Strong Secrecy and Decoding Performance Analysis for Robust Broadcasting under Channel Uncertainty

Rafael Schaefer

joint work with Holger Boche (Technische Universität München)

IFS-L1: Secret Communications, Fingerprinting, and Security
May 8, 2014

Motivation

- Signal is received by legitimate users but also eavesdropped by non-legitimate users
 - Need of secure communication systems

- Security on higher layers is usually based on the assumption of insufficient computational capabilities of non-legitimate receivers
 - Use of information theoretic secrecy concepts
- Imperfect channel estimation, limited feedback schemes, etc.
- Eve will not share its channel information with Alice to make eavesdropping harder
 - Uncertainty in channel state information

Motivation

- Signal is received by legitimate users but also eavesdropped by non-legitimate users
 - Need of secure communication systems

- Security on higher layers is usually based on the assumption of insufficient computational capabilities of non-legitimate receivers
 - Use of information theoretic secrecy concepts
- Imperfect channel estimation, limited feedback schemes, etc.
- Eve will not share its channel information with Alice to make eavesdropping harder
 - Uncertainty in channel state information

Motivation

- Signal is received by legitimate users but also eavesdropped by non-legitimate users
 - Need of secure communication systems

- Security on higher layers is usually based on the assumption of insufficient computational capabilities of non-legitimate receivers
 - Use of information theoretic secrecy concepts
- Imperfect channel estimation, limited feedback schemes, etc.
- Eve will not share its channel information with Alice to make eavesdropping harder
 - Uncertainty in channel state information

Wiretap Channel

- Consider discrete memoryless wiretap channel with
 - confidential message M with rate R for receiver 1 (Bob)
- Total amount of information leaked to receiver 2 (Eve) has to be small
 - **Strong secrecy** requirement on M, i.e.,

$$I(M; Z^n) \le \epsilon_n$$

Secrecy Capacity of Wiretap Channel

Secrecy Capacity [Wyner '75, Csiszár/Körner '78]

The strong secrecy capacity of the wiretap channel is

$$C = \max_{P_{VX}} (I(V;Y) - I(V;Z))$$

for random variables V - X - (Y, Z).

- A. D. Wyner, "The Wire-Tap Channel," *Bell Syst. Tech. J.*, vol. 54, pp. 1355–1387, Oct. 1975
 - I. Csiszár and J. Körner, "Broadcast Channels with Confidential Messages," *IEEE Trans. Inf. Theory*, vol. 24, no. 3, pp. 339–348, May 1978

Broadcast Channel with Confidential Messages

- Consider discrete memoryless broadcast channel with common and confidential messages (BCC) with
 - common message M_0 with rate R_0 for both receivers
 - confidential message M_1 with rate R_1 for receiver 1
- Total amount of information leaked to receiver 2 has to be small
 - **Strong secrecy** requirement on M_1 , i.e.,

$$I(M_1; Z^n) \le \epsilon_n$$

Secrecy Capacity Region of BCC

Secrecy Capacity Region [Csiszár/Körner '78 and '11]

The strong secrecy capacity region of the BCC is the set of all rate pairs $(R_1,R_0)\in\mathbb{R}^2_+$ that satisfy

$$R_1 \le I(V; Y|U) - I(V; Z|U)$$

 $R_0 \le \min\{I(U; Y), I(U; Z)\}$

for random variables U - V - X - (Y, Z).

I. Csiszár and J. Körner, "Broadcast Channels with Confidential Messages," *IEEE Trans. Inf. Theory*, vol. 24, no. 3, pp. 339–348, May 1978

Channel Uncertainty

- Practical systems always suffer from uncertainty in CSI due to
 - nature of the wireless channel
 - estimation/feedback inaccuracy
 - ..
- Perfect CSI is a challenging task

Compound BCC

- In this work we additionally consider channel uncertainty
- State set $S := \{1, ..., S\}$
 - actual channel realization $s \in S$ unknown to sender and receiver
 - remains constant during whole transmission

The discrete memoryless compound BCC $\mathfrak W$ is given by the family

$$\mathfrak{W} := \left\{ W_{\underline{s}}(y, z | x) : \underline{s} \in \mathcal{S} \right\}$$

Need strategy that works for all $s \in \mathcal{S}$ simultaneously!

Achievable Secrecy Rate Region

Theorem 1: Achievable Secrecy Rate Region

An achievable strong secrecy rate region for the compound BBC $\mathfrak W$ is given by all rate pairs $(R_1,R_0)\in\mathbb R^2_+$ that satisfy

$$R_1 \leq \min_{s \in \mathcal{S}} I(V; Y_s | U) - \max_{s \in \mathcal{S}} I(V; Z_s | U)$$

$$R_0 \leq \min_{s \in \mathcal{S}} \min\{I(U; Y_s), I(U; Z_s)\}$$

for random variables $U - V - X - (Y_s, Z_s)$.

Achievable Secrecy Rate Region

Theorem 1: Achievable Secrecy Rate Region

An achievable strong secrecy rate region for the compound BBC $\mathfrak W$ is given by all rate pairs $(R_1,R_0)\in\mathbb R^2_+$ that satisfy

$$R_1 \le \min_{s \in \mathcal{S}} I(V; Y_s | U) - \max_{s \in \mathcal{S}} I(V; Z_s | U)$$

$$R_0 \le \min_{s \in \mathcal{S}} \min\{I(U; Y_s), I(U; Z_s)\}$$

for random variables $U - V - X - (Y_s, Z_s)$.

- Node 2 is legitimate receiver for M_0 and, at the same time, non-legitimate receiver for M_1
 - Different assumptions on its channel:
 - best channel for confidential M_1
 - worst channel for common M_0

Questions

- Theorem 1 gives an achievable rate region at which rates can be communicated reliably and securely simultaneously
 - Several questions arise
- Theorem 1 is proved using random coding arguments
 - What can we say about properties of such strategies?
- Secrecy criterion is

$$\max_{s \in \mathcal{S}} I(M_1; Z_s^n) \le \epsilon_n$$

- Common message M_0 is available at receiver 2. Should M_0 be taken into account?
- What is the **operational meaning** of this? What are the **implications** for the non-legitimate receiver?

Vanishing Output Variation

Investigating proof of Theorem 1 reveals the following property

Definition: Vanishing Output Variation

A code has exponentially fast *vanishing output variation* if there exists for each $s \in \mathcal{S}$ and $m_0 \in \mathcal{M}_0$ a non-negative measure ϑ_{s,m_0} on \mathcal{Z}^n such that for all $m_1 \in \mathcal{M}_1$ it holds

$$\sum_{z^n \in \mathcal{Z}^n} \left| \overline{W}_{\mathcal{Z},s}^n(z^n | m_0, m_1) - \vartheta_{s,m_0}(z^n) \right| \le 2^{-n\beta} \tag{1}$$

for some $\beta>0$. Instead of (1) we also write $\|\overline{W}_{\mathcal{Z},s}^n(\cdot|m_0,m_1)-\vartheta_{s,m_0}\|\leq 2^{-n\beta}$ interchangeably.

- For each channel realization $s \in \mathcal{S}$ and each common $m_0 \in \mathcal{M}_0$:
 - Channel output at receiver 2 "is the same" for all $m_1 \in \mathcal{M}_1$

Strong Secrecy

- Receiver is supposed to decode the common message $m_0 \in \mathcal{M}_0$
 - Secrecy criterion should reflect this fact:

$$\max_{s \in \mathcal{S}} I(M_1; Z_s^n | M_0) \le \epsilon_n$$

Proposition: Strong Secrecy

If a code for the compound BCC has the vanishing output variation property, then the strong secrecy criterion satisfies

$$\max_{s\in\mathcal{S}}I(M_1;Z_s^n)\leq\epsilon_n$$

and

$$\max_{s\in\mathcal{S}}I(M_1;Z_s^n|M_0)\leq\epsilon_n$$

with $\epsilon_n \to 0$ exponentially fast as $n \to \infty$.

Decoding Performance of Non-Legitimate Reciever

What are the implications for the non-legitimate receiver?

- Assume worst case: Receiver 2 knows
 - channel state $s \in \mathcal{S}$
 - common message $m_0 \in \mathcal{M}_0$ (supposed to decode it anyway)
- Receiver 2 can choose arbitrary decoding sets $\mathcal{D}_{s,m_0}(m_1)$, $m_1 \in \mathcal{M}_1$, for each $s \in \mathcal{S}$, $m_0 \in \mathcal{M}_0$

Proposition: Average Decoding Error

If the code has vanishing output variation, then the average probability of decoding error satisfies

$$\min_{s \in \mathcal{S}} \bar{e}'_{2,n}(s) \ge 1 - \frac{1}{|\mathcal{M}_1|} - \lambda_n$$

with $\frac{1}{|\mathcal{M}_1|} \to 0$ and $\lambda_n \to 0$ exponentially fast as $n \to \infty$.

Implications

Theorem: Implications

If a code for the compound BCC has the vanishing output variation property, then secrecy is guaranteed in the *information theoretic sense* of

$$\max_{s \in \mathcal{S}} \max \left\{ I(M_1; Z_s^n), I(M_1; Z_s^n | M_0) \right\} \le \epsilon_n$$

but also in the signal processing sense of

$$\min_{s \in \mathcal{S}} \bar{e}'_{2,n}(s) \ge 1 - \frac{1}{|\mathcal{M}_1|} - \lambda_n$$

with $\frac{1}{|\mathcal{M}_1|} \to 0$, $\epsilon_n \to 0$, and $\lambda_n \to 0$ exponentially fast as $n \to \infty$.

- Holds for any decoding strategy of receiver 2 (no restrictions on the complexity or computational resources)
- Universal results which hold for any applied post-processing strategy of the non-legitimate receiver.

Conclusions

- Studied compound BC with confidential messages
 - Incorporates public and confidential communication
 - Reliable communication and, especially, secrecy must be established under channel uncertainty
- Established achievable strong secrecy rate region
- Identified desirable code property of vanishing output variation
 - Implies strong secrecy in the information theoretic sense
 - Implies strong secrecy in terms of average decoding error
 - Gives strong secrecy an operational meaning/interpretation

Thank you for your attention!

Conclusions

- Studied compound BC with confidential messages
 - Incorporates public and confidential communication
 - Reliable communication and, especially, secrecy must be established under channel uncertainty
- Established achievable strong secrecy rate region
- Identified desirable code property of vanishing output variation
 - Implies strong secrecy in the information theoretic sense
 - Implies strong secrecy in terms of average decoding error
 - Gives strong secrecy an operational meaning/interpretation

Thank you for your attention!

References I

A. D. Wyner, "The Wire-Tap Channel," *Bell Syst. Tech. J.*, vol. 54, pp. 1355–1387, Oct. 1975.

I. Csiszár and J. Körner, "Broadcast Channels with Confidential Messages," *IEEE Trans. Inf. Theory*, vol. 24, no. 3, pp. 339–348, May 1978.