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Introduction
We consider the problem of calculating numerically the (finite) Hilbert transform

f̃ (eiθ ) =
(
Hf
)
(eiθ ) = lim

ε→0

1
2π

∫
ε≤|θ−τ|≤π

f (eiτ)

tan([θ − τ]/2)
dτ , θ ∈ [−π,π) . (HT)

• This transformation plays an important role in science and engineering.

• H is also known as Kramers-Kronig relation.
• It is related to causality:
− The real and imaginary part of a causal signal is related by the Hilbert transform.
− The phase of a causal signal is determined by its amplitude.
− Prediction and estimation of stationary time series – spectral factorization.

Challenges

• Singular integral kernel⇒ principal value integral in (??)

• Calculation on digital computers⇒ calculation of (??) has to be based on finitely many samples
{f (eiθn)}N

n=1 of the function f
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Hilbert Transform Approximations

Hilbert Transform: f̃ (eiθ ) =
(
Hf
)
(eiθ ) = lim

ε→0

1
2π

∫
ε≤|θ−τ|≤π

f (eiτ)

tan([θ − τ]/2)
dτ , θ ∈ [−π,π) . (HT)

• Given a sequence of discrete sampling sets:

ZN = {ζ1,ζ2, . . . ,ζN} ⊂ T = {z ∈ C : |z|= 1} , N ∈ N .

• Design a sequence {HN}∞
N=1 of bounded linear operators HN (each HN is concentrated on ZN)

such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= lim

N→∞
max

θ∈[−π,π)

∣∣(HN f
)
(eiθ )−

(
Hf
)
(eiθ )

∣∣
∞

= 0 for all f ∈B ,

wherein B is our signal space (which has to be specified).

Question
For which signal spaces B we can always find such approximation sequences {HN}N∈N?
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The Hilbert Transform on L2(T)
• Let f ∈ L2(T) be a square integrable function on the unit circle T = {z ∈ C : |z|= 1}.
• f can be represented by its Fourier series

f (eiθ ) =
∞

∑
n=−∞

cn(f )einθ with Fourier coefficients cn(f ) =
1

2π

π∫
−π

f (eiτ)e−inτ dτ

• Its harmonic conjugate f̃ is given by the Hilbert transform of f

f̃ (eiθ ) =
(
Hf
)
(eiθ ) =−i

∞

∑
n=−∞

sgn(n)cn(f )einθ with sgn(n) =

 −1 : n < 0
0 : n = 0
1 : n > 0

Properties

• The Hilbert transform is a bounded mapping H : Lp(T)→ Lp(T), 1 < p < ∞.

• The Hilbert transform is a bounded mapping H : L∞→ BMO.

• For f ∈ C (T), we have f̃ = Hf ∈ Lp(T) for every 1≤ p < ∞ but f̃ = Hf /∈ C (T), in general.
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Example of a Hilbert Transform Approximation
• For every N ∈ N, we consider the equidistant sampling set

ZN =
{

ζk ,N = eiπk/N : k = 0,1, . . . ,2N−1
}

• First, we approximate f ∈ L2(T) by its partial Fourier series

(
DN f

)
(eiθ ) =

N−1

∑
n=−N+1

cn,N(f )einθ

but where we exchanged the exact Fourier coefficients cn(f ) for approximations cn,N(f ).

• The approximations cn,N(f ) obtained by replacing the integral in the formula for the Fourier
coefficients with the left Riemann sum with nodes ZN .

cn(f ) =
1

2π

∫
π

−π

f (eiτ)e−inτ dτ 7→ cn,N(f ) = 1
2N

2N−1

∑
k=0

f
(
ζk ,N)e−iπnk/N

• To get an approximation of f̃ = Hf , we apply H to the trigonometric polynomial DN f(
D̃N f

)
(eiθ ) :=

(
HDN f

)
(eiθ ) =−i

N−1

∑
n=−(N−1)

sgn(n)cn,N(f )einθ =
2N−1

∑
k=0

f
(
ζk ,N

)
D̃N

(
θ −k

π

N

)
.

with the kernel D̃N(θ ) = 1
N ∑

N−1
n=1 sin(nθ ).
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Problem Statement
The sequence {D̃N}N∈N satisfies

lim
N→∞

∥∥D̃N f −Hf
∥∥

L2(T) = 0 for all f ∈ L2(T) .

Questions
• For which subset B ∈ L2(T) do we even have

lim
N→∞

∥∥D̃N f −Hf
∥∥

∞
= 0 for all f ∈B .

• More general: For which spaces B ⊂ L2(T) is it possible to find sequences of bounded linear
operators {HN}N∈N such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈B .

• Which properties of {HN}N∈N are necessary/sufficient for convergence on B?

Uniform Norm
• to control peak value of the approximation: hardware requirements (dynamic range)

• H∞-control, stability L2(T)→ L2(T)
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Outline of the Paper

1. We introduce a scale of Banach space {Bs}s≥0 of continuous functions of finite energy.
− These are „good“ for the Hilbert transform.
− The parameter s ≥ 0 characterizes the energy concentration of the signals.

2. We introduce a class of sampling based Hilbert transform approximations {HN}N∈N.
− This class is characterizes by two simple axioms.
− This class contains basically all practically relevant approximation methods.

3. Divergence results for the spaces Bs with s ≤ 1/2.
− For these spaces, there exists no Hilbert transform approximation in our class.

4. Convergence results for spaces Bs with s > 1/2.
− For these spaces, there always exist a Hilbert transform approximation in our class.
− Simple examples of convergent methods can be found.
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Signal Spaces of Finite Energy
Space of all continuous functions f ∈ C (T) with a continuous conjugate f̃

B =
{

f ∈ C (T) : f̃ = Hf ∈ C (T)
}

with norm
∥∥f
∥∥

B
= max

(
‖f‖∞,‖Hf‖∞

)
L2(T) subpaces with energy concentration – Sobolev spaces
For s ≥ 0, we define

W s,2 =
{

f ∈ L2(T) : ∑
n∈Z
|n|2s |cn(f )|2 < ∞

}
with

∥∥f
∥∥

s,2 =

(∣∣c0(f )
∣∣2 +

∞

∑
n=−∞

|n|2s
∣∣cn(f )

∣∣2)1/2

.

• s ≥ 0 characterizes the smoothness of the functions f ∈W s,2: As larger s as smoother f .

• For s > 1/2, one has W s,2 ⊂ C (T).

• s ≥ 0 characterizes the energy concentration. As larger s as more energy is concentrated in the
low frequency components.

Our signal spaces

Bs = W s,2∩B with ‖f‖Bs = max
{
‖f‖s,2 , ‖f‖B

}
, s ≥ 0 .
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Relation to the Dirichlet Problem

Dirichlet Problem on the Circle
Let f be a given function on the unit circle T = {z ∈ C : |z|= 1}. We look for an u inside the unit circle
D = {z ∈ C : |z|< 1} such that

1.
∂ 2u
∂x2 (z) +

∂ 2u
∂y2 (z) =

(
∆u
)
(z) = 0 for all z = x + iy ∈ D

2. u(eiθ ) = f (eiθ ) for all eiθ ∈ T

Dirichlet’s Principle
The solution of the Dirichlet problem can be obtained by minimizing the
Dirichlet energy

D(u) =
1

2π

∫∫
D

∥∥(gradu)(z)
∥∥2
R2 dz =

∞

∑
n=−∞

|n| |cn(f )|2 =
∥∥f
∥∥

1/2,2 .

∆u = 0

f (eiθ )

• The boundary function of solutions of the Dirichlet problem belongs to W 1/2,2.

• If f is additionally in C (T) then f ∈B1/2.
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A Class of Hilbert Transform Approximations
We consider sequences {HN}N∈N of bounded linear operators HN : B→B which satisfy the following
two axioms:

(A) Concentration on a sampling set:
To every N ∈ N there exists a finite set ZN = {ζn,N : n = 1, . . . ,MN} ⊂ T such that for all f1, f2 ∈B

f1(ζn,N) = f2(ζn,N) for all ζn,N ∈ ZN

implies
(
HN f1

)
(ζ ) =

(
HN f2

)
(ζ ) for all ζ ∈ T .

(B) Weak convergence on B:
For every f ∈B, the sequence {HN f}N∈N converges weakly to Hf , i.e.

lim
N→∞

〈
HN f ,ϕ

〉
2 =

〈
Hf ,ϕ

〉
2 for all ϕ ∈ C ∞(T) .

Remark:
If {HN}N∈N satisfies Axiom (A) then each HN has the form

(
HN f )(eiθ)=

MN

∑
n=1

f (ζn,N)hn,N(eiθ ) with {h1,N ,h2,N , . . . ,hMN ,N} ⊂B .
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A Strong Divergence Result

A Technical Axiom
We say that {HN}N∈N of bounded linear operator HN : B→B satisfies Axiom (C) if the following
holds: Let f ∈B be such that there is a closed arch J⊂ T such that f̃ = Hf ∈ C ∞(J). Then on every
closed sub-arch I⊂ J one has

lim
N→∞

max
ζ∈I

∣∣̃f (ζ )− (HN f )(ζ )
∣∣= 0 .

Theorem (Strong Peak Value Blowup)

Let {HN}N∈N be a sequence satisfying Axioms (A), (B), and (C). Then there exists f∗ ∈B such that

lim
N→∞

∥∥HN f∗
∥∥

∞
= +∞ .

Remarks
• Strong assumptions: Axioms (A), (B), (C) and we consider the largest space B.

• Strong divergence: There exists no convergent subsequence.

Questions
• Can we get convergence if we restrict our signal space: Bs ⊂B? – yes!

• Can we avoid Axiom (C)? – yes, but we get (at the moment) slightly weaker divergence results.
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Divergence on Spaces Bs with s ∈ [0,1/2]

Theorem (Weak Peak Value Blowup)

Let {HN}N∈N be an arbitrary sequence of bounded linear operators HN : B→B which satisfies
Axioms (A) and (B). Then for every 0≤ s ≤ 1/2 there exists a residual set Es ⊂Bs such that for every

limsup
N→∞

∥∥HN f
∥∥

∞
= ∞ for all f ∈ Es .

Remarks
• This result implies in particular

limsup
N→∞

∥∥HN f −Hf
∥∥

∞
= ∞ for all f ∈ Es .

• There is no sampling based Hilbert transform approximation on the spaces Bs with 0≤ s ≤ 1/2.

• In particular, not on the set of all solutions of the Dirichlet problem (finite Dirichlet energy).

• We only require Axioms (A) and (B).

• We only have weak divergence,
i.e. to every f ∈Bs there may exist a subsequence {Nk = Nk(f )}k∈N such that

lim
k→∞

∥∥HNk f
∥∥

∞
< ∞ or even lim

k→∞

∥∥HNk f −Hf
∥∥

∞
= 0 .
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Weak Divergence versus Strong Divergence
• Given an approximation sequence {HN}N∈N which diverges weakly

limsup
N→∞

∥∥HN f −Hf
∥∥

∞
= ∞ for all f ∈ Es .

To every f ∈ Es there may exist a subsequence {Nk = Nk(f )}k∈N such that

lim
k→∞

∥∥HNk f −Hf
∥∥

∞
= 0 .

Then {HNk (f )}k∈N is a convergent approximation method adapted to f .

• Assume {HN}N∈N diverges strongly

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= ∞ for all f ∈ Es .

Then no convergent subsequence exists =⇒ adaption does not help.

• ... every sequence {HN}N∈N diverges weakly on Bs ⇒ there exists no non-adaptive
approximation methods on Bs

• ... every sequence {HN}N∈N diverges strongly on Bs ⇒ there exists no adaptive (and
non-adaptive) approximation methods on Bs
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Spaces with Convergent Approximation Methods

Theorem
For any s > 1/2 there exit sequences {HN}N∈N of bounded linear operators HN : B→B which satisfy
Axioms (A) and (B) such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈Bs .

• If the energy of the signals is sufficiently good concentrated then there always exist sampling
based approximation methods which converge for all signals in the space Bs.

• Theorem can be proved by constructing particular methods.
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Characterization of Convergent Method

Theorem
Let {HN}N∈N be a sequence of bounded linear operators HN : B→B such that

1. For every n ∈ N holds

lim
N→∞

∥∥HN [cos(n ·)]−sin(n ·)
∥∥

∞
= 0 and lim

N→∞

∥∥HN [sin(n ·)] + cos(n ·)
∥∥

∞
= 0 .

2. There exists a constant C such that

max
(∥∥HN [cos(n·)]

∥∥
∞
,
∥∥HN [sin(n·)]

∥∥
∞

)
≤ C for all N ∈ N .

Then for every s > 1/2 one has

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈Bs .

Thus, if an approximation method {HN}N∈N
• converges for the sine- and cosine functions (i.e. for the pure frequencies), and

• if the approximations of the pure frequencies are uniformly bounded

then the method {HN}N∈N converges for all f ∈Bs with s > 1/2.
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An Example of a Convergent Hilbert Transform

We consider again the sequence {D̃N}N∈N of the sampled conjugate Fourier series

(
D̃N f

)
(eiθ ) :=

(
HDN f

)
(eiθ ) =−i

N−1

∑
n=−(N−1)

sgn(n)cn,N(f )einθ =
2N−1

∑
k=0

f
(
ζk ,N

)
D̃N

(
θ −k

π

N

)
with the conjugate Dirichlet kernel D̃N(θ ) = 1

N ∑
N−1
n=1 sin(nθ ) and which are concentrated on the

equidistant sampling sets

ZN =
{

ζk ,N = eiπk/N : k = 0,1, . . . ,2N−1
}
.

It is fairly easy to show that this sequence {D̃N}N∈N

• satisfies Axioms (A) and (B).

• has the two properties of the previous theorem which characterized all convergent methods.

So we have
lim

N→∞

∥∥D̃N f −Hf
∥∥

∞
= 0 for all f ∈Bs with s > 1/2 .
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Conclusions

• We introduced a scale of Banach spaces Bs, s ≥ 0 of functions
− which are continuous with a continuous Hilbert transform
− of finite energy
− with different energy concentration, characterized by s

• In the scale {Bs}s≥0, we characterized precisely those spaces on which
− there do not exists any sampling based linear Hilbert transform approximations: s ∈ [0,1/2]
− there do exists sampling based Hilbert transform approximations: s > 1/2

• For s > 1/2 even very simple approximations methods (sampled conjugate Fourier series) work

Volker Pohl (TUM) | Peak Value Blowup of Hilbert Transform Approximations | ACC 2017 16

Chair of Theoretical Information Technology

Department of Electrical and Computer Engineering

Technische Universität München



Conclusions

• We introduced a scale of Banach spaces Bs, s ≥ 0 of functions
− which are continuous with a continuous Hilbert transform
− of finite energy
− with different energy concentration, characterized by s

• In the scale {Bs}s≥0, we characterized precisely those spaces on which
− there do not exists any sampling based linear Hilbert transform approximations: s ∈ [0,1/2]
− there do exists sampling based Hilbert transform approximations: s > 1/2

• For s > 1/2 even very simple approximations methods (sampled conjugate Fourier series) work

Thank You! – Questions?
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