
On the Decay - and the Smoothness Behavior of the Fourier
Transform, and the Construction of Signals Having Strong

Divergent Shannon Sampling Series

Holger Boche and Ezra Tampubolon

Lehrstuhl für Theoretische Informationstechnik - TUM

held at the Chair for Communications Theory, Dresden University of
Technology, 21.09.2015



Table of contents

1 Motivations

2 Notations and Preliminaries

3 Decay Behaviour of FT

4 Strong Slow Decay of FT

5 Strong Divergence of SSS

6 Smoothness of the FT

7 Discussions



Riemann-Lebesgue Lemma

Theorem 1 (Riemann-Lebesgue Lemma)

Let f P L1pRq. The Fourier transform f̂ of f is continuous. Furthermore, it
vanishes at infinity, in the sense that lim|ω|Ñ8 f̂ pωq � 0.

• Fourier transform (FT) and inverse Fourier transform (IFT) of f P L1pRq:

f̂ pωq �
�8»
�8

f e�iωtdt (FT)

qf ptq � 1

2π

�8»
�8

f e iωtdω (IFT).

• Riemann-Lebesgue Lemma asserts regularity behaviour of FT (or
equivalently IFT), viz. continuity and vanishability at infinity.

• Riemann-Lebesgue Lemma for Fourier series: Fourier coefficients of a
w.l.o.g. 2π-periodic signals integrable on r�π, πs approach with increasing
absolute index zero.



Riemann-Lebesgue Lemma - Discussions

Typical vague conclusions:

• ”Time-limited signals are approximatively band-limited.1”

• ”Periodic integrable signals can be approximated very well by a few
dominant Fourier coefficients of low indexes.”

The following question remains however unanswered:

• How ”regular” can the FT of a signal f in L1pRq be?

• How slow can f̂ approach zero?
• How is the continuity behaviour of f̂ ?

• Is one able to specify the regularity behaviour of the FT of integrable
signals, without any further specific constraints (e.g. differentiability,
vanishability at infinity (Test functions, Schwartz functions))?

The following answers shall be given in this presentation:

• ”Typically/Generically”, the FT of integrable signals (concentrated
essentially on r�tg , tg s, tg ¡ 0) decay arbitrarily slowly.

• ”Typically/Generically”, the FT of integrable signals have arbitrarily
weak continuity behaviour at a given point ω P R.

1f P L1pRq is approximatively band-limited means that:

@ε ¡ 0 : Dωg pεq P R� :
���pf pωq��� ¤ ε, @ |ω| ¡ ωg .
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Basic notions

• An operator is here always a linear mapping between vector spaces.

• X1,X2 normed spaces, T : X1 Ñ X2 operator

}T} :� sup
}x}X1

�0

}Tx}X2

}x}X1

� sup
}x}X1

¤1

}Tx}X2
� sup

}x}X1
�1

}Tx}X2
.

• T : X1 Ñ X2 (an operator!) is said to be bounded, if }T}   8.

• Boundedness is equivalent with continuity for operators.

• Lebesgue spaces (Banach spaces!): LppRq, Lppr�σ, σsq, σ ¡ 0 (w.l.o.g.
Lppr�π, πsq!), p P r1,8s.



Baire Category

Definition 2 (Nowhere Dense Set, Set of 1. Category, Residual Set)

Let B be a Banach space, and M � B.

• M is nowhere dense if the inner of the closure of M is empty.

• M is said to be of 1. category (or meagre) if M can be represented by
countable union of nowhere dense sets.

• M is residual if M is a complement of a set of 1. category.

• Nowhere dense set: Set ”being perforated by holes”2

• Set of 1. Category: Set approximable by sets ”being perforated by holes” -
Small set in the topological sense

• Residual set - Large set in the topological sense.

2J. Oxtoby. Measure and Category : A Survey of the Analogies between Topological and
Measure Spaces. Graduate texts in mathematics. New York: Springer-Verlag, 1980.



Baire Category

• Baire Category Thm. – ”Those categorization of sets into large - and
small subsets is non-trivial”:
• A Banach space is not of first category –

”The whole Banach space can not be small”
• Residual sets are dense and closed under countable intersections –

Denseness alone is not sufficient for largeness of a set!
• Meagre sets are closed under countable union –

”Impossible: the whole Banach space is approximable by such small sets”

Definition 3 (Generic property)

Let B be a Banach space. A property in B is said to hold generically for
(elements of) B, if it holds for all elements in a residual subset of B.

Notice: A generic property might not holds for all elements of a Banach space,
but for ”typical” ones.



Banach-Steinhaus Theorem and the Principle of Condensation of
Singularities

The Following Thm.3 is a central result in functional analysis:

Theorem 4 (Banach-Steinhaus Theorem)

Given a (possibly uncountable) family Φ of bounded operators between Banach
spaces B1 and B2. Suppose that Φ is pointwise bounded on whole B1, i.e
supTPΦ }Tx}B2

  8. Then the set Φ is uniform bounded w.r.t. to the operator
norm, i.e. supTPΦ }T }B1ÑB2

  8

Corollary 5

Let B1 and B2 be Banach spaces. Given a (possibly uncountable) family Φ of
bounded operators between B1 and B2. If it holds supTPΦ }T }B1ÑB2

� 8, then
there exists x P B1, for which supTPΦ }Tx}B1

� 8 holds.

3S. Banach and H. Steinhaus. “Sur le principle de la condensation de singularités”. In: Fund.
Math. 9 (1927), pp. 50–61.



Principle of Condensation of Singularities

It is even possible to sharpen previous Corollary as follows:

Corollary 6 (The Principle of Condensation of Singularity)

Let B1 and B2 be Banach spaces. Given a (possibly uncountable) family Φ of
bounded operators between B1 and B2. If it holds supTPΦ }T}B1ÑB2

� 8, then
the set D, for which it holds supTPΦ }Tx�}B1

� 8, @x� P D, is a residual set.

The principle of condensation of singularity gives a powerful - and
relatively-easy-to-handle tool for proving divergence results:

• Rewrite the problem s.t. Banach spaces B1 and B2 (mostly B2 � C,R)
and a Family of bounded operators Φ between B1 and B2 occurs in its
reformulation.

• Show that supTPΦ }T}B1ÑB2
� 8. Usually easier than observing the

behaviour of }Tx}B2
, for every T P Φ, and x P B1:

• Mostly, it is sufficient to give only a lower bound for }T}, T P Φ.
• Computing }T} is still easier than computing }Tx}B2

, for every T P Φ, and

x P B1.

• One can immediately infer that there exists not only an x P B1 s.t. the
divergence result holds, rather it holds for typical elements of B1.
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Decay Behaviour of FT of L1pRq-functions

Theorem 7
Let M : R�0 Ñ R�0 be an arbitrary monotonically non-decreasing function, with
limωÑ8Mp|ω|q � �8. Then there exists a function f� P L1pRq, with
f�ptq � 0, for a.e. |t| ¡ π, such that it holds:

lim sup
|ω|Ñ8

Mp|ω|q
���f̂�pωq��� � 8. (1)

• M specifies a certain decay rate:
• For logarithmic decay choose e.g. M � logp� � 1q
• For exponential decay choose e.g. M � ep�q

• Thm. 7 says roughly that the Fourier transform of an integrable signal
might decay asymptotically arbitrarily slowly

• Notice that the statement in Thm. 7 is in some sense weak, since it is
given only by means of limes superior.

• Thm. 7 can easily be modified as to give a statement concerning to the
IFT of L1pRq functions:
”For a fixed asymptotic decay rate M, there exists a signal f , which is in
turn the IFT of some L1pRq-signals, failing to possess M as an comparable
asymptotic decay rate. Furthermore, there is such a signal, which is in
addition almost band-limited to r�π, πs.”



Sketch of Proof of Thm. 7

• Problem reformulation:
Find f� P L1pr�π, πsq s.t.:

lim sup
|ω|Ñ8

|Ψω,Mf�| � lim sup
|ω|Ñ8

Mp|ω|q
���f̂�pωq��� � 8,

where Ψω,M : L1 pr�π, πsq Ñ C, f ÞÑ Mp|ω|qΨωpf q � Mp|ω|qpf pωq, a
bounded operator, @ω P R, and L1pr�π, πsq and C Banach spaces.

• Let ω P R be arbitrary but fixed. Write Ψω,M � ΨωMp|ω|q, where
Ψω : L1pr�π, πsq Ñ C, f Ñ ³π

�π
f ptqe�iωtdt. Subsequently, recognize to

following norm behaviour of Ψω:

}Ψω} � sup
}f }

L1pr�π,πsq
¤1

|Ψωf | � 1

• }Ψω} ¤ 1 is easy to see.
• }Ψω} ¥ 1 can be shown by means of the following sequence of functions of

unit norm in L1pRq:

fnptq :�

#
n t P r� 1

2n
, 1

2n
s

0 else,
n P N



Sketch of Proof of Thm. 7

• }Ψω} � 1, @ω P R asserts that for all ω P R, the norm of Ψω,M is
determined by M:

}Ψω,M} � Mp|ω|q.
• sup

ωPR�0
Mpωq � limωÑ8Mpωq � 8 ùñ supωPR }Ψω,M} � 8

• By Banach-Steinhaus Thm. (Cor. 5): there exists a function
f� P L1pr�π, πsq s.t. lim sup|ω|Ñ8 |Ψω,Mf�| � 8, and correspondingly the
desired statement.



Tightening of Thm. 7: Arbitrarily Slow decay - Typical Property of FT

Corollary 8

Let M be an arbitrary function as described in Thm. 7. The set of all
f P L1pr�π, πsq, for which:

lim sup
|ω|Ñ8

Mp|ω|q
���pf pωq��� � 8 (2)

holds, is a residual set in L1pr�π, πsq, .

Proof.
An immediate consequence of the principle of condensation of singularities.



Some Remarks on Thm. 7 and Cor. 8

• Thm. 7 and Cor. 8 also holds in case L1pr�π, πsq is replaced by L1pRq:
Let M be an appropriate function specifying a certain decay rate. Then
typically the FT of signal f in L1pRq fails to possess M as a decay rate.

• Thm. 7 and Cor. 8 also holds in case L1pr�π, πsq is replaced by
Lppr�π, πsq, where p P r1,8s.

• Since FT and IFT is almost identical and by previous remark, Thm. 7 and
Cor. 8 can be modified as to give statements concerning to the decay
behaviour of the IFT integrable signals:
Band-limited signals4 PWp

π, p P r1,8s arbitrary, decays typically
arbitrarily slowly.

• One may also to modify the statements in Thm. 7 and Cor. 8 as to give a
description to the decay behaviour of the Fourier coefficients:
Typically, the Fourier coefficients of a signal f P L1pTq decays arbitrarily
slowly toward 0.

4PWp
ωg

:� tf : f ptq �
³ωg
�ωg

pf pωqe itωdω, pf P L1pr�ωg , ωg squ



Some Remarks on Thm. 7 and Cor. 8

• Recall Thm. 7:
Let M be a function, which specifies a certain decay rate. Then one can
find a function f P L1pRq, which is essentially defined on r�π, πs, for
which it holds:

lim sup
|ω|Ñ8

Mp|ω|q
���pf pωq��� � 8,

i.e. f decays slower than the rate specified by M.

• The statement given in Thm. 7 is rather weak, since it is given by means
of limes superior, which ensures in this context only a sequence tωnu � R,

for which limnÑ8Mp|ωn|q
���pf pωnq

��� � 8
• Does there exists a stronger statement, in the sense:

For a given function M specifying a certain decay rate, can one find a
function f P L1pRq, s.t.:

lim
|ω|Ñ8

Mp|ω|q
���pf pωq��� � 8?
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Functions Whose FT Decaying Strongly Slowly than a Given Rate

Theorem 9
Let M : R�0 Ñ R� be an arbitrary monotonically increasing continuous
function, with Mp0q ¡ 0 and lim|ω|Ñ8Mpωq � �8. Then there exists a
function f� P L1pRq, for which it holds:

lim
|ω|Ñ8

��� pf�pωq���Mp|ω|q � �8.

Further, f� can be chosen, s.t. pf� is real and non-negative.



Functions Whose FT Decaying Strongly Slowly than a Given Rate

To proof Thm. 9, we first need the following construction:

Theorem 10
Let G : R�0 Ñ R� be an arbitrary a monotonically decreasing continuous
function, for which limωÑ8Gpωq � 0 holds. Then there exists a function

f P L1pRq such that |pf pωq| ¥ Gp|ω|q, for all ω P R. Furthermore, the function f

can be found s.t. pf is real and non-negative.



Sketch of Proof of Thm. 10

• For n P N, consider the Fejèr kernel gn, whose FT is given by:

pgnpωq � #1 � |ω|
2n

|ω| ¤ 2n

0 |ω| ¡ 2n.

It is well-known that
³8
�8

gnptqdt � 1, and therefore: }gn}L1pRq � 1

• For each n P N, define the function (de la Valée Poussin Kernel) g�n by
g�n :� 2gn�1 � gn. FT of g�n :

xg�n pωq �
$'&'%

1 |ω| ¤ 2n

1 � |ω�2n|

2n�1�2n
2n   |ω| ¤ 2n�1

0 |ω| ¡ 2n�1.

(3)

By the triangle inequality, and }gn}L1pRq � 1:��g�n ��L1pRq � }2gn�1 � gn}L1pRq ¤ 3, @n P N.



Sketch of Proof of Thm. 10

• Take an arbitrary function G, which fulfills the requirement given in the
Theorem. For each steps k P N, do the following:
• choose nk P N sufficiently large enough, s.t.:

nk ¡ nk�1 and Gp2nk q ¤
1

2
Gp2nk�1 q,

where n0 � 0. By induction,and by involving the fact that G vanishes at
infinity, those choices is always possible.

• Define the function:
fk :� fk�1 �Gp2nk�1 qg�nk ,

where f0 :� 0. By induction:

•
!pfn

)
pointwise monotonically increasing sequence of real non-negative functions:

@ω P R : pfkpωq ¥ pfl pωq, for k ¥ l.

•
!pfn

)
dominate G in some ”increasing” intervals:

@k P N : pfkpωq ¥ Gp|ω|q, @ |ω| ¤ 2nk (4)



Proof of Thm. 10

• Notice that @k P N, fk can be written as fk �
°k

l�1 Gp2nl qg�nl . Thus for

k, k
1 P N, k ¥ k

1

:

��fk � fk1
��
L1pRq ¤

ķ

l�k
1
�1

Gp2nl q ��g�nl ��L1pRq ¤ 3Gp0q
ķ

l�k
1
�1

1
2l
,

• From above computations, and From the fact that the series
°8

k�1 1{2k

converges, one can easily conclude, that tfku is a Cauchy sequence in
L1pRq, and accordingly, completeness of L1pRq asserts the existence of
f P L1pRq, for which limnÑ8 fn � f w.r.t. the norm of L1pRq.

• Continuity of the FT seen as an element of operator between L1pRq and

C0pRq5, it follows that pfk converges uniformly to pf , and clearly also
pointwise.

• Let ω P R be arbitrary but fixed. There exists of course an k0 P N, s.t.
|ω| ¤ 2nk0 . From the fact that tpfnpωqun is monotonically increasing, pfnpωq
converges to pf pωq, and (4), we have as desired pf pωq ¥ pfk0pωq ¥ Gp|ω|q.

5C0pRq denotes the space of continuous functions f vanishing at infinity, i.e. limxÑ8 f pxq � 0



Proof of Thm. 9

• Choose a function M, which fulfills the requirements given in Thm. 9, i.e.
M : R�0 Ñ R� monotonically increasing continuous function, with
Mp0q ¡ 0 and lim|ω|Ñ8Mpωq � �8.

• Define another function G :� 1{?M. Notice that G fulfills the
requirements given in Thm. 10, i.e. G : R�0 Ñ R� is monotonically
decreasing, continuous, and fulfills limωÑ8Gpωq � 0.

• By Thm. 10, there exists a function f�, for which :��� pf�pωq��� ¥ Gp|ω|q � 1a
Mp|ω|q , @ω P R,

and accordingly: ��� pf�pωq���Mp|ω|q ¥aMp|ω|q, @ω P R,

which gives the desired statement lim|ω|Ñ8

��� pf�pωq���Mp|ω|q � 8.



Remarks on Thm. 10 and Thm. 9

• Since FT and IFT are almost identical, we modify Thm. 10 and Thm. 9
as follows:
• Let G : R�0 Ñ R� be a monotonically decreasing continuous function, for

which limωÑ8Gpωq � 0. Then there exists an f P L1pRq, for which it
holds: ���qf ptq��� ¥ Gp|t|q, @t P R.

Further, f can be chosen s.t. qf is real and non-negative.
• Let M : R�0 Ñ R� be an arbitrary monotonically increasing continuous

function, with Mp0q ¡ 0 and lim|ω|Ñ8Mpωq � �8. Then there exists a

function f P L1pRq, for which it holds:

lim
|ω|Ñ8

���qf pωq���Mp|ω|q � �8.

Further, f can be chosen, s.t. qf is real and non-negative.

• In contrast to Corollary 8, for a fixed choice of M, the set of functions

f P L1pRq for which lim|ω|Ñ8

���qf pωq���Mp|ω|q � �8 holds, is not a residual

set in L1pRq. Rather, it is only a small set, i.e. of first category, in L1pRq,
as asserted in6.

6H. Boche and U. J. Mönich. “A General Approach for Convergence Analysis of Adaptive
Sampling-Based Signal Processing”. In: Sampling Theory and Applications (SampTA), 2015
International Conference on. 2015, pp. 211–215.
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Strong Divergence of the Shannon Sampling Series for Band-Limited
Functions

• Strong divergence of the Shannon sampling series (SSS)7:

Theorem 11 (Boche,Farrell)

For each ωg ¡ 0, there exists an fωg P PW1
ωg

possessing a strong divergence
SSS, i.e.:

lim
NÑ8

sup
tPR

����� 1
ωg

Ņ

k��N

fωg p kπωg
q sinpωg pt�

kπ
ωg

qq

t� kπ
ωg

����� � 8. (5)

• Paley-Wiener space PWp
ωg

, p P r1,8s, ωg ¡ 0 - ”Banach space of signals
band-limited to ωg”:

PWp
ωg

:�
#
f : f ptq �

» ωg

�ωg

pf pωqe itωdω, pf P Lppr�ωg , ωg sq
+

7H. Boche and B. Farrell. “Strong divergence of reconstruction procedures for the
Paley-Wiener space PW1

π and the Hardy space H1”. In: Journal of Approximation Theory 183
(2014), pp. 98–117.



Strong Divergence of the Shannon Sampling Series for Band-Limited
Functions - Discussions

• Convergence8 of the SSS of functions in PW1
ωg

on compact subsets: For

any ωg ¡ 0, it holds for every f P PW1
ωg

:

lim
NÑ8

sup
tPK

�����f ptq � 1
ωg

Ņ

k��N

fωg p kπωg
q sinpωg pt�

kπ
ωg

qq

t� kπ
ωg

����� � 0,

where K � R is a compact subset.

• Weak divergence9 of the SSS of functions in PW1
ωg

: For any ωg ¡ 0, it
holds that the set of f for which:

lim sup
NÑ8

sup
tPR

����� 1
ωg

Ņ

k��N

fωg p kπωg
q sinpωg pt�

kπ
ωg

qq

t� kπ
ωg

����� � 8,

holds is a residual set in PW1
ωg

8J. L. Brown. “On the error in reconstructing a nonbandlimited function by means of the
bandpass sampling theorem”. In: Journal of Mathematical Analysis and Applications 18 (1967),
pp. 75–84.

9H. Boche and U. J. Mönich. “There exists no globally uniformly convergent reconstruction for
the Paley-Wiener space PW1

π of bandlimited functions sampled at Nyquist rate”. In: IEEE
Trans. Signal Process. 56.7 (2008), 31703179.



Strong Divergence of the Shannon Sampling Series for Band-Limited
Functions - Discussions

• Strong divergence of SSS (5) for fωg P PW1
ωg

is stronger than the previous
statement, since it abnegates the existence of a subsequence tNkuk � N,
for which the following holds:

lim sup
kÑ8

sup
tPR

����� 1
ωg

Nķ

k��Nk

fωg p kπωg
q sinpωg pt�

kπ
ωg

qq

t� kπ
ωg

�����   8,

and hence the possibility that above expression convergence to fωg .



Strong Divergence of the Shannon Sampling Series for Band-Limited
Functions

• Thm. 10 allows us to give an alternative stronger proof of the strong
divergence of SSS given in10:
There exists a ”universal” function f P L1pRq, s.t. for every ωg ¡ 0, one
can construct by means of f another function f� (depends on ωg !), whose

band-limited interpolation11 qf�,ωg P PW1
ωg

of its IFT qf� has a strong
divergence SSS, i.e.:

lim
NÑ8

sup
tPR

����� 1
ωg

Ņ

k��N

qf�,ωg p kπωg
q sinpωg pt�

kπ
ωg

qq

t� kπ
ωg

����� � 8. (6)

10H. Boche and B. Farrell. “Strong divergence of reconstruction procedures for the
Paley-Wiener space PW1

π and the Hardy space H1”. In: Journal of Approximation Theory 183
(2014), pp. 98–117.

11In this context, the band-limited interpolation of a function f , with band-limit ωg ¡ 0, is the

function (in case it is well-defined!) fωg P PW1
ωg

, for which f p kπ
ωg

q � fωg p
kπ
ωg

q, k P Z.



An Alternative Proof of the Strong Divergence of the Shannon Sampling
Series for Band-Limited Functions (Sketch)

• First suppose that we have a function G : R�0 Ñ R� fulfilling the
conditions given in Thm. 10 (we shall soon discuss about the choice of
such function), for which the following holds:

lim
NÑ8

Ņ

k�0

G
�

kπ
ωg

	
1

N�
1
2
�k

� 8, @ωg P R�. (7)

• Thm. 10, and the fact that FT and IFT is almost identical, assert that we
can find a function f P L1pRq, whose IFT is real and non-negative, and

fulfills qf ptq ¥ Gp|t|q, for all t P R. In particular, we have for every
ωg P R�: qf � kπ

ωg

	
¥ G

���� kπωg

���	 , @k P Z. (8)

• Now, let ωg P R� be fixed. Define another function f� by:

f�pωq :� f pω � ωg q, @ω P R.

It is not hard to see that f� P L1pRq, and that the following holds:

qf� � kπ
ωg

	
� p�1qk qf � kπ

ωg

	
, k P Z. (9)



An Alternative Proof of the Strong Divergence of the Shannon Sampling
Series for Band-Limited Functions (Sketch)

• Of course we can give the band-limited interpolation of qf�, i.e. the
function qf�,ωg P PW1

ωg
, for which it holds:

qf�,ωg

�
kπ
ωg

	
� qf� � kπ

ωg

	
, (10)

by setting: f�,ωg pωq :� °�8
k��8 f�pω � 2ωgkq, @ |ω| ¤ ωg , and 0 else (see

e.g.12).

• By some efforts involving (9), one can give explicitly the behaviour of the

SSS of qf�, and resp. qf�,ωg by (10), at the time instances t̃N :� tNpπ{ωg q,
where tN :� pN � p1{2qq, N P N:����� 1

ωg

Ņ

k��N

qf�,ωg p kπωg
q sinpωg pt̃N�

kπ
ωg

qq

t̃N�
kπ
ωg

����� ¥ 1
π

Ņ

k�0

Gp kπ
ωg

q

N� 1
2
�k
,

• Collecting all the previous observations, and by assumption (7), it is not
hard to see that (6) holds, as desired.

12Holger Boche and Ezra Tampubolon. “On the Existence of the Band-Limited Interpolation of
a Non-Band-Limited Signals”. In: In Preparation (2015).



An Alternative Proof of the Strong Divergence of the Shannon Sampling
Series for Band-Limited Functions (Sketch)

• Now, it remains to construct the function G, for which (7) holds. Notice
that it is sufficient to require that:

@ωg P R� : lim
NÑ8

G
�

Nπ
ωg

	
logpN � 2q � 8.

For instance, the function G given by:

Gptq �
#

1 0 ¤ t ¤ 10
logplogp10qq
logplogptqq

t ¡ 10,

fulfills above condition and hence (7).
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On the Smoothness/Continuity Behaviour of the Fourier Transform

• The 2. Statement of the Riemann-Lebesgue’s Lemma:
The Fourier transform of an integrable function is continuous

• It is possible to specify the continuity/smoothness behaviour of the FT?

• (Local) modulus of continuity:
Let f : RÑ C be continuous. A continuous monotonically increasing
function γg,ω : R� Ñ R� vanishing at 0 is said to be a (local) modulus of
continuity (MOC) of g at ω, if it holds:

@h ¡ 0 : |gpω � hq � gpωq| ¤ γg,ωp|h|q.
• In some sense, MOC specifies the continuity behaviour of the function g

at ω, and gives a (microscopic) measure on the smoothness of g at the
point ω



The 2. statement of the Riemann-Lebesgue Lemma can be specified as follows:

Theorem 12
Let µ : R� Ñ R� an arbitrary monotonically increasing continuous function,
with µp0q :� limhÑ0� µphq � 0. Given an arbitrary point ω� P R. Then the set
of all f P L1pRq, for which:

lim sup
hÑ0

|pf pω��hq�pf pω�q|
µphq

� �8,

holds, is a residual set.

In other words:
Given a frequency ω� P R, and a function µ satisfying the conditions in Thm.
12. Then every functions in L1pRq have generically a FT, which does not admit
µ as the modulus of continuity at ω�



Proof of Theorem 12

• For fixed ω P R, we have:

f̂ pω� � hq � f̂ pω�q :�
�8»
�8

f ptqe�iω�tpe iht � 1qdt, h ¡ 0

• We aim to analyze for ω� P R and h ¡ 0, the behaviour of the functional
Ψω�,h : L1pRq Ñ C, given by:

Ψω�,hf :�
�8»
�8

f ptqe�iω�tpe iht � 1qdt.

• Now, for c P R�, define the function fc , by fc ptq :� ce iω�t , for |t| ¤ 1{2c,
and fc ptq :� 0 else.

• By simple computations, one obtains:

Ψω�,hfc �

�� sin
�

h
2c

	
h

2c

� 1

�� .
• For a fixed choice of h ¡ 0, set c� � h{2π, which yields the estimation��Ψω�,hfc� �� � 1, implying:��Ψω�,h�� ¥ 1, @h P R� (11)



Proof of Theorem 12

• Now let µ be an arbitrary function fulfilling the requirements given in
Thm. 12. Define by this choice the functional Ψω�,h,µ on L1pRq by:

Ψω�,h,µf :� f̂ pω� � hq � f̂ pω�q
µphq � Ψω�,hf

µphq .

• From (11), we have
��Ψω�,h,µ

�� ¥ 1{µphq, and correspondingly:

lim
hÑ0

��Ψω�,h,µ

�� ¥ lim
hÑ0

1

µphq � �8.

Thus suph¡0

��Ψω�,h,µ

�� � �8, and correspondingly by cor. 8, we obtain
the desired result.



Tightening of Theorem 12 (without Proof)

Theorem 13
Let µ be a function fulfilling the requirements given in Theorem 12. The set
Dµ of all f P L1pRq, such that the set:

Ppµq
Div pf q :�

$&%ω P R : lim sup
hÑ0

���pf pω � hq � pf pωq���
µphq � �8

,.-
is a residual set in R, forms a residual set in L1pRq.
In other words:
”Given an appropriate function µ. Typically, signals in L1pRq fails to possess µ
as a modulus of continuity at typical points on the real line.”



Conclusions - Tightening of Riemann-Lebesgue lemma

• The Fourier transform (resp. the inverse Fourier transform) of an
integrable function (also Lppr�π, πsq, p P r1,8s arbitrary) can decay
arbitrarily slowly.

• Tightening: The Fourier transform (resp. the inverse Fourier transform) of
an integrable function (also Lppr�π, πsq, p P r1,8s arbitrary) typically
decay arbitrarily slowly –

• Important conclusion: Band-limited signals PWp
π, p P r1,8s, typically

decay arbitrarily slowly.

 The statements is only given weakly by means of the limes superior.



Conclusions - Tightening of Riemann-Lebesgue lemma

• Tightening: It is possible to construct a function in L1pRq, whose FT
decays strongly slower than a certain decay rate.

• But: The set of signals f P L1pRq whose FT decaying strongly slower than
a certain decay rate might be a negligible set in L1pRq.

• The corresponding construction gives a stronger proof of the strong
divergence of the Shannon’s sampling series for band-limited signals
PW1

ωg
, where ωg ¡ 0.



Conclusions - Tightening of Riemann-Lebesgue lemma

• The Fourier transform (resp. the inverse Fourier transform) of an
integrable might possesses arbitrarily weak continuous behaviour.

 The statement is only given weakly by means of the limes superior.

• Tightening: The Fourier transform (resp. the inverse Fourier transform) of
an integrable function typically possesses arbitrarily weak continuous
behaviour.

• Further tightening: The Fourier transform (resp. the inverse Fourier
transform) of an integrable typically possesses arbitrarily weak continuous
behaviour on typical points on the real line.



Thank you!
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