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Introduction
We consider the problem of calculating numerically the (finite) Hilbert transform

f̃ (t) =
(
Hf
)
(t) = lim

ε→0

1
2π

∫
ε≤|t−τ|≤π

f (τ)

tan([t− τ]/2)
dτ , t ∈ [−π,π) . (HT)

• This transformation plays an important role in science and engineering.

• In physics H is known as Kramers-Kronig relation.
• It is related to causality:
− The real and imaginary part of a causal signal is related by the Hilbert transform.
− The phase of a causal signal is determined by its amplitude.
− Prediction and estimation of stationary time series – spectral factorization.

Challenges

• Singular integral kernel⇒ principal value integral in (HT)

• Calculation on digital computers⇒ calculation of (HT) has to be based on finitely many samples
{f (λn)}N

n=1 of the function f .
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Hilbert Transform Approximations

Hilbert Transform: f̃ (t) =
(
Hf
)
(t) = lim

ε→0

1
2π

∫
ε≤|t−τ|≤π

f (τ)

tan([t− τ]/2)
dτ , t ∈ [−π,π) . (HT)

• Given a sequence {ΛN}N∈N of sampling sets:

ΛN = {λ1,λ2, . . . ,λN} ⊂ T = [−π,π) , N ∈ N .

• Design a sequence {HN}∞
N=1 of bounded linear operators HN (each HN is concentrated on ΛN)

such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= lim

N→∞
max

t∈[−π,π)

∣∣∣(HN f
)
(t)−

(
Hf
)
(t)
∣∣∣= 0 for all f ∈B ,

wherein B is our signal space (which has to be specified).

Question
For which signal spaces B there do exist such approximation sequences {HN}N∈N?
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Example: Hilbert Transform on L2(T)
• Let f ∈ L2(T) be a square integrable function on the unit circle T = [−π,π).

• f can be represented by its Fourier series

f (t) =
∞

∑
n=−∞

cn(f )eint with Fourier coefficients cn(f ) =
1

2π

π∫
−π

f (τ)e−inτ dτ

• Its harmonic conjugate f̃ is given by the Hilbert transform of f

f̃ (t) =
(
Hf
)
(t) =−i

∞

∑
n=−∞

sgn(n)cn(f )eint with sgn(n) =

 −1 : n < 0
0 : n = 0
1 : n > 0

Properties

• Hilbert transform is bounded mapping H : Lp(T)→ Lp(T), 1 < p < ∞.

• The Hilbert transform is a bounded mapping H : L∞(T)→ BMO.

• For f ∈ C (T), we have f̃ = Hf ∈ Lp(T) for every 1≤ p < ∞ but f̃ = Hf /∈ C (T), in general.
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Example of a Hilbert Transform Approximation
• For every N ∈ N, we consider the equidistant sampling set

ΛN =
{

λN,k = k π

N : k = 0,1, . . . ,2N−1
}

• First, we approximate f ∈ L2(T) by its partial Fourier series(
DN f

)
(t) =

N−1

∑
n=−N+1

cN,n(f )eint

but where we exchanged the exact Fourier coefficients cn(f ) for approximations cN,n(f ).
• The approximations cN,n(f ) are obtained by replacing the integral in the formula for the Fourier

coefficients with the left Riemann sum with nodes ΛN .

cn(f ) =
1

2π

π∫
−π

f (τ)e−inτ dτ 7→ cN,n(f ) = 1
2N

2N−1

∑
k=0

f
(
λN,k)e−iπnk/N

• To get an approximation of f̃ = Hf , we apply H to the trigonometric polynomial DN f(
D̃N f

)
(t) :=

(
HDN f

)
(t) =−i

N−1

∑
n=−(N−1)

sgn(n)cN,n(f )eint =
2N−1

∑
k=0

f
(
λN,k

)
D̃N

(
t−k

π

N

)
.

with the kernel D̃N(t) = 1
N ∑

N−1
n=1 sin(n t).
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Problem Statement
The above defined sequence {D̃N}N∈N satisfies

lim
N→∞

∥∥D̃N f −Hf
∥∥

L2(T) = 0 for all f ∈ L2(T) .

Questions
• For which subset B ∈ L2(T) do we even have

lim
N→∞

∥∥D̃N f −Hf
∥∥

∞
= 0 for all f ∈B .

• More general: For which spaces B ⊂ L2(T) is it possible to find sequences of bounded linear
operators {HN}N∈N such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈B ?

• Which properties of {HN}N∈N are necessary/sufficient for convergence on B?

Uniform Norm
• to control peak value of the approximation: hardware requirements (dynamic range)

• relevant for continuous functions

• stability norm L2(T)→ L2(T)
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Outline of the Paper

1. We introduce a scale of Banach space {Bβ}β≥0 of continuous functions of finite energy.
− These are „good“ for the Hilbert transform.
− The parameter β ≥ 0 characterizes the energy concentration of the signals.

2. We introduce a class of sampling based Hilbert transform approximations {HN}N∈N.
− This class is characterizes by three simple axioms.
− This class contains basically all practically relevant Hilbert transform approximation methods.

3. Divergence results for the spaces Bβ with β ≤ 1.
− For these spaces, there exists no Hilbert transform approximation in our class.

4. Convergence results for spaces Bβ with β > 1.
− For these spaces, there always exist a Hilbert transform approximation in our class.
− Simple examples of convergent methods can be found.
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Signal Spaces
Space of all continuous functions f ∈ C (T) with a continuous conjugate f̃

B :=
{

f ∈ C (T) : f̃ = Hf ∈ C (T)
}

with norm ‖f‖B = max
(
‖f‖∞,‖Hf‖∞

)
• The Hilbert transform H : B→B is well defined and bounded.

L2(T) subpaces with energy concentration
Any f ∈ L2(T) can be represented by the trigonometric series

f (t) =
a0(f )

2
+

∞

∑
n=1

an(f ) cos(nt) + bn(f ) sin(nt) with
an(f ) =

∫
T f (τ) cos(nτ)dτ

bn(f ) =
∫
T f (τ) sin(nτ)dτ

For β ≥ 0, we define

Lβ :=
{

f ∈ L2(T) : ∑
n∈Z

n (log n)β
[
|an(f )|2 + |bn(f )|2

]
< ∞

}
• β ≥ 0 characterizes the smoothness of the functions f ∈Lβ : As larger β as smoother f .

• L0 corresponds to Sobolev space H 1/2 = W 1/2,2.

• For β > 1, one has Lβ ⊂ C (T)

• β ≥ 0 characterizes the energy concentration. As larger β as better the concentration.
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Our Scale of Signal Spaces
Our signal spaces are defined for all β ≥ 0 as the intersection of the previous two spaces

Bβ := Lβ ∩B with norm
∥∥f
∥∥

β
=
∥∥f
∥∥

B
+

(
∑
n∈Z

n (log n)β
[
|an(f )|2 + |bn(f )|2

])1/2

.

• Each Bβ is a Banach space

• Every f ∈Bβ is continuous with a continuous conjugate

• Every f ∈Bβ has finite L2(T) - energy

• Every f ∈Bβ has finite Dirichlet energy

• Bβ2
⊂Bβ1

⊂B0 = H 1/2 ⊂B ⊂ C (T) for all β2 > β1 > 0.

• The parameter β ≥ 0 characterizes the energy concentration.
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Relation to the Dirichlet Problem

Dirichlet Problem on the Unit Circle
Let f be a given function on the unit circle T = {z ∈ C : |z|= 1}. We look for an u inside the unit circle
D = {z ∈ C : |z|< 1} such that

1.
∂ 2u
∂x2 (z) +

∂ 2u
∂y2 (z) =

(
∆u
)
(z) = 0 for all z = x + iy ∈ D

2. u(eit) = f (eit) for all t ∈ T = [−π,π)

Dirichlet’s Principle
The solution of the Dirichlet problem can be obtained by minimizing the
Dirichlet energy

D(u) =
1

2π

∫∫
D

∥∥(gradu)(z)
∥∥2
R2 dz =

∞

∑
n=−∞

|n| |cn(f )|2 =
∥∥f
∥∥2

H 1/2

∆u = 0

f (eiθ )

• The boundary function of solutions of the Dirichlet problem belongs to the Sobolev space H 1/2.

• If f is additionally in B then f ∈B0.

Holger Boche (TUM) | The stability range of the Hilbert transform | ISIT 2017 9

Chair of Theoretical Information Technology

Department of Electrical and Computer Engineering

Technische Universität München



A Class of Hilbert Transform Approximations
We consider sequences {HN}N∈N of bounded linear operators HN : B→B which satisfy the following
three axioms:

(A) Concentration on a sampling set:
To every N ∈ N there exists a finite set ΛN = {λN,n : n = 1, . . . ,MN} ⊂ T such that for all f1, f2 ∈B

f1(λN,n) = f2(λN,n) for all λN,n ∈ ΛN

implies
(
HN f1

)
(t) =

(
HN f2

)
(t) for all t ∈ T .

(B) Weak convergence on B:
For every f ∈B, the sequence {HN f}N∈N converges weakly to Hf , i.e.

lim
N→∞

〈
HN f ,ϕ

〉
2 =

〈
Hf ,ϕ

〉
2 for all ϕ ∈ C ∞(T) .

(C) Zero mapping for constant functions:
HN1 = 0 for all N ∈ N, with the constant function 1(t) = 1 for all t ∈ T.

Remark:
If {HN}N∈N satisfies Axiom (A) then each HN has the form(

HN f )(t) =
MN

∑
n=1

f (λN,n)hN,n(t) with {hN,1,hN,2, . . . ,hN,MN} ⊂B .
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A Strong Divergence Results
Theorem
Let {HN}N∈N be a sequence of bounded linear operators HN : B→B which satisfies Axioms (A), (B),
and (C). Then for any 0≤ β ≤ 1 there exists an f∗ ∈Bβ and a sequence {θN}N∈N ⊂ T such that

limN→∞

∥∥HNTθN f∗
∥∥

∞
= +∞ .

with the translation operator Tθ : B→B given by (Tθ f )(t) = f (t−θ ).

Remarks
• The numerical calculation is unstable with respect to jitter:

If for f ∈B only fε = Tε f is known, then ‖HN fε−Hf‖∞ may get arbitrarily large even for large N.

• Strong divergence: There exists no convergent subsequence.
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Weak Divergence on all Spaces Bβ with β ∈ [0,1]

Corollary

Let {HN}N∈N be an arbitrary sequence of bounded linear operators HN : B→B which satisfies
Axioms (A) – (C). Then for each 0≤ β ≤ 1 holds: To every sequence {Nk}k∈N there exists an f∗ ∈Bβ

such that
limsup

k→∞

∥∥HNk f∗
∥∥

∞
= +∞ .

Remarks
• This result implies in particular that in every space Bβ with β ∈ [0,1] there exists a function f∗ with

limsupN→∞

∥∥HN f∗
∥∥

∞
= +∞ and limsupN→∞

∥∥HN f∗−Hf∗
∥∥

∞
= +∞ .

• There is no sampling based Hilbert transform approximation on the spaces Bβ with 0≤ β ≤ 1.

• In particular, not on the set of all solutions of the Dirichlet problem (finite Dirichlet energy).

• We only have weak divergence,
i.e. to every f ∈Bβ there may exist a subsequence {Nk = Nk(f )}k∈N such that

lim
k→∞

∥∥HNk f
∥∥

∞
< ∞ or even lim

k→∞

∥∥HNk f −Hf
∥∥

∞
= 0 .
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Weak Divergence versus Strong Divergence
• Given an approximation sequence {HN}N∈N which diverges weakly, i.e.

limsup
N→∞

∥∥HN f −Hf
∥∥

∞
= ∞ for some f ∈Bβ .

Then there may exist a subsequence {Nk = Nk(f )}k∈N such that

lim
k→∞

∥∥HNk f −Hf
∥∥

∞
= 0 .

Then {HNk (f )}k∈N is a convergent approximation method adapted to f .

• Assume {HN}N∈N diverges strongly

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= ∞ for some f ∈Bβ .

Then no convergent subsequence exists =⇒ adaption does not help.

• ... every sequence {HN}N∈N which diverges weakly on Bβ ⇒ there exists no non-adaptive
approximation methods on Bβ

• ... every sequence {HN}N∈N which diverges strongly on Bβ ⇒ there exists no adaptive (and
non-adaptive) approximation methods on Bβ
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Spaces with Convergent Approximation Methods

Theorem
For any β > 1 there exit sequences {HN}N∈N of bounded linear operators HN : B→B which satisfy
Axioms (A)–(C) such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈Bβ .

• If the energy of the signals is sufficiently concentrated then there always exist sampling based
approximation methods which converges for all signals in the space Bβ with β > 1.

• Theorem can be proved by a constructing particular method.
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Characterization of Convergent Method

Theorem
Let β > 1 and let {HN}N∈N be a sequence of bounded linear operators HN : B→B such that

1. For every n ∈ N holds

lim
N→∞

∥∥HN [cos(n ·)]− sin(n ·)
∥∥

∞
= 0 and lim

N→∞

∥∥HN [sin(n ·)] + cos(n ·)
∥∥

∞
= 0 .

2. There exists a constant C such that

max
(∥∥HN [cos(n·)]

∥∥
∞
,
∥∥HN [sin(n·)]

∥∥
∞

)
≤ C for all N ∈ N .

Then one has
lim

N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈Bβ .

Thus, if an approximation method {HN}N∈N
• converges for the sine- and cosine functions (i.e. for the pure frequencies), and

• if the approximations of the pure frequencies are uniformly bounded

then the method {HN}N∈N converges for all f ∈Bβ with β > 1.
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A Convergent Hilbert Transform Approximation

We consider again the sequence {D̃N}N∈N of the sampled conjugate Fourier series from the beginning

(
D̃N f

)
(t) :=

(
HDN f

)
(t) =−i

N−1

∑
n=−(N−1)

sgn(n)cN,n(f )eint =
2N−1

∑
k=0

f
(
λN,k

)
D̃N

(
t−k

π

N

)
,

with the conjugate Dirichlet kernel D̃N(t) = 1
N ∑

N−1
n=1 sin(n t) and which are concentrated on the

equidistant sampling sets
ΛN =

{
λN,k = k π

N : k = 0,1, . . . ,2N−1
}
.

It is fairly easy to show that this sequence {D̃N}N∈N

• satisfies Axioms (A), (B) and (C)

• has the two properties of the previous theorem which characterized all convergent methods

and so, we have
lim

N→∞

∥∥D̃N f −Hf
∥∥

∞
= 0 for all f ∈Bβ with β > 1 .
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Conclusions

• We introduced a scale of Banach spaces Bβ , β ≥ 0 of functions
− which are continuous with a continuous conjugate
− with finite (Dirichlet) energy
− with different energy concentration, characterized by β

• In the scale {Bβ}β≥0, we characterized precisely those spaces on which
− there do not exist any sampling based linear Hilbert transform approximations: β ∈ [0,1]
− there do exist sampling based Hilbert transform approximations: β > 1.

• For β > 1 even very simple approximations methods (sampled conjugate Fourier series) work
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Conclusions

• We introduced a scale of Banach spaces Bβ , β ≥ 0 of functions
− which are continuous with a continuous conjugate
− with finite (Dirichlet) energy
− with different energy concentration, characterized by β

• In the scale {Bβ}β≥0, we characterized precisely those spaces on which
− there do not exist any sampling based linear Hilbert transform approximations: β ∈ [0,1]
− there do exist sampling based Hilbert transform approximations: β > 1.

• For β > 1 even very simple approximations methods (sampled conjugate Fourier series) work

Thank You! – Questions?
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