On the Decay - and the Smoothness Behavior of the Fourier

Transform, and the Construction of Signals Having Strong
Divergent Shannon Sampling Series

Holger Boche and Ezra Tampubolon
Lehrstuhl fiir Theoretische Informationstechnik - TUM

held at the Chair for Communications Theory, Dresden University of
Technology, 21.09.2015

Tm

Technische Universitat Miinchen



Table of contents

@ Motivations



Riemann-Lebesgue Lemma

Theorem 1 (Riemann-Lebesgue Lemma)

Let f € [*(R). The Fourier transform f of f is continuous. Furthermore, it

vanishes at infinity, in the sense that lim,| . f(w) = 0.

e Fourier transform (FT) and inverse Fourier transform (IFT) of f € L*(R):

+o0
flw) = er_iwtdt (FT)
— 0
+o0
f(t) = %J e“tdw (IFT).

e Riemann-Lebesgue Lemma asserts regularity behaviour of FT (or
equivalently IFT), viz. continuity and vanishability at infinity.

e Riemann-Lebesgue Lemma for Fourier series: Fourier coefficients of a
w.l.0.g. 2m-periodic signals integrable on [—m, 7] approach with increasing
absolute index zero.



Riemann-Lebesgue Lemma - Discussions

Typical vague conclusions:

e "Time-limited signals are approximatively band-limited.!”

e "Periodic integrable signals can be approximated very well by a few
dominant Fourier coefficients of low indexes.”

The following question remains however unanswered:
e How "regular’ can the FT of a signal f in L}(R) be?
e How slow can f approach zero?
e How is the continuity behaviour of f?

o Is one able to specify the regularity behaviour of the FT of integrable
signals, without any further specific constraints (e.g. differentiability,
vanishability at infinity (Test functions, Schwartz functions))?

The following answers shall be given in this presentation:

o " Typically/Generically”, the FT of integrable signals (concentrated
essentially on [—tg, tg], t; > 0) decay arbitrarily slowly.

o " Typically/Generically”, the FT of integrable signals have arbitrarily
weak continuity behaviour at a given point w € R.

Lf € L (R) is approximatively band-limited means that:

Ve > 0: Jwg(e) e RT : |)?(w)‘ <e, Vwl > w,.
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@® Notations and Preliminaries



Basic notions

o An operator is here always a linear mapping between vector spaces.

X1, A> normed spaces, T : X1 — A operator

1] x,

[T] := sup = sup [Tx|y, = sup [Tx|y,.
Ielag 20 X2y ixiy, <2 Il 2 =1

T : X1 — X, (an operator!) is said to be bounded, if |T| < co.

Boundedness is equivalent with continuity for operators.

Lebesgue spaces (Banach spaces!): L?(R), LP([—c,0]), 0 > 0 (w.l.o.g.
LP([=m, x])!), p € [1, 00].



Baire Category

Definition 2 (Nowhere Dense Set, Set of 1. Category, Residual Set)
Let B be a Banach space, and M c B.
e M is nowhere dense if the inner of the closure of M is empty.

e M is said to be of 1. category (or meagre) if M can be represented by
countable union of nowhere dense sets.

M is residual if M is a complement of a set of 1. category.

Nowhere dense set: Set " being perforated by holes”?

Set of 1. Category: Set approximable by sets " being perforated by holes” -
Small set in the topological sense

Residual set - Large set in the topological sense.

2. Oxtoby. Measure and Category : A Survey of the Analogies between Topological and
Measure Spaces. Graduate texts in mathematics. New York: Springer-Verlag, 1980.



Baire Category

o Baire Category Thm. — " Those categorization of sets into large - and
small subsets is non-trivial”:

e A Banach space is not of first category —
"The whole Banach space can not be small”

e Residual sets are dense and closed under countable intersections —
Denseness alone is not sufficient for largeness of a set!

o Meagre sets are closed under countable union —
"Impossible: the whole Banach space is approximable by such small sets”

Definition 3 (Generic property)

Let B be a Banach space. A property in B is said to hold generically for
(elements of) B, if it holds for all elements in a residual subset of B.

Notice: A generic property might not holds for all elements of a Banach space,
but for "typical” ones.



Banach-Steinhaus Theorem and the Principle of Condensation of

Singularities

The Following Thm.? is a central result in functional analysis:

Theorem 4 (Banach-Steinhaus Theorem)

Given a (possibly uncountable) family ® of bounded operators between Banach
spaces B1 and B». Suppose that ® is pointwise bounded on whole BB, i.e
SUPree | Tx[ 5, < 0. Then the set ® is uniform bounded w.r.t. to the operator
norm, i.e. supree | T, 5, < ©

Corollary 5

Let By and B> be Banach spaces. Given a (possibly uncountable) family ® of
bounded operators between By and Bz. If it holds supree | T 5,5, = ©, then
there exists x € By, for which suprcq || Tx| 5, = 00 holds.

3S. Banach and H. Steinhaus. “Sur le principle de la condensation de singularités”. In: Fund.
Math. 9 (1927), pp. 50-61.



Principle of Condensation of Singularities

It is even possible to sharpen previous Corollary as follows:

Corollary 6 (The Principle of Condensation of Singularity)

Let B1 and B> be Banach spaces. Given a (possibly uncountable) family ® of
bounded operators between By and B,. If it holds supreq [Tl 5,5, = %, then
the set D, for which it holds supee | Txx[ 5, =00, Vx« € D, is a residual set.
The principle of condensation of singularity gives a powerful - and
relatively-easy-to-handle tool for proving divergence results:

e Rewrite the problem s.t. Banach spaces B1 and B> (mostly B, = C,R)
and a Family of bounded operators ® between 3; and B, occurs in its
reformulation.

* Show that suprce [T, 5, = 0. Usually easier than observing the
behaviour of [Tx|;,, for every T € ®, and x € Bu:

e Mostly, it is sufficient to give only a lower bound for |T|, T € ®.
e Computing ||T] is still easier than computing | Tx| g, for every T € ®, and

X € Bl-
e One can immediately infer that there exists not only an x € B s.t. the
divergence result holds, rather it holds for typical elements of ;.
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Decay Behaviour of FT of L(R)-functions

Theorem 7

Let M : R} — R be an arbitrary monotonically non-decreasing function, with
limy—o M(Jw|) = +00. Then there exists a function fy € L (R), with

fx(t) =0, for a.e. |t| > m, such that it holds:

lim sup M(|w|)

|w]—0

F*(w)‘ = w. (1)

M specifies a certain decay rate:

o For logarithmic decay choose e.g. M = log(- + 1)

e For exponential decay choose e.g. M = e(")
Thm. 7 says roughly that the Fourier transform of an integrable signal
might decay asymptotically arbitrarily slowly
Notice that the statement in Thm. 7 is in some sense weak, since it is
given only by means of limes superior.
Thm. 7 can easily be modified as to give a statement concerning to the
IFT of L*(R) functions:
"For a fixed asymptotic decay rate M, there exists a signal f, which is in
turn the IFT of some L!(R)-signals, failing to possess M as an comparable
asymptotic decay rate. Furthermore, there is such a signal, which is in
addition almost band-limited to [—m, 7].”



Sketch of Proof of Thm.

e Problem reformulation:
Find fy € LY ([—m,7]) s.t.:

limsup W nmfy| = limsup M(|w])

|w|—c |w]—oc

, (w)‘ = w,

where W, : LY ([—7,7]) = C, f > M(|w|)Vo(f) = M(Jw|)f(w), a
bounded operator, Vw € R, and L*([—m,7]) and C Banach spaces.

e Let w € R be arbitrary but fixed. Write W, m = W,M(|wl), where
W, : L([-m,7]) > C, f —> 7 _f(t)e~"“dt. Subsequently, recognize to
following norm behaviour of W,,:

Woll= — sup  [Wf|l=1

Il 2 (= ey ST

o |V, | <1is easy to see.
e |V, | = 1 can be shown by means of the following sequence of functions of
unit norm in L1(R):

n te[—n, ]
fa(t) := 2n’ 2n N
(t) {0 else, ne



Sketch of Proof of Thm.

o |V,| =1, Vw € R asserts that for all w € R, the norm of W, 1 is
determined by M:

Ve = M(jwl).
® SUP,cpt M(w) = limyoo M(w) =0 = sup e [|Vo,m| = 0
e By Banach-Steinhaus Thm. (Cor. 5): there exists a function

fy € L'([—m,7]) s.t. lim SUP|w|—on |Ww,Mfi| = 00, and correspondingly the
desired statement.



Tightening of Thm. : Arbitrarily Slow decay - Typical Property of FT

Corollary 8

Let M be an arbitrary function as described in Thm. 7. The set of all
f € L*([~m,7]), for which:

lim sup M(|w]) |F(w \ 0 (2)

lw|—>x
holds, is a residual set in L'([—m,7]), .

Proof.

An immediate consequence of the principle of condensation of singularities. [J



Some Remarks on Thm. and Cor.

e Thm. 7 and Cor. 8 also holds in case L'([—m,7]) is replaced by L'(R):
Let M be an appropriate function specifying a certain decay rate. Then
typically the FT of signal f in L'(R) fails to possess M as a decay rate.

e Thm. 7 and Cor. 8 also holds in case L*([—m,7]) is replaced by
LP([—m, x]), where p € [1, 0].

e Since FT and IFT is almost identical and by previous remark, Thm. 7 and
Cor. 8 can be modified as to give statements concerning to the decay
behaviour of the IFT integrable signals:

Band-limited signals* PW?, p € [1, c0] arbitrary, decays typically
arbitrarily slowly.

e One may also to modify the statements in Thm. 7 and Cor. 8 as to give a
description to the decay behaviour of the Fourier coefficients:

Typically, the Fourier coefficients of a signal f € L*(T) decays arbitrarily
slowly toward 0.

PPWE = {f: f(t) = §78 Flw)e™dw, T e LM([~wg,we])}



Some Remarks on Thm. and Cor.

e Recall Thm. 7:
Let M be a function, which specifies a certain decay rate. Then one can
find a function f € L*(R), which is essentially defined on [—=, 7], for
which it holds:
lim sup M(|w|) f ‘ 00,
|w]—>
i.e. f decays slower than the rate specified by M.

e The statement given in Thm. 7 is rather weak, since it is given by means
of limes superior, which ensures in this context only a sequence {w,} C R,

for which limp— 0 M(|wa|) ‘f(w,,) =00

e Does there exists a stronger statement, in the sense:
For a given function M specifying a certain decay rate, can one find a
function f € L*(R), s.t.:

lim M(|w]|) ‘f ‘— 00?7

|w|—
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Functions Whose FT Decaying Strongly Slowly than a Given Rate

Theorem 9

Let M : Rf — R* be an arbitrary monotonically increasing continuous

function, with M(0) > 0 and lim|,|—o M(w) = 4+00. Then there exists a
function fy, € L*(R), for which it holds:

lim
|w|—=

fe() | M(Jw]) = +o0.

Further, fy can be chosen, s.t. fy is real and non-negative.



Functions Whose FT Decaying Strongly Slowly than a Given Rate

To proof Thm. 9, we first need the following construction:

Theorem 10
Let G: Ra’ — R* be an arbitrary a monotonically decreasing continuous
function, for which lim,,_, G(w) = 0 holds. Then there exists a function

f € L*(R) such that |f(w)| = G(|w|), for all w € R. Furthermore, the function f
can be found s.t. f is real and non-negative.




Sketch of Proof of Thm.

e For ne N, consider the Fejer kernel g,, whose FT is given by:

. 1-kl g2
n\W) =
&) {o jw| > 2°.

It is well-known that {”  g,(t)dt = 1, and therefore: lgnll 1y =1

e For each n € N, define the function (de la Valée Poussin Kernel) g by
g;k = 2gn+1 — 8&n- FT of gr:k:

1 lw] <27
gfw) =1 1— 2l 2n < juw] g 2m (3)
0 |w| > 27

By the triangle inequality, and ||g,,|\L1(R) =1:

||g’:l< ||L1(]R) = ”2gn+1 - gnHLl(R) < 3, VneN.



Sketch of Proof of Thm.

e Take an arbitrary function G, which fulfills the requirement given in the
Theorem. For each steps k € N, do the following:

e choose ny € N sufficiently large enough, s.t.:
1
ng > ng—1 and G(2") < §G(2"k*1),

where ng = 0. By induction,and by involving the fact that G vanishes at
infinity, those choices is always possible.
o Define the function:
f i= fr—1 + G(2”k*1)g,§“k,

where fy := 0. By induction:
° {fn} pointwise monotonically increasing sequence of real non-negative functions:
VweR: fw)=fAw), forks=l.

° {fn} dominate G in some "increasing” intervals:

VkeN: fi(w) = G(lwl), Vlw| <2% (4)



Proof of Thm.

e Notice that Vk € N, fx can be written as fx = 25;1 G(2")gn. Thus for

k k' €N, k> k
K k
I~ el < 33 GOl <360 3 3
I=k"+1 1=K+

e From above computations, and From the fact that the series }.,- ; 1/2k
converges, one can easily conclude, that {f} is a Cauchy sequence in
L'(R), and accordingly, completeness of L' (R) asserts the existence of
f € L*(R), for which lim,_ f, = f w.r.t. the norm of L'(R).

e Continuity of the FT seen as an element of operator between L'(R) and
Go(R)?, it follows that fe converges uniformly to £, and clearly also
pointwise.

e Let w € R be arbitrary but fixed. There exists of course an ko € N, s.t.
|w| < 2™0. From the fact that {f( Vo is monotonically increasing, f( )
converges to f( ), and (4), we have as desired f( ) = ﬁo(w) = G(|w|).

®Cy(R) denotes the space of continuous functions f vanishing at infinity, i.e. limy_ f(x) = 0



Proof of Thm.

e Choose a function M, which fulfills the requirements given in Thm. 9, i.e.
M : RS — R* monotonically increasing continuous function, with
M(0) > 0 and lim|y|— o M(w) = +00.

e Define another function G := 1/\/M Notice that G fulfills the
requirements given in Thm. 10, i.e. G : Rf — R* is monotonically
decreasing, continuous, and fulfills limy,—o G(w) = 0.

e By Thm. 10, there exists a function fy, for which :

, YweR,

and accordingly:

Fuel@)| M(lwl) = VM(w]), Ve eR,

which gives the desired statement lim|— o f;(w)‘ M(|w]) = 0.




Remarks on Thm. and Thm.

e Since FT and IFT are almost identical, we modify Thm. 10 and Thm. 9
as follows:
o Let G: Rg’ — R be a monotonically decreasing continuous function, for
which limy—o G(w) = 0. Then there exists an f € LI(R), for which it

holds: -
(0] = G(tl), veer.

Further, f can be chosen s.t. F is real and non-negative.
o Let M: Rg’ — R* be an arbitrary monotonically increasing continuous
function, with M(0) > 0 and lim,| o, M{w) = +00. Then there exists a

function f € L1(R), for which it holds:
| )| Mlw]) = +eo.

lim
|w|—w
Further, f can be chosen, s.t. f is real and non-negative.
e In contrast to Corollary 8, for a fixed choice of M, the set of functions
f € L*(R) for which im0 ‘f(w)‘ M(|w]) = 4+ holds, is not a residual
set in LI(R). Rather, it is only a small set, i.e. of first category, in LI(R),
as asserted in®.

SH. Boche and U. J. Ménich. “A General Approach for Convergence Analysis of Adaptive
Sampling-Based Signal Processing”. In: Sampling Theory and Applications (SampTA), 2015
International Conference on. 2015, pp. 211-215.
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Strong Divergence of the Shannon Sampling Series for Band-Limited

Functions

e Strong divergence of the Shannon sampling series (SSS)”:

Theorem 11 (Boche,Farrell)

For each wg > 0, there exists an f,,, € PWig possessing a strong divergence
SSS, ie.:

N () sin(uwg (1= £2))
2 fog (o) - | =

k=—N g

lim sup |-
N—=X teRr

()

e Paley-Wiener space PW., , p € [1,00], wg > 0 - "Banach space of signals
band-limited to wg":

—wg

PWE, = {f: £(t) =rg Flw)e™dw, fe LP([—wg,wg])}

“H. Boche and B. Farrell. “Strong divergence of reconstruction procedures for the
Paley-Wiener space 'PW}, and the Hardy space H!". In: Journal of Approximation Theory 183
(2014), pp. 98-117.



Strong Divergence of the Shannon Sampling Series for Band-Limited

Functions - Discussions

e Convergence® of the SSS of functions in PWi,g on compact subsets: For
any wg > 0, it holds for every f € PWlwg:

l F(t) — 2 ZN: f, (k) oSN
NEI.T?}EJE “e S “e\wg t—::—;" -9

where K < R is a compact subset.

e Weak divergence® of the SSS of functions in ”PW}%: For any wg > 0, it
holds that the set of f for which:

N " ke
sin(wg (t— <))
B 1 km g wg _
limsupsup | - E fuog () — i = | = 0,
N—ow teR |8 = € wg

holds is a residual set in ’PWi,g

8J. L. Brown. “On the error in reconstructing a nonbandlimited function by means of the

bandpass sampling theorem”. In: Journal of Mathematical Analysis and Applications 18 (1967),
pp. 75-84.

9H. Boche and U. J. Ménich. “There exists no globally uniformly convergent reconstruction for
the Paley-Wiener space 'P)/Vlr of bandlimited functions sampled at Nyquist rate”. In: /EEE
Trans. Signal Process. 56.7 (2008), 31703179.



Strong Divergence of the Shannon Sampling Series for Band-Limited

Functions - Discussions

e Strong divergence of SSS (5) for f,,, € PWi,g is stronger than the previous
statement, since it abnegates the existence of a subsequence {N,}, c N,
for which the following holds:

Ni " ke
sin(wg (t— <))
: 1 k g\t—3;
lim sup sup | =~ Z f“’g(ul)it,ﬁ €| < o0,
k—o teR | ¢ k=N, & wg

and hence the possibility that above expression convergence to f.,.



Strong Divergence of the Shannon Sampling Series for Band-Limited

Functions

e Thm. 10 allows us to give an alternative stronger proof of the strong
divergence of SSS given in'’:
There exists a "universal” function f € L'(R), s.t. for every wg > 0, one
can construct by means of f another function f (depends on wg!), whose
band-limited interpolation!! f* wg € Png of its IFT f* has a strong
divergence SSS, i.e.:

N—® teRr t wg

in(wg (t—£2))
lim sup |- 2 Fr g ( wg S%Tﬂg 0. (6)

10H. Boche and B. Farrell. “Strong divergence of reconstruction procedures for the
Paley-Wiener space ’PW; and the Hardy space H'". In: Journal of Approximation Theory 183
(2014), pp. 98-117.

n this context, the band-limited interpolation of a function f, with band-limit w, > 0, is the
function (in case it is well-defined!) £, € 'PVV1 , for which f{ k") = fo, (&= ™), k€7



An Alternative Proof of the Strong Divergence of the Shannon Sampling

Series for Band-Limited Functions (Sketch)

e First suppose that we have a function G : Rf — R* fulfilling the
conditions given in Thm. 10 (we shall soon discuss about the choice of
such function), for which the following holds:

N
im Y @ (L’T) — 1  — o, VwgeR". ©)

N—0 We N+5—k

e Thm. 10, and the fact that FT and IFT is almost identical, assert that we
can find a function f € L'(R), whose IFT is real and non-negative, and

~

fulfills 7(t) = G(|t]), for all t € R. In particular, we have for every

we € RT:
f(&)=za(

e Now, let w; € R be fixed. Define another function f; by:

km
Wg

), Vk € Z. (8)

fe(w) == flw+wg), VweR.

It is not hard to see that fi € LI(R), and that the following holds:

7. (5:) - (—1)%(%), ke (9)



An Alternative Proof of the Strong Divergence of the Shannon Sampling

Series for Band-Limited Functions (Sketch)

e Of course we can give the band-limited interpolation of fv* i.e. the
function fi ., € PW,, for which it holds:

e (2) =(5). w

by setting: fiwg(w) =227

e.g.’?).

e By some efforts involving (9), one can give explicitly the behaviour of the
SSS of fy, and resp. fy ., by (10), at the time instances &y := ty(m/wg),
where ty := (N + (1/2)), Ne N:

fe(w + 2wgk), V w| < wg, and 0 else (see

N i fy— k.
1 Z ;_/ (kl)SIn(Wg(fN wg))
wg *,wg wg f ki
k=—N

=

e Collecting all the previous observations, and by assumption (7), it is not
hard to see that (6) holds, as desired.

12Holger Boche and Ezra Tampubolon. “On the Existence of the Band-Limited Interpolation of
a Non-Band-Limited Signals”. In: In Preparation (2015).



An Alternative Proof of the Strong Divergence of the Shannon Sampling

Series for Band-Limited Functions (Sketch)

e Now, it remains to construct the function G, for which (7) holds. Notice
that it is sufficient to require that:

+ . . Nr _
Vwg € R : NIEPI‘G(%)Iog(N—i-D .

For instance, the function G given by:

1 0<t<10
G(t) = {Iog(log(lo))
og(og(0y £ > 10,

fulfills above condition and hence (7).
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On the Smoothness/Continuity Behaviour of the Fourier Transform

The 2. Statement of the Riemann-Lebesgue's Lemma:
The Fourier transform of an integrable function is continuous

It is possible to specify the continuity/smoothness behaviour of the FT?

(Local) modulus of continuity:

Let f : R — C be continuous. A continuous monotonically increasing
function 7, : Rt — R* vanishing at 0 is said to be a (local) modulus of
continuity (MOC) of g at w, if it holds:

Yh>0: |g(w+h)—gw)|<ew(h]).

e In some sense, MOC specifies the continuity behaviour of the function g
at w, and gives a (microscopic) measure on the smoothness of g at the
point w



The 2. statement of the Riemann-Lebesgue Lemma can be specified as follows:

Theorem 12
Let 1 : RT™ — R™ an arbitrary monotonically increasing continuous function,

with p(0) := limy,_,o+ pu(h) = 0. Given an arbitrary point wy € R. Then the set
of all f € L}(R), for which:

. [flwog+h—Flwg)| _
IIT_S,(I)JP — = T,

holds, is a residual set.

In other words:
Given a frequency wy € R, and a function p satisfying the conditions in Thm.

12. Then every functions in L*(R) have generically a FT, which does not admit
1 as the modulus of continuity at wy



Proof of Theorem

e For fixed w € R, we have:
+ 000
Plws + ) — Flws) = J F(t)e ¥ (&M —1)dt, h>0
—o0

e We aim to analyze for wyx € R and h > 0, the behaviour of the functional
Vyn: [*(R) — C, given by:

+o0
W, hf = f f(t)e (™ —1)dt.

—0

e Now, for c € RT, define the function f, by fo(t) := ce/“**, for |t| < 1/2c,
and fc(t) := 0 else.
e By simple computations, one obtains:
- h
sin (2—)
Vnfe= | —3—% 1.
2c
e For a fixed choice of h > 0, set cx = h/2m, which yields the estimation
‘\Ilw*yhfc*‘ =1, implying:

[Weyn =1, vheR?t (11)




Proof of Theorem

e Now let u be an arbitrary function fulfilling the requirements given in
Thm. 12. Define by this choice the functional W, s, on L'(R) by:

Flws +h) — Flws) _ Wy nf
p(h) o)

e From (11), we have |W,, | = 1/1(h), and correspondingly:

ww*»h,uf =

i . 1
f Vo> fimy s = 0.

Thus sup,, ||\Ilw*,h,#|| = +00, and correspondingly by cor. 8, we obtain
the desired result.



Tightening of Theorem  (without Proof)

Theorem 13

Let p be a function fulfilling the requirements given in Theorem 12. The set
D, of all f € L*(R), such that the set:
" Flw+h) — Fw)
Py (f):=3weR: limsup————— =4
Div ( ) b0 p N(h)

is a residual set in R, forms a residual set in L*(R).

In other words:
" Given an appropriate function p. Typically, signals in L*(R) fails to possess j
as a modulus of continuity at typical points on the real line.”



Conclusions - Tightening of Riemann-Lebesgue lemma

e The Fourier transform (resp. the inverse Fourier transform) of an
integrable function (also LP([—m,7]), p € [1,00] arbitrary) can decay
arbitrarily slowly.

e Tightening: The Fourier transform (resp. the inverse Fourier transform) of
an integrable function (also LP([—m,7]), p € [1,00] arbitrary) typically
decay arbitrarily slowly —

e Important conclusion: Band-limited signals PW?., p € [1, 0], typically
decay arbitrarily slowly.

4 The statements is only given weakly by means of the limes superior.



Conclusions - Tightening of Riemann-Lebesgue lemma

e Tightening: It is possible to construct a function in L*(R), whose FT
decays strongly slower than a certain decay rate.

e But: The set of signals f € L*(R) whose FT decaying strongly slower than
a certain decay rate might be a negligible set in L!(R).

e The corresponding construction gives a stronger proof of the strong
divergence of the Shannon's sampling series for band-limited signals
PWi,g, where wg > 0.



Conclusions - Tightening of Riemann-Lebesgue lemma

e The Fourier transform (resp. the inverse Fourier transform) of an
integrable might possesses arbitrarily weak continuous behaviour.

4 The statement is only given weakly by means of the limes superior.

e Tightening: The Fourier transform (resp. the inverse Fourier transform) of
an integrable function typically possesses arbitrarily weak continuous
behaviour.

e Further tightening: The Fourier transform (resp. the inverse Fourier
transform) of an integrable typically possesses arbitrarily weak continuous
behaviour on typical points on the real line.



Thank youl!
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