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Motivation — Orthogonal Transmission Scheme

> Orthogonal transmission scheme:

N
s(t) = Z aror(t), te€l0,Ts].
k=1

N — Number of carriers/wavefunctions,
e T, — Duration of a communication symbol (w.l.o.g. T = 1),
{¢n})_, - (Bounded) Orthonormal system (ONS) in L?([0,T%]),
o {ax}r_, — Transmit data.
> Orthogonal transmission scheme plays an important role for present -, and
future communications standards, e.g.:
e Orthogonal frequency division multiplexing (OFDM):

on(-) = e2m(n=1() _. en—1(-).

Applications: DSL, IEEE 802.11, DVB-T, LTE, and LTE-advanced/4G.
e Code division multiple access (CDMA):

¢n — Walsh function (Defined later).
Fo, Applications: 3G, UMTS, GPS, and Galileo.



Orthogonal Transmission Scheme - Sketch
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Motivation — Dynamics of Orthogonal
Transmission Scheme

> Major drawback of orthogonal transmission scheme is its high dynamics,
which is measured by the so-called Peak-to-Average-Power-Ratio (PAPR):

ot ]
sz 1 k¢>k’

i ak¢k(t)'
PAPR({¢,}n_y ,a) i= L (1) E

= esssup

—nn-n_______
te[0,1] ||3H12(N

L2([0

for a sequence/data a in C.

> High PAPR value of orthogonal transmission scheme have in particular
negative impacts to the reliability -, energy efficiency -, and cost efficiency
of a communications system.
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Example of an Orthogonal Transmission Scheme -
OFDM
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Drawback of OFDM - The Effect of Clipping

(OFDM) Symbol/Waveform Transmit signal
TN e
Sin Amplifier [—out \JF_\I\
—Sin Sout —mr

> Occurence of clipping in case that the waveforms possess high dynamics,
and the linear range of the used amplifier is not sufficiently large.
4 Qut-of-band radiation of the transmit signal.
= Need for costly analog filter, to ensure that the transmit signal lies within a
regulated frequency mask.
4 Alteration of the transmit signal.
= Error occurs!

4 Amplifier with high linear range is expensive, and might cause high
r maintenance cost.
oh TUT
NSBSESSEREES



Drawback of OFDM

> Reports of consulting firms: 2% of global COy emissions are attributable
to the use of information and communication technology, which is
comparable to the C'O, emissions due to avionic activities.

> Energy cost of network operation can even make up to 50% of the total
operational cost.

ﬁ B. Boccaletti, M. Loffler, and J. Oppenheim,
How IT can cut carbon emmisions.
McKinsey Quarterly, October (2008)

@ Parliamentary Office of Science and Technology (UK),
ICT and CO 2 emmissions.
Postnote, December (2008)



Motivation — High Dynamics of Orthogonal
Transmission Scheme

> PAPR values of order v/N can occur for any orthonormal system
{Dntne:

There exists a sequence a € I*([N]), with llalliz(nyy = 1. such that:

VN < PAPR({¢% } pe(ny> @)-

> For instance, there are up to 2048 wave functions used for the downlink
communication in the LTE standard (OFDM).

= Important to control the PAPR behaviour of orthogonal transmission
scheme!

[@ H. Boche and V. Pohl,
Signal representation and approximation - fundamental limits.

European Trans. Telecomm. (ETT) b (2007), 445-456.
[z m



Motivation — Tone Reservation method

> Tone reservation (Tellado and Cioffi):
e Reserve one subset of functions of an ONS for carrying the
information-bearing coefficients.
e Determine coefficients for the remaining tones, s.t. the combined sum has a
small peak value, below a certain desired threshold value.

> Tone reservation method is canonical, since the only knowledge needed by
receiver is the (fixed) location of information-bearing coefficients.

> QOur goal: To show that the tone reservation is not applicable for arbitrary
threshold value.

@ J. Tellado, Peak to average power reduction for multicarrier modulation,
Ph.D. Thesis Stanford University, (1999)

@ J. Tellado and J.M. Ciofi, Peak to average power ratio reduction,
U.S. patent application Ser., No. 09/062, 867, Apr. 20, 1998

@ J. Tellado and J.M. Ciofi, Efficient algorithms for reducing PAR in

r multicarrier systems, Proc. IEEE ISIT (1998), 191.

TUT
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»lch behaupte aber, daB in jeder besonderen Naturlehre nur so viel eigentliche
Wissenschaft angetroffen werden konne, als darin Mathematik anzutreffen ist."

— Immanuel Kant, Metaphysische Anfangsgriinde der Naturwissenschaft (1787)
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@ PAPR Reduction Problem
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PAPR Reduction Problem - Formulation

la

> Given a desired threshold constant Cg, > 0. We aim to analyze, whether
the tone reservation method is applicable in this case for a certain ONS.

Definition 1.1 (PAPR Reduction Problem)

Given K C N. Let {¢,},,cxc be an ONS, and 7 C K. We say the PAPR
reduction problem is solvable for the pair ({¢y}, i ,Z) with constant Cg, > 0,
if for every a € [?(Z), there exists b € [2(Z°) (the complementation is w.r.t.
K), satisfying [|bl|;2(zc) < Cex ||al|j2(z), for which it holds:

ess sup Z axdr(t) Z brdi(t)| < Cexllalljz(z)

t€(0.1] ez keze

We call Z the information set, Z¢ the compensation set, Cg, the
extension constant.




PAPR Reduction Problem - Remarks

> Mostly: L = N. Thus, the compensation set is allowed to be infinite. In
particular, we aim to show, that the PAPR reduction problem is not
solvable for arbitrary extension constant.
= Restriction in the case that the compensation set is finite.

> PAPR reduction Problem can also be formulated by means of an extension
operator (not necessarily linear!):

Bz 3(Z) » L2([0,1)), ar Y apdr+ Y brou,

kel keZe

for suitable coefficients b (depend on the choice of al):

Given £ C N. Let {¢y,},,cxc be an ONS, and 7 C K. The PAPR reduction
problem is solvable for the pair ({¢,}, o ,Z) with constant Cg, > 0, if there
exists an extension operator, for which it holds:

IEzal| oo 0,1y < Cexllalljz(z) -

(@ nm
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@ Conditions for the Solvability of the PAPR Reduction Problem
Necessary Condition
Sufficient Condition
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Necessary and Sufficient Conditions - Essential
Subspaces

> Plan: Derive (especially necessary) conditions for the solvability of PAPR
reduction problem, suitable for our approach to show the limitation of the
PAPR reduction problem
The following subspaces of L!(]0,1]) plays an important role:

Definition 2.1

For an Z C N, and an ONS {¢,}, oy, we define the following subspaces of
L1([0,1]):

YD) = {f e L([0,1) : f= Zak¢k’ fora {ag},czin (C}

kel

FL(T) = {f eLY([0,1]): f=_ ard, ax #0, for finitely many k € I}

kel




Necessary and Sufficient Conditions - Essential
Subspaces

> Basic properties of §(Z) and F.(Z):
e F(Z) is a closed subspace of L'([0,1]).
e FL(T) is a dense subspace of ' (7).

>> It turns out that the solvability of the PAPR reduction problem is
connected to the Embedding problem of §1(Z) into L?(Z).

la nm



Necessary Condition

Theorem 2.2 (B. and Farell)

Let {¢n},cn be a complete ONS in L*([0,1]). Given a subset T C N and a
constant Cg, > 0. Assume that the PAPR reduction problem is solvable for
({¢n}neN ,T) with extension constant Cg,. Then:

1A 220,y < Cocllfllpro,yy» V€ §(D).

[3 H. Boche and B. Farell,
On the Peak-to-Average Power Ratio Reduction Problem for Orthogonal
Transmission Schemes.
Internet Mathematics, 9 (2-3) (2013), 265-296
(@ nm



Necessary Condition - Sketch of Proof

> By density arguments, it is sufficient to show the inequality for all
fediD).

> By the assumption of the solv. of the PAPR red. prob., and the Parseval’s
id., for arb. f € FL(Z), f = 4czcrdr, and a € [*(Z), one can obtain the
following equality:

E CrQk

keZ

= Z%@-ﬁ- Z CrQk

kel keZe

-/ @D

where ¢ := 0, Vk € Z¢, and ay, k € Z¢, are the coeff. determined by a
suitable extension operator Ez.
> Parseval’s identity, and the Holder's inequality give further hints:

E CrQk

kel

_ \ / f(t)(Ez(a))(t)‘ <1l o B2 @) e o)

< Cex 1 fll L o,y N12lli2(z) -

> Finally, by setting a = c, and Parseval’s identity, the desired statement can

r@ be obtained. m



Sufficient Condition

Theorem 2.3 (B. and Farell)

Let {¢n},,cn be a complete ONS for L*([0,1]), and let be T C N, and Cg, > 0.
If the following condition is fulfilled:

1A 2oy < Cexcllfllproyy . VS € 31D,

then the PAPR reduction problem is solvable for ({¢n},,cy ,T) with extension
constant Cgy. )

Main ingredients of the proof:
> Hahn-Banach Theorem.
> L>([0,1]) is the dual space of L'(]0,1])/ Representation of functionals on
Li([0,1]).

@ H. Boche and B. Farell,
On the Peak-to-Average Power Ratio Reduction Problem for Orthogonal

Transmission Schemes.
r Internet Mathematics, 9 (2-3) (2013), 265-296 m
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© Solvability of PAPR Reduction Problem for OFDM — Arithmetic Progressions
Szemerédi Theorem on Arithmetic Progressions, Green-Tao's -, and
Conlon-Gower's Theorem for Sparse Sets
Application of the Szemerédi Thm. to the PAPR Problem for OFDM
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Solvability of PAPR Problem - OFDM

> Recall: The solvability of PAPR reduction problem is connected with
embedding problem of a closed subspace §'(Z) of L!([0,1]) into L2([0, 1]).

> Explicitly: For sake that the PAPR reduction problem is solvable for
({®n}nen > Z) with a given extension constant Cg, > 0, it is necessary that
the following inequality holds:

1l 2o,y < Cex Moy > VF € 3D, (1)

= To show that the PAPR reduction problem is not solvable for ({¢n},, x> Z)
with a given extension constant Cgx > 0, it is sufficient to search functions
in §'(Z), for which (1) does not hold.

> Later: The existence of such functions is connected to the existence of
certain combinatorials objects in the information set Z, viz.:

o Arithmetic progression in the OFDM case,
e Perfect Walsh sum in the CDMA case.

la



Szemerédi Theorem on Arithmetic Progressions

Definition 3.1 (Arithmetic Progression)

Let be m € N. An arithmetic progression of length m is defined as a subset of
7, which has the form:

{a,a+d,a+2d,...,a+ (m—1)d},

for some integer a and some positive integer d.

> For sets with specific structures, such as sum sets A+ A, A+ A+ A,
2A — 2A, for a A C N, there are some results concerning to the existence
of arithmetic progressions within those sets.

4 Those results require some insights into the structure of A

> Is it possible to give a statement on the existence of arithmetic
progression(s) within a set A, only by knowing the size of A?

(@ nm



Szemerédi Theorem on Arithmetic Progressions

Definition 3.2 ((, m)-Szemerédi Set)

Let Z be a set of integers, § € (0,1), and m € N. The set Z is said to be
(6, m)-Szemerédi, if every subset of Z of cardinality at least § |Z| contains an
arithmetic progression of length m.

Theorem 3.3 (Szeméredi Theorem)

For any m € N, and any § € (0,1), there exists Ns, € N, which depends on m
and 0, s.t. for all N > Ns,, [N] is (8, m)-Szemerédi.

@ E. Szemerédi,
On sets of integers containing no k elements in arithmetic progressions.
(@ Acta Arith., 27 (1975), 199-245. m



Szemerédi Theorem - Historical Remarks

la
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o The case m = 3 was established in 1953 by Klaus Roth (mentioned in his
Fields medal citation in 1958).

e The case m = 4 was established in 1969 by Endre Szemerédi.

e The case m € N was proven in 1975, also by Szemerdi (mentioned in his
Abel prize citation in 2012).
Erdds: "a masterpiece of combinatorial reasoning”.

e Several alternative proof, e.g. by Timothy Gowers for m = 4 (mentioned in
his Fields medal citation in 1998) and generally for m € N.

K. Roth, On certain sets of integers. Journal of the London Mathematical
Society, 28 (1953), 104-109

E. Szemerédi, On sets of integers containing no four elements in arithmetic
progression. Acta Math. Acad. Sci. Hung., 20 (1969), 89 — 104

E. Szemerédi, on sets of integers containing no k elements in arithmetic
progression. Acta Arithmetica, 27 (1975).

W. T. Gowers, A New Proof of Szemerdi’s Theorem for Arithmetic
Progressions of Length Four. Geom. Funct. Anal., 8 (1998), 529 — 551.

W. T. Gowers, A New Proof of Szemerdi’s Theorem. Geom. Funct. Anal., 11
(2001), 465-588.



Szemerédi Theorem - Asymptotic Case

4 For asymptotic case, Szemerédi Thm. is somehow unsatisfying. It only
ensures the existence of arithmetic progressions of arbitrary length for
subsets A of N with positive upper density, i.e.:

The set A C N contains arithmetic progressions of arbitrary length if:

limsup(].A N [N]| /N) > 0.
N —o00

>> A tightening of the Szemerédi is due to Green and Tao. They prove the
existence of a subset A of N with density 0, i.e.
lim,, (AN [N]| /N) = 0, containing arithmetic progressions of arbitrary
length:

Theorem 3.4 (Green and Tao)

The set of prime numbers P contains arithmetic progressions of arbitrary length.

@ B. Green and T. Tao,
The primes contain arbitrarily long arithmetic progressions.
rm, Annals of Mathematics 167 (2008), 481-547.



Szemerédi Theorem - Asymptotic Case and
Probabilistic Case

> Another asymptotic tightening of Szemerédi Thm. is the following:

Theorem 3.5 (Conlon, Gowers)

Given 6 > 0, and a natural number m € N. There exists a constant C > 0, s.t.:

lim P([N], is (6, m)-Szemerédi) =1, ifp> CNT 1.

N —oc0

> Above Thm. ensures the existence of a sequence {pn} in (0,1) tending to
0, for which:

lim P([N]py is (8, m)-Szemerédi) = 1.

N — oo

> In particular, the sets constructed by means {px} .y has density zero.

ﬁ D. Conlon and W. T. Gowers,
Combinatorial theorems in sparse random sets.
@ arXiv:1011.4301, (2011).



Szemerédi Theorem - Asymptotic case

> Given a subset A of N, which is not too small (but possibly: A has density
0 in N). Is one able to guarantee the existence of arithmetic progressions of
arbitrary length within this set?

Erdos Conjecture on Arithmetic Progressions

Let A be a set of positive integers s.t. >~ _ ,1/n = co. Then A contains an
arbitrarily long arithmetic progressions.

> Erdds Conjecture on arithmetic progressions remain unsettled.
It is even not known, whether A must contain arithmetic progressions of
length 3.

> A set which fulfills the requirement of above conjecture, and contain an
arbitrarily long arithmetic progressions: The set of prime numbers.

[3 P. Erdss and R. L. Graham,
Old and New Problems and Results in Combinatorial Number Theory.

L’Enseignement Mathématique Université de Genéve, 28 (1980).



Solvability of PAPR reduction problem &
Arithmetic Progressions

Lemma 3.6

Let be T C N. Assume that there exists an arithmetic progression of length m
in Z. Then, if the PAPR reduction problem is solvable for ({e,} T) with a
given extension constant Cg, > 0, it follows:

_ m
Zlog (B)+C’

neN?

Ce >

for an absolute constant C' > 0.

Sketch of Proof:
> Consider the signal f = >""" 0 \ﬁea-»—dk € §1(Z), for some a,d € N.

> By Parseval’s inequality, and usual bound for Dirichlet kernel we have:

2 log( ) +C
1Al 2oy =1 Nfllpiqo, < T

for an absolute constant C' > 0 (for instance: C' =5+ 5 2)

> Necess. cond. for the solv. of PAPR reducti b. th ining.
mj ecess. con or € solv. O reduction pro glves € remaining TI.ITI



Solvability of PAPR reduction problem &
Arithmetic Progressions

Theorem 3.7

Given § € (0,1) and m € N, then there exists an Ns, € N, depending on § and
m, s.t. for all N > Ns,, the following holds:

If the PAPR reduction problem is solvable for ({e,},, oy ,Z) with Cgc > 0,
where T C [N], with |Z| > 0N, then:

Jm

5> g (m) 40

for an absolute constant C' > 0.

> Proof ingredients: Previous Lemma and Szemerédi Thm.

> Above Thm. asserts, that there is a restriction to the size of the
information set such that the PAPR reduction problem is solvable.

(@ nm



Asymptotic Tightenings of Thm. 3.7

> By Green and Tao’s Thm.:

There exists a set A (the set of prime numbers) of density 0 in N, s.t. for every
Cex > 0, there exists ng € N, s.t. the PAPR reduction problem is not solvable
for ({en},en » AN [n0]) with Ce,.

[z nm



Asymptotic Tightenings of Thm. 3.7

> By Conlon and Gowers Thm.:

Theorem 3.8

Let be m € N, and § € (0,1). Given a constant Cg, > 0. Then, there is a
constant C, s.t.:

lim P(Anmp) =1, ifp> 01 ,

N—oo N m—1

where A ., denotes the event: " The PAPR problem is not solvable for
({entnen ) with

_vm
Llog (Z2)+C’

where C' > is an absolute constant, for every subset T C [N/, of size
IZ] > 6 |[N],

C'Ex <

”

Notation: For N € N and p € [0, 1], [N],, denotes a random set in which
Fﬂ each element of [NV] is chosen independently with probability p.
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Walsh functions

Definition 4.1 (Rademacher -, Walsh Functions)

The Rademacher functions t,,, n € N, on [0, 1] are defined as the functions:

a(-) = signlsin(r2"(-)],

where sign denotes simply the signum function, with sign(0) = —1.
By means of the Rademacher functions, we can define the so called Walsh
Functions w,, n € N, on [0, 1] iteratively by:

Wok (. = IpWim, k€&€Ngandm e [2%],

where w is given by wy(t) =1, t € [0,1].

Basic Properties:

e {wn},ey forms a multiplicative self-inverse group with the identity w;.
Furthermore, each element is self-inverse.

e {wn},cn is a complete ONS in L2([0, 1]).

@@ © ForneN\L S wat)dt = 0. m



Perfect Walsh Sum

> The following object plays an important role for the derivation of
solvability of PAPR problem for CDMA systems.

Definition 4.2 (Perfect Walsh Sum (PWS))

Let be Z C N finite. In case that the Walsh sum f indexed by Z, i.e.
J =2 hez Wk can be represented as:

2m—1

f=w, ﬁ(lJern) =w,(1+ ) w,) (3)

foral, €N, ly,...,lom_1 € N\ {1} mutually distinct, and k,, € N, for
n € [m], we say f is a perfect Walsh sum (PWS) of size 2™.

> With abuse of terminology, Z in above Def. is also called PWS of size 2.

(@ nm



> The adjective perfect is due to the following elementary property:

Let m € N. For an perfect Walsh sum f of the size 2™, it holds:

m
2

||f||L1([o,1]) =1 and ”fHL?([O,l]) =2

> As an immediate consequence of previous Lemma and the Theorem on the
necessary condition for the solvability of PAPR reduction problem, we have:

Lemma 4.4

Let be T C N. Assume that T contains a PWS of size 2. If the PAPR
reduction problem is solvable for ({wy}, o ,Z) with a given extension constant

Cgc > 0, then it follows:
CEX > 2%

> Thus, for a Cg > 0, to show that the PAPR reduction problem is not
solvable for ({wpn}, o ,Z) with Cgy, one needs to check whether a PWS of
size 2™ exists in the information set, with 22 > Cg,.

(@ nm



Existence of PWS in an Information Set

Theorem 4.5
Let be N =2", neN, and § € (0,1). Then, for every subset T C [N] fulfilling:

9\ 2" -1
|Z| > 6N and |I|23(5) ,

for an m € N, T contains a PWS of size 2™.

[z nm



Proof of Thm. 4.5 (ldea)

> The following quantity and sets play an important rule for the proof:

Definition 4.6

Let be Z C N finite, and » € N. The correlation between w, and T is defined as
the quantity:

1

Core(wr ) = [ w, (1)

0

2
> wi(t)] dt.

keZ

Furthermore, for w,., r # 1, and Z, we define the following sets:

o M(wy,Z):= {k €T: wywp =w,, forak EI}

o M(wp,Z):= {k €T: wywp =w,, forakeZ, withk > k}

o M(wy,T) := M(wr,T) \ M(w,,T)

101



Proof of Thm. 4.5 (ldea)

>> Straightforward to show the following relation between the correlation and
subsets defined previously by means of the basic properties of Walsh
functions:

Let be N =2",n €N, Z C [N], and r € [N]. The following holds:
@ [(M(wr,I)| = 2|M(wr, T)| = 2 | M(wr, T)|

@ Corr(wy,Z) = |IM(wr,T)|

(3] Eivzl Corr(w,,I) = |I\2

© arg max,.cn\ (1} Corr(wr,Z) > (|I|2 —|Z])/N

la nm



Proof of Thm. 4.5 (ldea)

> Take a suitable 6 € (0,1), and let for now N := 2", n € N be arbitrary.
Further, take an arbitrary Z C [N], which satisfies |Z| > 0 N.
> 1. step:
o Compute 71 := arg max, ¢y} {13 Corr(wr, ), and define Z, := M(wy,,T).
e By Lemma 4.7, we can relate Z; to Corr(wr,,Z), and subsequently to |Z|

and N:
1 1 Z|(|Z] -1
Tl = § M, T)| = § Corrtrer,, ) > LD
e By assumption, we continue:
1) 0
Ll = S(Z1 = 1) > 5 (2] - 2), (4)

o If Z; is non-empty (By (4), |Z| > 3(2/0) sufficient), we can write:

Z Wi = Z Wk + Z wi = (1+wy,) Z W (5)

keM(wry ,I) kEM(wry ,T) keM(wyy T) key

= VkeZ, f,gl) := (14 wyy )W is @ Walsh sum indexed by a subset of
M(wry,I).
Fm = 7 D M(wr,;,T) contains a PWS of size 2. m



Proof of Thm. 4.5 (ldea)

> 2. step:
e Assume that |Z1| > (6/2)(|Z| — 2).
o Compute 7 := arg max,.¢y (13 Corr(wr, Z1) (Possible to show: r2 # r1),
and define Zp := M(wr,,Z1).
e By similar argument as in the 1. step, assumption on |Z|, and some
computations:
1Z| > (3)° 7] - 2. (6)
Z| > 3(2/6)? sufficient), we have

Z wr = (14 wy,) Z Wr,

reM(wry,I1) rEM(wWry,I1)

* If I, # 0 (By (6),

by similar splitting of the sum as done in the 1. step.
e As a consequence, we can continue to expand (5) as:

Z WT:(1+WT1)(1+WT2)Zwk+fr(e:2r12:

reM(wry,I) k€Zs

2) . .
where £2) is simply some summands in ke M(w,. ) Wh-
10

= Vk e, f,g2) = (14 wypy )(1 4+ wry)wg @ Walsh sum indexed by a subset of

M(wry,I).
r = I D M(wr,,Z) contains a PWS of size 22.
@ > The remaining follows by repeating the previous 2 steps and by induction. TUTI



PAPR reduction problem for CDMA Case - PWS

Theorem 4.8
Given ¢ € (0,1), and assume that N := 2", n € N fulfills:

3 /2\%"
N2§ 5 for some m € N.

If the PAPR problem is solvable for ({w}, cx,Z) with constant Cg,, for a
subset I C [N] having the density |Z| /N > 6, then it holds:

Cg > 2%

proof idea:
o |Z| > 6N > 3(2/6)%" 1.
e Apply Thm. 4.5.

(@ nm



PWS - Asymptotic result

The following consequence of Thm. 4.5 shall be used to give analogons of
Conlon and Gower's -, Green and Tao asymptotic results on arithmetic
progressions, for PWS:

Corollary 4.9

Let be m € N and N € N be sufficiently large, s.t.:

3\
on =2 (m) € (0,1).

Then all subsets T C [N], with |Z| > dx N, contains a PWS of size 2.

Proof:
e by Thm. 4.5, a sufficient condition for 6 € (0,1), s.t. Z C [N], with
|Z| > 6N, contains a PWS of size 2™:

SN >3 ((25)27"1 . (7)

r@ e Equality in (7) is achieved by setting § = m



PWS - Asymptotic and Probabilistic result

Theorem 4.10

Let be m € N. Then there is a sequence {py}, with N large enough, in (0, 1]
tending to zero, for which it holds:

lim P[[N],, contains a PWS of size 2™] =1

N —oc0

Sketch of Proof:

e Form € N, and 7 > 1, choose N € N large enough, s.t. py := 7dn, where
O is given as in Cor. 4.9.

e Since |[N],,| is binomially distributed, Chernoff’s bound asserts that the
probability of |[N],, | is getting more concentrated near
E[|[N]py|] = 70NN as N gets larger.

e Cor. 4.9 gives the remaining.
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PWS - Asymptotic and Probabilistic result

By some efforts, one can even show a stronger statement:

Theorem 4.11

Letm € N, and § € (0,1). Then there is a sequence {pn}, with N large
enough, in (0, 1], tending to zero, for which it holds:

lim P [AN,m,é] =1,

N —oc0

where AN .5 denotes the event:
"Every subset T of [N],,,, with |Z| > 6 |[N],,| contains a PWS of size 2™."

v
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PWS & Solvability of PAPR Reduction Problem -
Asymptotic and Probabilistic result

Theorem 4.12

Let be m € N. Given an extension constant Cg, > 0, with Cg, < 2% . Then
there exists a sequence {pn}, with N large enough, in (0, 1], tending to zero,
S.t.:

A}im PP [ The PAPR problem is not solvable for ({wn}, o [N]py) with Ce] =1
— 00
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PWS & Solvability of PAPR Reduction Problem -
Asymptotic and Probabilistic result

Theorem 4.13

Let be m € N. Given an extension constant Cg, > 0, with Cg, < 2%, and
0 > 0. Then there exists a sequence {pn}, with N large enough, in (0,1],
tending to 0, for which it holds:

Jm Pl = 1
where By s denotes the event:
"The PAPR problem is not solvable for all ({wy,}, <y ,Z) with Cg,, where
I C [Nlpy, |Z] 2 8 [[N]pxl.”
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Asymptotic results for PWS

> Erdds Conjecture on arithmetic progressions:

If ACN fulfills ), ., 1/k = oo, then A contains arithmetic progressions of
arbitrary length.

)

4 Still widely open. Even unknown for arithmetic progressions of length 3

> By means of Cor. 4.9, we are able to give the solution of Erdds problem for
PWS:

Theorem 4.14 (Solution of Erdds Problem for PWS)

Let be T C N, for which it holds: " % = 0o. Then, I contains a PWS of
kel

arbitrary size. Specifically: For each m € N, there exists ng € N, such that
Z N [2"™] contains a PWS of size m.




Asymptotic results for PWS

> As an immediate consequence, we obtain the analogon of Green and Tao's
Thm. on the existence of arithmetic progressions for PWS:

Corollary 4.15

Let P C N denotes the set of prime numbers. Then, P contains an PWS of
arbitrary length, i.e. for every m € N, there exists ng € N, s.t. P N [2"0]
contains a PWS of size 2™.
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Asymptotic results for PWS

> As an immediate consequence, we obtain the analogon of Green and Tao's
Thm. on the existence of arithmetic progressions for PWS:

la

Corollary 4.16

Let P C N denotes the set of prime numbers. Then, P contains an PWS of
arbitrary length, i.e. for every m € N, there exists ng € N, s.t. P N [2"0]
contains a PWS of size 2™.

> Immediate consequence for the Solvability of PAPR Problem for CDMA:

For an information set T C N, with ), _,1/k = oo, the PAPR reduction is notJ

solvable for ({wn}, cx ,Z) with any extension constant Cg, > 0.




Outline

® Summary and Conclusions
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Summary and Conclusions

High dynamics of orthogonal transmission scheme is a serious problem.
Tone reservation gives a canonical method to control the peak value of
waveforms of orthogonal transmission scheme.

4 Not applicable for arbitrary cases, specifically: for any desired threshold

value!

PAPR reduction problem is related to several interesting mathematical
fields, such as functional analysis, (additive) combinatorics, trigonometric
-, and non-trigonometric analysis.
The solvability of PAPR reduction problem for an orthogonal transmission
scheme with a given extension constant (resp. the applicability of tone
reservation method for a given threshold value) depends on the existence

of certain combinatorial objects:
e In the OFDM/Fourier case: Arithmetic progressions
= The famous Szemerédi Thm. and several tightening due to Green and Tao,
Conlon and Gowers can be applied.
4 The deterministic asymptotic case still open (Erdés Conjencture).
o In the CDMA/Walsh case: Perfect Walsh sum
= Szémeredi-like Theorem and several tightening for the asymptotic case can
be derived.
= A solution to the Erd6s problem can even be given in this case.
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,Das Buch der Natur ist in der Sprache der Mathematik geschrieben [...], ohne
die es ganz unmoglich ist auch nur einen Satz zu verstehen, ohne die man sich
in einem dunklen Labyrinth verliert.*

— Galileo Galilei, Il Saggiatore (1623)




Thank You!

~ Questions?
Remarks?
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