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Topics of the talk
• We consider message transmission under two uncoordinated
attacks: jamming & eavesdropping.

• This model is called the arbitrarily varying wiretap channel
(AVWC).

• We consider the impact of secret common randomness (secret
CR) as compared to common randomness (CR) which is available
at Eve’s site as well.

➡ We provide a capacity formula for the scenario with secret CR.

• The capacity of the arbitrarily varying channel has been proven to
have discontinuity points.

➡ We prove that this carries over to AVWCs.
➡ We also prove a very positive result: the capacity depends

continuously on the channel to Eve!

• The AVWC exhibits super-activation when no CR is used.
➡ We give a precise characterization of the phenomenon.
➡ We provide a link to the (conjectured) super-activation of the CR

assisted capacity.



Notation
• P(A) - the probability distributions on A.

• An := {(a1, . . . , an) : ai ∈ A ∀i ∈ {1, . . . , n} }.

• The set of channels from A to B is C (A,B). w ∈ C (A,B) is
identified with the transition probabilities (w(b|a))a∈A,b∈B.

• w ∈ C (A,B), w ′ ∈ C (A′,B′) ⇒ w ⊗ w ′ ∈ C (A×A′,B × B′) via
(w ⊗ w ′)((b, b′)|(a, a′)) := w(b|a)w ′(b′|a′) (∀a, b, a′, b′).

• The mutual information of a bipartite random variable (X ,Y ) is
denoted I (X ;Y ).

• For the remainder of the talk, fix S, X , Y and Z. The channel to
Bob is w ∈ C (S ×X ,Y). The channel to Eve is v ∈ C (S ×X ,Z).

• w and v incorporate all the necessary details for this model.

• Equivalent representation: W := (w(·|s, ·))s∈S ∈ C (X ,Y)|S| and
V := (v(·|s, ·))s∈S ∈ C (X ,Z)|S|. Denote the AVWC by (W,V).



Definition of codes
DEF I. Let n ∈ N. A CR assisted code Kn for n uses of (W,V)
consists of: K , Γ ∈ N, a set of encoders
{E γ}Γ

γ=1 ⊂ C ({1, . . . ,K},X n) and a collection (Dγ

k
)K ,Γ

k,γ=1
of

subsets Dγ

k
of Yn satisfying D

γ

k
∩ D

γ

k ′ = ∅ for all γ ∈ [Γ], whenever
k 6= k ′. Every such code defines the random variables
Ssn := (Kn,K

′
n, �n,Xn,Ysn ,Zsn) (s

n ∈ Sn) via

P(Ssn = (k , k ′, γ, xn, yn, zn))

:=
1

Γ · K
E γ(xn|k)✶Dγ

k′
(yn)w⊗n(yn|sn, xn)v⊗n(zn|sn, xn).

The average error of Kn is

e(Kn) = 1− max
sn∈Sn

1

KΓ

K ,Γ∑

k,γ=1

∑

xn

E γ(xn|k)w⊗n(Dγ

k
|sn, xn).



Definition of coding schemes
DEF II. A CR assisted secure coding scheme for (W,V) operating
at rate R consists of a sequence (Kn)n∈N of CR assisted codes
such that

lim
n→∞

e(Kn) = 0, lim inf
n→∞

1

n
log(Kn) = R ,

and lim sup
n→∞

max
sn∈Sn

I (Kn;Zsn |�n) = 0.

If Γn = 1 for all n ∈ N, (Kn)n∈N is called deterministic coding
scheme.

DEF III. A secure CR assisted secure coding scheme K for (W,V)
operating at rate R and using an amount G > 0 of secret CR
consists of a sequence (Kn)n∈N of CR assisted codes satisfying

lim
n→∞

1

n
log Γn = G , lim inf

n→∞

1

n
log(Kn) = R ,

lim
n→∞

e(Kn) = 0, lim sup
n→∞

max
sn∈Sn

I (Kn;Zsn) = 0.



Definition of capacities
DEF IV. Let G > 0. Cs(W,V,G ) is the supremum over all R ≥ 0
such that there is a secure coding scheme K for (W,V) operating
at rate R and using an amount G of secret CR.

DEF V. Cd(W,V) is the supremum over all R ≥ 0 such that there
is a secure deterministic coding scheme K at rate R .

DEF VI. Cr (W,V) is the supremum over all R ≥ 0 such that
there exists a secure CR assisted coding scheme K at rate R .



Results
RESULT I. (Capacity with secret CR) It holds

Cs(W,V,G ) = min { Cr (W,V) + G , Cr (W,T) } ,

where T = {t} and t(z |x , s) = 1/|Z| ∀ s ∈ S, x ∈ X , z ∈ Z.

REMARK. Recent (arXiv:1410.8078, this ISIT, paper number
2395) work by Wiese, Nötzel and Boche provided a multi-letter
formula for Cr .



Results
RESULT I. (Capacity with secret CR) It holds

Cs(W,V,G ) = min { Cr (W,V) + G , Cr (W,T) } ,

where T = {t} and t(z |x , s) = 1/|Z| ∀ s ∈ S, x ∈ X , z ∈ Z.

G

Cs(W,V,G )

Cr (W,T)

0

single-letter!



Results
RESULT II. (Symmetrizability)
1) If W is symmetrizable, then Cd(W,V) = 0.
2) If W is non-symmetrizable, then Cd(W,V) = Cr (W,V).

REMARK. The proof is based on [Csiszar,Narayan’78].

REMARK. An AVC W is symmetrizable if there is a conditional
probability distribution (u(s|x))s∈S,x∈X such that

∀x , x̂ ∈ X :
∑

s∈S

u(s|x)w(·|s, x̂) =
∑

s∈S

u(s|x̂)w(·|s, x).

DEFINITION. Let Mf := {M ⊂ C (X ,Y) : |M| < ∞}. Define
F : Mf → R+ by

F (W) := max
x 6=x ′

min
u

‖
∑

s

(u(s|x)w(·|s, x̂)− u(s|x̂)w(·|s, x))‖1.

Then ’F (W) = 0’ is equivalent to ’the AVC W is symmetrizable’.



Results
DEFINITION. As metric on the set of AVWCs (and AVCs) we use
the Hausdorff-distance which is inherited from the one-norm
(variational distance) on probability distributions. Let this distance
be denoted by d .

RESULT III. (Discontinuity)
1) Cd is discontinuous in (W,V) iff: Cr (W,V) > 0, F (W) = 0
but: ∀ ǫ > 0 ∃ Wǫ such that d(W,Wǫ) < ǫ and F (Wǫ) > 0.
2) If Cd is discontinuous in the point (W,V) then it is
discontinuous for all V̂ for which Cr (W, V̂) > 0.

RESULT IV. (Stability) If Cd(W,V) > 0 then there is ǫ > 0 such
that d((W,V), (W′,V′)) ≤ ǫ implies Cd(W

′,V′) > 0.



Super-activation: preliminaries
For two AVWCs (W1,V1) and (W2,V2), we define
(W1 ⊗W2,V1 ⊗V2) to equal

((w1(·|·, s)⊗ w2(·|·, s
′))s,s′∈S , (v1(·|·, s)⊗ v2(·|·, s

′))s,s′∈S),

Since all state alphabets are assumed to be finite, there is no loss
of generality in this definition. Then,

Cd(W1 ⊗W2,V1 ⊗V2) ≥ Cd(W1,V1) + Cd(W2,V2)

follows trivially from the definition of Cd . In contrast, if

Cd(W1 ⊗W2,V1 ⊗V2) > Cd(W1,V1) + Cd(W2,V2)

holds, we speak of super-additivity and if even

Cd(W1,V1) = Cd(W2,V2) = 0,

Cd(W1 ⊗W2,V1 ⊗V2) > 0

we speak of super-activation.



Super-activation: results
There exist AVWCs which exhibit super-activation
[Boche,Schaefer’14].
We give a precise characterization of the effect.

RESULT III. (Super-activation) Let (Wi ,Vi )i=1,2 be AVWCs.
...
3) If Cr shows super-activation for (W1,V1) and (W2,V2), then
Cd can show super-activation for (W1,V1) and (W2,V2) if and
only if at least one of W1 or W2 is non-symmetrizable.
4) If Cr shows no super-activation for (W1,V1) and (W2,V2)
then super-activation of Cd can only happen if W1 is non-
symmetrizable and W2 is symmetrizable and Cr (W1,V1) = 0 and
Cr (W2,V2) > 0.



Conclusions
• We provided a complete characterization of the secrecy capacity of
AVWCs

• This characterization uses a multi-letter formula
• nonetheless, we were able to make nontrivial statements:
• Complete characterization of discontinuity points in terms of

functions which are continuous themselves
• Complete characterization of super-activation of Cd

• Single-letterization is an open and potentially hard problem

• Compare to zero-error capacity which [Ahlswede’70] is deeply
connected to AVCs

• It was conjectured [Shannon’56] that the zero-error capacity of a
DMC is additive. This conjecture was proven to be wrong
[Alon’98]

➡ Super-additivity can occur for the zero-error capacity



THANKS FOR YOUR ATTENTION



Related work
[Boche,Schaefer’14] Boche and Schaefer “Capacity results and
super-activation for wiretap channels with active
wiretappers”(2014)

[Csiszar,Narayan’88] Csiszar and Narayan “The arbitrarily
varying channel revisited: positivity, constraints” (1988)

[Ahlswede’78] Ahlswede “Elimination of correlation for
arbitrarily varying channels” (1978)

[Shannon’56] Shannon, “The zero-error capacity of a noisy
channel” (1956)

[Ahlswede’70] Ahlswede, “A Note on the Existence of the
Weak Capacity for Channels with Arbitrarily Varying Channel
Probability Functions and Its Relation to Shannon’s Zero Error
Capacity” (1970)

[Alon’98] Alon, “The Shannon capacity of a union” (1998)


