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Zero Error Capacity

Shannon conjectured the zero-error capacity to be additive:

C0(W1 ⊗W2)
?
= C0(W1) + C0(W2)

channels. The words may be subdivided into 
classes corresponding to the pattern of the 
choices of letters between the two channels. 
There are 2n such classes with (E) classes in 
which exactly k of the letters are from the first 
channel and n - k from the second. Consider now 
a particular class of words of this type. Re- 
place the letters from the first channel alphabet 
by the corresponding non-adjacent letters. This 
does not harm the adjacency relations between 
words in the code. Wow, as in the product case, 
partition the code words according to the 
sequence of letters involved from the first 
channel. This produces at most Ak subsets. Each 
of these subsets contains at most Bn - k members, 
since this is the greatest possible number of non- 
adjacent words for the second channel of length 
n - k. In total, then, summing over all values 
of k and taking account of the (bn) classes for 
each k, there -we at most r n'.Ak Rn - k 

k (k) 
=(A + B)n words in the code for the sum channel. 
This proves the desired result. 

Theorem 4, of course, is analogous to 
known results for ordinary capacity C, where the 
product channel has the sum of the ordinary 
capacities and the sum channel has an equivalent 
number of letters equal to the sum of the equiva- 
lent numbers of letters for the individual 
channels. We conjecture but have not been able 
to prove that the equalities in Theorem 4 hold 
in general, not just under the conditions given. 
We now prove a lower bound for the probability of 
error when transmitting at a rate greater than Co. 

Theorem 5: In any code of length n and 
rate R> Co, Co > 0, the probability of error P, 
will satisfy Pez(l - e -n(C, - Ii) ) p n where min' 
P min is the minimum non-vanishing p,(j). 

w: By definition of Co there are not 
more than enCo non-ad'acent words of length n. 
With R> Co, among e xl4 words there must, therefore, 
be an adjacent pair. The adjacent pair has a 
common output word which either can cause with a 
probability at least pmyn. This output word can- 
not be decoded into both inputs. At least one, 
Vcrefore, must cause an error when it leads to 
thi.s output word. 
least eBnR Gin 

This gives a contribution at 
to the probability of error Pe. 

NOW omit this word from consideration and apply 
the same argument to the remaining enR -1 words 
of the code. This will give another adjacent pair 
and another contribution of error of at least 
e-nR n 

pmin* The process may be continued ztil the 
number of code points remaining is just e O. At 
this time, the computed probability of error must 
be at least (enR _ enCo)e-nR pn 

min 

Channelswith a Feedback Link 

We now consider the corresponding problem 
for channels with complete feedback. By this we 
mean that there exists a return channel sending 
back from the receiving point to the transmitting 
point, without error, the letters actually 
received. It is assumed that this information is 
received at the transmitting point before the next 
letter is transmitted, and can be used, therefore, 
if desired, in choosing the next transmitted 
letter. 

It is interesting that for a memory-less 
channel the ordinary forward capacity is the same 
with or without feedback. This will be shown in 
Theorem 6. On the other hand, the zero error 
capacity may, in some cases, be greater witi 
feedback than without. In the channel shown in 
Fig. 5, for example, Co = log 2. However, we 
will see as a result of Theorem 7 that with 
feedback the zero error capacity COP = log 2.5. 

p, 

p2 

p3 z 

p4 - 

Fig. 5 

We first define a block code of length n 
for a feedback system. This means that at the 
transmitting point there is a device with two 
inputs. or, mathematically, a function with two 
arguments. One argument is the message to be 
transmitted, the other. the past received letters 
(which have come in over the feedback link). The 
value of the function is the next letter to be 
transmitted. Thus, the function may be thought 
of as x j+l = f(k, vj) where x. 

J+l 
is the j + 1 

transmitted letter in a block, k is an index 
ranging from 1 to M, and represents the 
specific message, and v j is a received word of 
length j. Thus j ranges from 0 to n - 1 and vj 
over all received words of these lengths. 

In operation, 'if message mk is to be sent 
f is evaluated for f(k -) where the - means "no = (1 - en(Co - R)) pzin. 

1.5 

C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Inf. Theory, vol. 2,
no. 3, pp. 8–19, Sep. 1956
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Zero Error Capacity and AVCs

Later disproved constructing explicit counter-examples with:

C0(W1 ⊗W2) > C0(W1) + C0(W2)

However, complete characterization is still an open problem

W. Haemers, “On Some Problems of Lovász Concerning the Shannon Capacity of a Graph,”
IEEE Trans. Inf. Theory, vol. 25, no. 2, pp. 231–232, Mar. 1979
N. Alon, “The Shannon Capacity of a Union,” Combinatorica, vol. 18, no. 3, pp. 301–310,
Mar. 1998

Zero error capacity and arbitrarily varying channels (AVCs) are related

R. Ahlswede, “A Note on the Existence of the Weak Capacity for Channels with Arbitrarily
Varying Channel Probability Functions and Its Relation to Shannon’s Zero Error Capacity,”
Ann. Math. Stat., vol. 41, no. 3, pp. 1027–1033, 1970

w Worth to study this additivity problem in the context of AVCs!
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Arbitrarily Varying Wiretap Channel
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Uncertainty set S
actual state sequence sn ∈ Sn unknown to Alice and Bob
channel may vary in an unknown and arbitrary manner

The arbitrarily varying wiretap channel (AVWC) (W,V) is given by the
family

(W,V) =
{
{Wn

sn}sn∈Sn , {V n
sn}sn∈Sn

}
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Arbitrarily Varying Wiretap Channel
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w We want universal codes which work for all possible state sequences
simultaneously (not depending on specific sn ∈ Sn)!
Traditional code C (pre-determined):

Stochastic encoder E :Mn → P(Xn)
Deterministic decoder: ϕ : Yn →Mn
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Symmetrizability
For symmetrizable AVCs it turns out that traditional codes C are not
sufficient...

Definition: Symmetrizability
An AVC is symmetrizable if for some channel σ : X → P(S)∑

s∈S
W (y|x, s)σ(s|x′) =

∑
s∈S

W (y|x′, s)σ(s|x)

holds for every x, x′ ∈ X and y ∈ Y.

This means W̃ (y|x, x′) =∑s∈SW (y|x, s)σ(s|x′) is symmetric in x, x′!

w State sequence can emulate a valid channel input

w Capacity is zero although entropic quantities are non-zero!

w Need of more sophisticated coding strategies!
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Common Randomness
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CR-Assisted Secrecy Capacity

Theorem: CR-Assisted Secrecy Capacity
A multi-letter description of the CR-assisted secrecy capacity CS,CR(W,V) of
the AVWC (W,V) is given by

CS,CR(W,V) = lim
n→∞

1

n
max

U−Xn−(Y n
q ,Z

n
sn

)

(
min

q∈P(S)
I(U ;Y

n

q )− max
sn∈Sn

I(U ;Zn
sn)
)

with Y
n

q the random variable associated with the output of the averaged
channel W

n

q =
∑

sn∈Sn qn(sn)Wsn , q ∈ P(S).

M. Wiese, J. Nötzel, and H. Boche, “A channel under simultaneous jamming and eaves-
dropping attack–correlated random coding capacities under strong secrecy criteria,” IEEE
Trans. Inf. Theory, vol. 62, no. 7, pp. 3844–3862, Jul. 2016
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Unassisted Secrecy Capacity

Theorem: Unassisted Secrecy Capacity
The unassisted secrecy capacity CS(W,V) of the AVWC (W,V) possesses the
following symmetrizability properties:

1 If the AVC W is symmetrizable, then CS(W,V) = 0.

2 If the AVC W is non-symmetrizable, then CS(W,V) = CS,CR(W,V).

I. Bjelaković, H. Boche, and J. Sommerfeld, Information Theory, Combinatorics, and Search
Theory. Springer, 2013, ch. Capacity Results for Arbitrarily Varying Wiretap Channels,
pp. 123–144
J. Nötzel, M. Wiese, and H. Boche, “The Arbitrarily Varying Wiretap Channel–Secret
Randomness, Stability and Super-Activation,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp.
3504–3531, Jun. 2016
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Parallel Use of AVWCs
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w Independent encoders and decoders for each AVWC
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Joint Use of AVWCs
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Super-Activation
Theorem: Super-Activation
Let (W1,V1) and (W2,V2) be two orthogonal AVWCs. We have:

1 If CS(W1,V1) = CS(W2,V2) = 0, then

CS(W1 ⊗W2,V1 ⊗V2) > 0

if and only if W1 ⊗W2 is non-symmetrizable and
CS,CR(W1 ⊗W2,V1 ⊗V2) > 0. If (W1,V1) and (W2,V2) can be
super-activated it holds

CS(W1 ⊗ W2,V1 ⊗ V2) = CS,CR(W1 ⊗ W2,V1 ⊗ V2).

2 If CS,CR shows no super-activation for (W1,V1) and (W2,V2), then
super-activation of CS can only happen if W1 is non-symmetrizable and W2 is
symmetrizable and CS,CR(W1,V1) = 0 and CS,CR(W2,V2) > 0.

H. Boche and R. F. Schaefer, “Capacity Results and Super-Activation for Wiretap Channels
with Active Wiretappers,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 9, pp. 1482–1496,
Sep. 2013
J. Nötzel, M. Wiese, and H. Boche, “The Arbitrarily Varying Wiretap Channel–Secret
Randomness, Stability and Super-Activation,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp.
3504–3531, Jun. 2016
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Properties

Further properties:

1 Robust - whenever two AVWCs can be super-activated, this is
possible for all channels that are sufficiently close

2 Super-activation depends only on the legitimate AVC and not on the
eavesdropper AVC

w Details are in the paper

R. F. Schaefer, H. Boche, and H. V. Poor, “Super-Activation as a Unique Feature of
Arbitrarily Varying Wiretap Channels,” in Proc. IEEE Int. Symp. Inf. Theory, Barcelona,
Spain, Jul. 2016
——, “Super-Activation as a Unique Feature of Secure Communication in Malicious En-
vironments,” Information - Special Issue “Physical Layer Security in Wireless Networks” ,
vol. 7, no. 2, p. 24, May 2016, invited

Is this also possible for public (non-secure) communication over AVCs?
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Arbitrarily Varying Channel
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Additivity of CR-Assisted Capacity

Theorem: CR-Assisted Capacity
Let W1 and W2 be two orthogonal AVCs. Then the CR-assisted capacity is
additive, i.e.,

CCR(W1 ⊗W2) = CCR(W1) + CCR(W2)

w CR-assisted capacity additive, i.e., no gain in capacity by joint encoding
and decoding

19



Unassisted Capacity

Proposition: Additivity
Let W1 and W2 be two orthogonal AVCs. If the unassisted capacities satisfy
C(W1) > 0 and C(W2) > 0, then the unassisted capacity is additive, i.e.,

C(W1 ⊗W2) = C(W1) + C(W2)

Proposition: Additivity
Let W1 and W2 be two orthogonal AVCs. If the unassisted capacities satisfy
C(W1) = C(W2) = 0, then the unassisted capacity is additive, i.e.,

C(W1 ⊗W2) = C(W1) + C(W2)

w Super-activation not possible!
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Unassisted Capacity (2)

Theorem: Super-Additivity
Let W1 and W2 be two orthogonal AVCs. The unassisted capacity
C(W1 ⊗W2) is super-additive, i.e.,

C(W1 ⊗W2) > C(W1) + C(W2)

if and only if either of W1 or W2 is symmetrizable and has a positive
CR-assisted capacity.
Without loss of generality, let W1 be symmetrizable; then

C(W1 ⊗W2) = CCR(W1) + C(W2)

> C(W1) + C(W2) = C(W2).
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Conclusions
Studied the question of additivity of capacity

w Non-trivial in general

Arbitrarily varying channel (AVC)

CR-assisted capacity is additive

Unassisted capacity is super-additive

Provided complete characterization

Arbitrarily varying wiretap channel (AVWC)

Unassisted secrecy capacity is non-additive

w Super-activation is possible, i.e., “0 + 0 > 0”

Thank you for your attention!
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