® which allows a stable (noise)
reconstruction of any channel action output z = T(x, y).

What we know?
Assume T is known and fixed. Let {e,—},’-’:’o1 be the canonical basis in R".

@)
T(Zs,2) = J U T v) (4)
=1 j=1 T/—’

non-linear
where X; = span{e;,,...,e;}, Y; = span{e;,...,e;} are s resp. f dim. subspaces.

How “sparse”is Z and T(Xs, X¢)?

At least sf-sparse, i.e. T(Xs, Xf) C Zg.

But can we do better, i.e. find (draw randomly) ¢ € R™*" such that with exponential
high probability we can exactly reconstruct z from &z with m = O((s + f) log n)
measurements by solving a (convex) optimization problem?
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Channel Output

What we want?
Find the “best” compressible sensing matrix ® which allows a stable (noise)
reconstruction of any channel action output z = T(x, y).

What we know?
Assume T is known and fixed. Let {e,—},’-’:’o1 be the canonical basis in R".

@)
T(Zs,2) = J U T v) (4)
=1 j=1 T/—’

non-linear
where X; = span{e;,,...,e;}, Y; = span{e;,...,e;} are s resp. f dim. subspaces.

How “sparse”is Z and T(Xs, X¢)?

At least sf-sparse, i.e. T(Xs, Xf) C Zg.

But can we do better, i.e. find (draw randomly) ¢ € R™*" such that with exponential
high probability we can exactly reconstruct z from &z with m = O((s + f) log n)
measurements by solving a (convex) optimization problem?

Intuition say yes, since every output is given by an s + f parameter set. But the
properties of Z depend on properties of T and X, Y.
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We have in general not:
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Properties of Z
We have in general not:
» convex or linear properties
» smooth or CX manifold (Baraniuk and Wakin, 2009)
We have always:
> Linearcone:Vz € Z: A € R: Az € Z (homogeneity of T).
» Connected (simply), star-shaped (T is continuous)
» For fixed x,y: T(X,y) and T(x, Y) are linear spaces with maximal dim. s resp. f.
Linearization

Tensor Product (R” @ R”, ®) is an n? dimensional linear space, given as the convex
hull of the bilinear map ® defined by x @y = (xgy7, ..., X,_1y")7 (Greub, 1967).

R"XR"LR"@]RH

bilinear T
Blinear

Rn
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Properties of Z
We have in general not:
» convex or linear properties
» smooth or CX manifold (Baraniuk and Wakin, 2009)
We have always:
> Linearcone:Vz € Z: A € R: Az € Z (homogeneity of T).
» Connected (simply), star-shaped (T is continuous)
» For fixed x,y: T(X,y) and T(x, Y) are linear spaces with maximal dim. s resp. f.
Linearization

Tensor Product (R” @ R”, ®) is an n? dimensional linear space, given as the convex
hull of the bilinear map ® defined by x @y = (xgy7, ..., X,_1y")7 (Greub, 1967).

R" X R" L Rn ® Rn
bilinear T\L /
Blinear
Rn
Any bilinear map T acting on X x Y can be described by a linear map B acting on U:
z=T(x,y)=B(x®y) , (X,y)EXxYCR"xR" (5)

where U:= {x®YVy| (X,y) € Xx Y} is a set of simple tensor products and Z = B(U).
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Toy Example: Circular Convolution

Using the discrete Fourier transform (Fourier matrix) F we can describe the circular
convolution ® as the point product © in the frequency domain

T(x,y) :=x ®y = VNF*(Fx ® Fy) (6)
or pointwise by the modulation (/ ® k) :=/+ k mod n as
n—1

X®Y)k =D X¥iok 7)
=0
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Toy Example: Circular Convolution

Using the discrete Fourier transform (Fourier matrix) F we can describe the circular
convolution ® as the point product © in the frequency domain

T(x,y) :=x®y = VNF*(Fx © Fy) (6)

or pointwise by the modulation (/ ® k) :=/+ k mod n as

n—1
X®Y)k =D X¥iok 7)
1=0
There exist no bases in which T(Xs, %) can be represented by less than sf bases

elements.
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Toy Example: Circular Convolution

Using the discrete Fourier transform (Fourier matrix) F we can describe the circular
convolution ® as the point product © in the frequency domain

T(x,y) :=x ®y = VNF*(Fx ® Fy) (6)
or pointwise by the modulation (/ ® k) :=/+ k mod n as

n—1
(x®y)k = Z X1Yigk (7)
1=0
There exist no bases in which T(Xs, %) can be represented by less than sf bases
elements.

Idea:

Use the properties of ® to transport (s, f)—sparsity in the Cartesian product X x Y to
the output. This is possible for certain canonical subspace pairs which are maximal
separated, i.e. if the image of the canonical basis Bx = span{e; | i € I} and

By =span{e; | j € J} given by

Bz :={ex| k=i®jforany (i,j) € I x J} (8)

has cardinality equal to sf, (Hegde and Baraniuk, 2011April).
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Results

For the circular convolution B®:

m >nforanyn>1 = nullspace N (B®) # {0} (non-trivial).
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Results

For the circular convolution B®:

n >nforanyn>1 = nullspace N(B®) # {0} (non-trivial).

There exist maximal separated cano. subspace pairs (X, Y) with dim. sresp. f, s.t.
N(B®)NU = {0} (€)

Hence any z is uniquely represented by directions in X and Y (except by scalar
multiple). Now since Z = B®(U) we have

ZCB®(X®Y) subspace of R" with dim. sf (10)

Seems to be the worst case, since B® (X ® Y) is the smallest subspace containing Z.
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Results

For the circular convolution B®:

n >nforanyn>1 = nullspace N(B®) # {0} (non-trivial).

There exist maximal separated cano. subspace pairs (X, Y) with dim. sresp. f, s.t.
N(B®)NU = {0} (€)

Hence any z is uniquely represented by directions in X and Y (except by scalar
multiple). Now since Z = B®(U) we have

ZCB®(X®Y) subspace of R" with dim. sf (10)

Seems to be the worst case, since B® (X ® Y) is the smallest subspace containing Z.

Surprisingly, perfect reconstruction with high probability is possible from only
M = O(s + f) measurements, (Hegde and Baraniuk, 2011April).
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Restricted Norm Multiplicativity Property

We could derive a sufficient condition on T, X, Y for a §-stable embedding of Z C R” in
an m = O(s + f) dimension subspace.
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Restricted Norm Multiplicativity Property

We could derive a sufficient condition on T, X, Y for a §-stable embedding of Z C R” in
an m = O(s + f) dimension subspace.

Since in general, T has a non-trivial null-space in X x Y it could exist a representation
set O C X x YforZs.t.

alxyl < ITeWI< Bl (xy)e O (1

with 0 < a < 8 < co.
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Restricted Norm Multiplicativity Property

We could derive a sufficient condition on T, X, Y for a §-stable embedding of Z C R” in
an m = O(s + f) dimension subspace.

Since in general, T has a non-trivial null-space in X x Y it could exist a representation
set O C X x Y for Zs.t.

alxyl < ITeWI< Bl (xy)e O (1

with0 < a < 8 < co.

Definition (Restricted norm multiplicativity property)

Let X, Y C R". Then the bilinear map T: X x Y — R" has the restricted norm
multiplicativity property (RNMP), if

IT(x, y)ll
0<a(X,Y):= sup —_—— (12)
XY)= 2, o Iyl
T(0)=T(X,Y)
Moreover, we define the universal upper bound by
T(x,
B(X,Y) = ITCx,y)l| 13)

xyexxy Xyl
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RIP on T(X, Y)

Theorem

Lets,f,nnmeNwith1 <s<f<sf<nandX,Y CR" sresp. fdim. convex
cones. If the bilinear map T: X x Y — R has the restricted norm multiplicativity
property with bounds « and 3, then a realization of a sub-Gaussian matrix

®: R” — R withm < n and [®]; ~ N(0,1/m) fulfills for everyz € T(X,Y)

(1 =0)lzll < ll®z]| < (1 +9) 2]l (14)
for any § € (0, 1) with probability

> 1 —2N(X", X/ 9YN(YT, y3/d)e—c@)m (15)
and constants 5
722+va) , a#8 662 — 53
= = o =— 1
d=d(a,B) {12  a=p and c¢ 368 (16)
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RIP on T(X, Y)

Theorem

Lets,f,nnmeNwith1 <s<f<sf<nandX,Y CR" sresp. fdim. convex
cones. If the bilinear map T: X x Y — R has the restricted norm multiplicativity
property with bounds « and 3, then a realization of a sub-Gaussian matrix

®: R” — R withm < n and [®]; ~ N(0,1/m) fulfills for everyz € T(X,Y)

(1 =0)lzll < ll®z]| < (1 +9) 2]l (14)
for any § € (0, 1) with probability

> 1 —2N(X", X/ 9YN(YT, y3/d)e—c@)m (15)
and constants 5
722+va) , a#8 662 — 43
= = [ = — 1
d=d(a,B) {12  a=p and c¢ 368 (16)

Example for T = ®
For any pairs (X, Y) which are positive convex cones s.t. dimcoX = s,dimcoY = f,
we have oo = 1 and 8 = /s, s.t.

S+f
p>1-2 (?ﬁ) e—c(Om. (17)
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Proof Idea

Extending proof technique in (Baraniuk et al., 2008January)
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Proof Idea

Extending proof technique in (Baraniuk et al., 2008January)

Figure: Net construction in the shells for covering the sphere in Z.

» The RNMP allow a representation of the sphere Z'-! in Z by the shells X#:? and
Yab with

(18)
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Proof Idea

Extending proof technique in (Baraniuk et al., 2008January)

Figure: Net construction in the shells for covering the sphere in Z.

» The RNMP allow a representation of the sphere Z'-! in Z by the shells X#:? and
Yab with

a:% and b:% (18)

» constructanet R = T(P, Q) for Z":! by e-nets P in X&b and Qin YP,
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Using Modified Proof Technique in (Baraniuk et al., 2008January)
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Using Modified Proof Technique in (Baraniuk et al., 2008January)
The Probabilistic Part

1. Measure concentration phenomenon of Gaussian matrices:
For every r € R" and any ¢ € (0, 1) it holds

er( = e[| < & fIrll (19)

with probability
>1— 2 %(5/2m (20)

The Algebraic Part
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Using Modified Proof Technique in (Baraniuk et al., 2008January)
The Probabilistic Part

1. Measure concentration phenomenon of Gaussian matrices:
For every r € R" and any ¢ € (0, 1) it holds

er( = e[| < & fIrll (19)

with probability
>1— 2 %(5/2m (20)

The Algebraic Part

3. Any realization of ¢ is a linear map on a finite dimensional normed space R" and
hence bounded, i.e. there exist A > —1 such that

ozl < (1 +A)lzll , z€ZCR" (21)

where 1 + A > 0 denotes the smallest upper bound.

M15 - Seminar 2013 P. Walk



Motivation Framework Results Circular Convolution Open Problems

Using Modified Proof Technique in (Baraniuk et al., 2008January)
The Probabilistic Part

1. Measure concentration phenomenon of Gaussian matrices:
For every r € R" and any ¢ € (0, 1) it holds

er( = e[| < & fIrll (19)

with probability
>1— 2 %(5/2m (20)

The Algebraic Part

3. Any realization of ¢ is a linear map on a finite dimensional normed space R" and
hence bounded, i.e. there exist A > —1 such that

ozl < (1 +A)lzll , z€ZCR" (21)

where 1 + A > 0 denotes the smallest upper bound.

4. Show that A < § with high probability, by using the net and the measure
concentration above. (This gives the upper bound in (14))
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Using Modified Proof Technique in (Baraniuk et al., 2008January)
The Probabilistic Part

1. Measure concentration phenomenon of Gaussian matrices:
For every r € R" and any ¢ € (0, 1) it holds

er( = e[| < & fIrll (19)

with probability
>1— 2 %(5/2m (20)

The Algebraic Part

3. Any realization of ¢ is a linear map on a finite dimensional normed space R" and
hence bounded, i.e. there exist A > —1 such that

ozl < (1 +A)lzll , z€ZCR" (21)

where 1 + A > 0 denotes the smallest upper bound.

4. Show that A < § with high probability, by using the net and the measure
concentration above. (This gives the upper bound in (14))

5. Use the upper bound to show with the inverse triangular inequality the lower
bound in (14), with same probability.
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Circular Convolution Inequality
What we need for the proof is a global lower bound a(s, f) := miny y a(X, Y). We
could show at least the existence of such an global lower bound.
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Circular Convolution Inequality
What we need for the proof is a global lower bound a(s, f) := miny y a(X, Y). We
could show at least the existence of such an global lower bound.
Theorem (Reverse Young Inequality for sparse circular convolution)

Lets, f,n be integers s.t. 1 < s < f < sf < n, then there exista = a(s, f) > 0, s.t. for
allx € s andy € ¥ it holds

alx|? yl* < Ix @yl < s x| |ly]?. (22)
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Circular Convolution Inequality
What we need for the proof is a global lower bound a(s, f) := miny y a(X, Y). We
could show at least the existence of such an global lower bound.
Theorem (Reverse Young Inequality for sparse circular convolution)

Lets, f,n be integers s.t. 1 < s < f < sf < n, then there exista = a(s, f) > 0, s.t. for
allx € s andy € ¥ it holds

alx|? yl* < Ix @yl < s x| |ly]?. (22)

Positive Symmetric Toeplitz Matrix vs. Positive Harmonic Functions

To find the lower bound a(s, f) is an NP-hard problem. It is equivalent to a problem of
Cathedory and Fejer (Caratheodory and Fejer, 1911)

f—1
= mi M= min min min (1+2 Kcos(kw) | . (2
alf.f)i= min \B)= min r,rngg[ygﬂ)( + ;bk(y)r cos(kw) | . (23)

where the Laurent Polynomial coefficients are

f—k—1

by (y) = ViYivk (24)

K—
1=0
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Subexpontenial Decay

Numerically, we could show that a(s, s) decays super exponentially as s—5.

s=f

Figure: Approximation results of a for s = f.
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Conclusions

Our Theorem shows a stable embedding of a signal set M if all differences
A ={zy — 2z | 21,2z € M} are contained in the union of images of positive convex
cones Xt ® Y+.
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Conclusions

Our Theorem shows a stable embedding of a signal set M if all differences
A ={zy — 2z | 21,2z € M} are contained in the union of images of positive convex
cones Xt ® Y+.

Open Problems:

> Is it possible to show the RIP on A for the circular convolution?

Leads into an embedding (immersion theory) of each Z. l.e. we need to
characterize the nullspace of T on each X x Y.
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Conclusions

Our Theorem shows a stable embedding of a signal set M if all differences
A ={zy — 2z | 21,2z € M} are contained in the union of images of positive convex
cones Xt ® Y+.

Open Problems:

> Is it possible to show the RIP on A for the circular convolution?
Leads into an embedding (immersion theory) of each Z. l.e. we need to
characterize the nullspace of T on each X x Y.

» Find additional Restrictions to X and Y such that an useful a(s, f) exists, e.g.
demand decaying laws of the signals.
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» Since @ is linear and Z a cone , we can restrict us to all z € 827.
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1.Step: Constructing e-nets

» Since @ is linear and Z a cone , we can restrict us to all z € 827.

» Construct a finite set of points T(p,q) € Z from an e-net point pair
(p,q) € Qg x P; g, where Q; g C X"F and P, g C Y"F are e-nets for X"
resp. Y"f with e € (0,1).
Since v/t < 1 the net cardinality bound for the e-net Qg for X7 is the same as for
Qr g resp. Pg, given by |Qg| < N(XA, X¢) resp. |Pg| < N(YF, Y¢). Hence we
have constructed a finite set Q with cardinality |Qg||Pg| < N(XF, X )N(YF, Y¢).
Every z € 9Z" can then be represented by T and a pair (x,y) € X" x YA,
which is at the same time contained in the Cartesian product of one pair of convex
e environments X¢(p) = X¢ 4+ p and Y¢(q) = Y© + q. The image
T(X<(p), Y<(q)) is the covering set of the point T(p, q) and the union forms a
covering for 8Z" by (??). Note that this covering sets in Z are not necessarily
convex!
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1.Step: Constructing e-nets

» Since @ is linear and Z a cone , we can restrict us to all z € 827.

» Construct a finite set of points T(p,q) € Z from an e-net point pair
(p,q) € Qg x P; g, where Q; g C X"F and P, g C Y"F are e-nets for X"
resp. Y"f with e € (0,1).
Since v/t < 1 the net cardinality bound for the e-net Qg for X7 is the same as for
Qr g resp. Pg, given by |Qg| < N(XA, X¢) resp. |Pg| < N(YF, Y¢). Hence we
have constructed a finite set Q with cardinality |Qg||Pg| < N(XF, X )N(YF, Y¢).
Every z € 9Z" can then be represented by T and a pair (x,y) € X" x YA,
which is at the same time contained in the Cartesian product of one pair of convex
e environments X¢(p) = X¢ 4+ p and Y¢(q) = Y© + q. The image
T(X<(p), Y<(q)) is the covering set of the point T(p, q) and the union forms a
covering for 8Z" by (??). Note that this covering sets in Z are not necessarily
convex!

» By using the triangle inequality and using a zero addition p — p and q — q we have
for an arbitrary T(p,q) € Qthatallz € T(X¢(p), Y¢(q)) N 9Z" satisfy:

ozl — 1®T(p, Q)| < [|S(T(x =P,y — )l + [[*(T(x = p, )| + [*(T(P,y —A)Il-
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3.Step: Using Upper bounds for T and ¢
With the the universal bound 1 + A for ¢ in (21) we obtain

<+ AITEY =)l +ITx=p.a@)| +ITx—py - a)l)

(26)
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3.Step: Using Upper bounds for T and ¢
With the the universal bound 1 + A for ¢ in (21) we obtain

<(A+AUTEyYy-al+ITx-p.a@)|+IT(x—p,y—a)l) (25)

The upper bound g of the RNMP for T in (12) gives

< B+ A)(llalllly —all + l[x —all lall + [Ix = pllly —all ) (26)
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3.Step: Using Upper bounds for T and ¢
With the the universal bound 1 + A for ¢ in (21) we obtain

<(A+AUTEyYy-al+ITx-p.a@)|+IT(x—p,y—a)l) (25)

The upper bound g of the RNMP for T in (12) gives
< B +A)(llalllly —all + [Ix —all lall + lIx = pIl ly - all )- (26)

4.Step: Using net properties
Since p € X7 and q € YF are e-net points, i.e. ||x — p|| < eand ||y — q|| < ¢, we get

< B(1+A) (Re+ Re+ é2) (27)

< B(1+ AR+ e 2 (1+ MFER+1)e. (28)

If we define the constant
c=c(e,B) :=BRR+1)=8(2/Va+1)>1, (29)
we obtain the upper bound

[®z]| < (1+ A)ce + [|®T(p,q)| - (30)
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2.Step: Measure Concentration

Unfortunately, the nesting r/R < || T(p, q)|| < R/r is independent of ¢(5) and hence
not useful for establishing a §-RIP. To obtain an useful nesting, we can use the
continuity property (bilinarity) of T to upper and lower bound || T(p, q)|| in terms of ¢ for
every Cartesian product of two convex covering sets X¢(p), Y<(q).
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2.Step: Measure Concentration

Unfortunately, the nesting r/R < || T(p, q)|| < R/r is independent of ¢(5) and hence
not useful for establishing a §-RIP. To obtain an useful nesting, we can use the
continuity property (bilinarity) of T to upper and lower bound || T(p, q)|| in terms of ¢ for
every Cartesian product of two convex covering sets X¢(p), Y<(q).

Let us define the preimage of T(X<(p), Y¢(q)) N 8Z" by

Z7Y(a,p) = {(x,y) € X“(p) x Y(a) | IT(x,y)[l =1}
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2.Step: Measure Concentration

Unfortunately, the nesting r/R < || T(p, q)|| < R/r is independent of ¢(5) and hence
not useful for establishing a §-RIP. To obtain an useful nesting, we can use the
continuity property (bilinarity) of T to upper and lower bound || T(p, q)|| in terms of ¢ for
every Cartesian product of two convex covering sets X¢(p), Y<(q).

Let us define the preimage of T(X<(p), Y¢(q)) N 8Z" by

Z7Y(a,p) = {(x,y) € X“(p) x Y(a) | IT(x,y)[l =1}

If this set is not empty, just grap one pair (x,y) € Z~'(q, p), then we know that there
is'ance X st.p+c=xandd e Y¢st q+d=y. If we insert this we get

TP DI =T(x—c,y—d)[| = [[T(x,y) - T(x,d) - T(c,y) + T(c,d)[| . (31)
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2.Step: Measure Concentration

Unfortunately, the nesting r/R < || T(p, q)|| < R/r is independent of ¢(5) and hence
not useful for establishing a §-RIP. To obtain an useful nesting, we can use the
continuity property (bilinarity) of T to upper and lower bound || T(p, q)|| in terms of ¢ for
every Cartesian product of two convex covering sets X¢(p), Y<(q).

Let us define the preimage of T(X¢(p), Y¢(q)) N 8Z" by

Z7Y(a,p) = {(x,y) € X“(p) x Y(a) | IT(x,y)[l =1}

If this set is not empty, just grap one pair (x,y) € Z~'(q, p), then we know that there
is'ance X st.p+c=xandd e Y¢st q+d=y. If we insert this we get

TP DI =T(x—c,y—d)[| = [[T(x,y) - T(x,d) - T(c,y) + T(c,d)[| . (31)

TIf X is a convex cone, then p is the aphex point of the covering set X€ which is again a convex cone

(non-symmetrical), precisely eX' = X€. Hence x — q € X¢(p). If X is a linear space, then X€ is a ball (symmetric)
with center p and so x — p € X¢(p) again.
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2.Step: Measure Concentration

Unfortunately, the nesting r/R < || T(p, q)|| < R/r is independent of ¢(5) and hence
not useful for establishing a §-RIP. To obtain an useful nesting, we can use the
continuity property (bilinarity) of T to upper and lower bound || T(p, q)|| in terms of ¢ for
every Cartesian product of two convex covering sets X¢(p), Y<(q).

Let us define the preimage of T(X<(p), Y¢(q)) N 8Z" by

Z7Y(a,p) = {(x,y) € X“(p) x Y(a) | IT(x,y)[l =1}

If this set is not empty, just grap one pair (x,y) € Z~'(q, p), then we know that there
is'ance X st.p+c=xandd e Y¢st q+d=y. If we insert this we get

TR, @)l =T(x—c,y—d)| =[T(xy)—T(x,d)—T(c,y) + T(c,d)[|. (31)
Since 0 < ||c||, ||d|| < e we get with the RNMP as lower bound

IT(a,p)l = TV =T, d) = T(e,y)lI—1T(c,d)]
>1—28Re— B >1—B(2R+1)e=1—ce

TIf X is a convex cone, then p is the aphex point of the covering set X€ which is again a convex cone

(non-symmetrical), precisely eX' = X€. Hence x — q € X¢(p). If X is a linear space, then X€ is a ball (symmetric)
with center p and so x — p € X¢(p) again.
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2.Step: Measure Concentration

Unfortunately, the nesting r/R < || T(p, q)|| < R/r is independent of ¢(5) and hence
not useful for establishing a §-RIP. To obtain an useful nesting, we can use the
continuity property (bilinarity) of T to upper and lower bound || T(p, q)|| in terms of ¢ for
every Cartesian product of two convex covering sets X¢(p), Y<(q).

Let us define the preimage of T(X<(p), Y¢(q)) N 8Z" by

Z71(@,p) == {(x.y) € X°(P) x Y(a) | IT(x,y)Il =1}.
If this set is not empty, just grap one pair (x,y) € Z~'(q, p), then we know that there
is'ance X st.p+c=xandd e Y¢st q+d=y. If we insert this we get
TP, )l =IT(x—c,y—d)|| = [IT(x,y) = T(x,d) — T(c,y) + T(c,d)[. (31
Since 0 < ||c||, ||d|| < e we get with the RNMP as lower bound

IT(a,p)l = TV =T, d) = T(e,y)lI—1T(c,d)]
>1—28Re— B >1—B(2R+1)e=1—ce

and the upper bound
1T, )l < ITCYIHITx, d) [+ T(c,y) I+ T(e,d)|
<1+428Re+Be® <1+ B(2R+1)e=1+ce.

TIf X is a convex cone, then p is the aphex point of the covering set X€ which is again a convex cone

(non-symmetrical), precisely eX' = X€. Hence x — q € X¢(p). If X is a linear space, then X€ is a ball (symmetric)
with center p and so x — p € X¢(p) again.
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Let us discuss the discontinuity of this norm estimation. If we have o = 3, hence norm
multiplicativity, then we would get ¢ = 3. But in fact, this is to bad, since the shells are
now unit spheres and every p, g is normalized and hence by the norm multiplicativity

T(p, q). But this gives ¢ = 0. To respect this fact we define ¢ and get for all point pairs

c ,a#p

0 .a=5 (32)

T—Ce<|[T(p,a)l <1+4Cc , 5:—{
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Let us discuss the discontinuity of this norm estimation. If we have o = 3, hence norm
multiplicativity, then we would get ¢ = 3. But in fact, this is to bad, since the shells are
now unit spheres and every p, g is normalized and hence by the norm multiplicativity

T(p, q). But this gives ¢ = 0. To respect this fact we define ¢ and get for all point pairs

1— < |T(pa)ll <148 , &—{C et B (32)

0 ,a=p
4.Step: Upper Bound for RIP

Then we can use the measure concentration in (19) to obtain with probability larger
than in (20)

[®z] < (1 + A)ce + (1 +8/2)(1 + Ee) (33)
=1+ Ace + ce + Ce 4 5(Ce + 1) /2. (34)

Now there exist a maximal z’ € 8Z" s.t. equality in (21) is achieved. Hence we get

< 2ce +2Ce + 6(Ce+ 1)

A(1 —ce) < 5 (35)
2 Ce(2
A< ce + Ce( +6)+5' (36)
2(1 —ce)
Let us proceed by case distinction. If « = 3then ¢ = 0,¢ = 3 and
3 ]
A<tz 37)

—1-—3e¢
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Defining e = -5 < 1 with § € (0, 1) we get

=4 (38)
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Defining e = % < 1 with § € (0, 1) we get
12

=4 (38)

If we have o # B then € = ¢ = ¢(«, 8) and we get

ce(4+6) S 5ce )
A< 2 T2931 5 T3
- 1—ce - 1-—ce
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Defining e = % < 1 with § € (0, 1) we get
12

8498 549 35
Acilz’Tal (38)
19 3
4 4
If we have o # B then € = ¢ = ¢(«, 8) and we get
Cce(4+9) S 5.9 5ce 5
A< 2 +2§ 2 T3 (39)
1—ce 1—ce
Defining e = 2 < 1 with § € (0, 1) we get
56476 5.4 125
A< 42 14 (40)
T
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Defining e = % < 1 with § € (0, 1) we get
12

(38)

If we have o # B then € = ¢ = ¢(«, 8) and we get

ce(4+9) ) 5ce )
—— 4+ 5 61 = -+ 2

A< —2 2
- 1—ce ~— 1—ce

Defining e = 2. < 1 with § € (0, 1) we get
7c

n
(=2}

5614:176 5<1 1
A< Hs <

7

(40)

\nm‘l‘\

This upper bound holds with probability larger than
>1-2N(XR X3)N(YR, y3)e (/M

with constant

w{jﬁ(”ﬁ*” N ()

Q

d:=
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5.Step: Lower Bound for RIP
The lower bound 1 — ¢ follows from this with

[®z]| = [®T(p,q)ll — (1 + A)ce (42)
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5.Step: Lower Bound for RIP
The lower bound 1 — ¢ follows from this with

[®z]| = [®T(p,q)ll — (1 + A)ce (42)

Considering all z € 3Z' we get by inserting (40) and (32) with same probability (41)

5 .6 s
|z|| > (1 - 5) <1 _CM> -@ +5)a(a’ﬂ), (43)
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5.Step: Lower Bound for RIP
The lower bound 1 — ¢ follows from this with

[®z]| = [®T(p,q)ll — (1 + A)ce (42)

Considering all z € 3Z' we get by inserting (40) and (32) with same probability (41)

5 .6 s
|z|| > (1 - 5) <1 _CM> -@ +5)a(a’ﬂ), (43)

Case a = 3: Then & = 0,¢ = 3 and d = 12. This gives

bzl >1-5/2—6/2=1—04. (44)
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5.Step: Lower Bound for RIP
The lower bound 1 — ¢ follows from this with

loz] > |®T(p, q)ll — (1 + A)ce (42)

Considering all z € 3Z' we get by inserting (40) and (32) with same probability (41)

5 .8 s
|z|| > (1 - 5) <1 Ca(a,ﬂ)> —( +5)a(a’ﬂ), (43)

Case a = 3: Then & = 0,¢ = 3 and d = 12. This gives

|bz|| >1—5/2—6/2=1—05. (44)

Case a # 3: Then & = ¢,d = 7c and

_ 19
”¢2”21_5 2056 ce 2co 7

§>0
S 1—(7+6)5/14>1—34.
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5.Step: Lower Bound for RIP
The lower bound 1 — ¢ follows from this with

loz] > |®T(p, q)ll — (1 + A)ce (42)

Considering all z € 3Z' we get by inserting (40) and (32) with same probability (41)

5 .8 cs
|z|| > (1 - é) <1 Ca(a,ﬂ)> —( +5)a(a’ﬂ), (43)

Case a = 3: Then & = 0,¢ = 3 and d = 12. This gives

|bz]| >1—6/2—6/2=1—04. (44)
Case a # 3: Then & = ¢,d = 7c and

26

_ 19
”¢2”21_5 2056 ce 2co 7

§>0
S 1—(7+6)5/14>1—34.

Since the covering number N(X7, X€) remains the same if we scale both sets X7, X<
by 1/R = \/a, (?P1s89, Lemma 4.16), we have finally granted the RIP with probability

> 1 2N(XT, XTIN(Y!, Y9)e= @M | g.— /ad O
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Possible Structures for X x Y

T

XxY

: atlas
linear

multi-linear
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Possible Structures for X x Y

T multi-linear

XXxY ———> XY ~RS

: atlas
linear
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Possible Structures for X x Y

T multi-linear

XXxY ———> XY ~RS

. atlas
linear

X@Y ~ RSt
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Possible Structures for X x Y

topological manifold

T multi-linear

XXxY ———> XY ~RS

. atlas
linear

X@Y ~ RSt
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