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Topics of this Talk

® Motivation: What makes the difference?
® Historical background of “activation” in Shannon Theory
e until '00: Classical “activation” results
e until '13: Quantum “super-activation”
e recently : Classical “super-activation”
© Introducing the arbitrarily varying wiretap channel (AVWC)
e Key idea, some picture, different setups
e AVWC bridges the gap between i.i.d. and non-i.i.d. world
e A protocol that super-activates certain AVYWCs
O Precise formulations

e Codes, capacity
e The recent results 4+ some central ideas in proofs
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@ Motivation: Which ingredients make the difference?

o If I am to build a communication system, with
e Numerous nodes
e Many users
e Many different needs that should be addressed
e A limited number of different devices and techniques available
e A limited amount of time (=money) to set up the network
- what are the key effects that | should worry about?
- How do | deal with them?
e For example when devices need to work together in order to form an
end-to-end link, they only give us certain degrees of freedom.
e Some errors can be compensated for easily (e.g. good coding schemes
make the impact of imperfections small), some not.
o General theory of communication chains (resource theory): not yet.
e In particular: Many examples are available that show how using
resources together increases efficiency. For example:
@ When the zero error criterion is used
® When shared randomness can be used between Alice and Bob
©® When public feedback is allowed between them
@ When different channels can be used in parallel



@A Zero-Error Communication

o Conjecture [Sha56]: Cp is additive.
e V. W: G(Ve W)> G(V)+ G(W) [Hae78,Hae79,Al098].
e (p is connected to AVC under maximal error criterion [AhI70].



® Ahlswede Dichotomy

V

kCommon Randomness

Alice

Arbitrarily Varying Channel

‘I

Common randomness guarantees successful message transmission over the
arbitrarily varying channel (under average error criterion) even when it may
be impossible without [Ahlswede78].



® Secret Key Agreement by Public Discussion

Public feedback
(can also be read by Eve)

Public feedback enables establishment of a secret key between Alice and
Bob even when b < e [Mau93].



® Super-activation

e So far, only activation has been mentioned.

e In 2008, Smith & Yard [SY08] discovered that even super-activation is
possible.

e The effect was proven by them to occur on specific pairs of quantum
channels. A pair (A, B) of channels is said to show super-activation
for the quantum capacity if

Q(A) = Q(B) =0 and Q(A® B) > 0.

e Smith & Yard used channels where B satisfies P(B) > 0 but
Q(B) =0 and A is a 50% erasure channel that satisfies Q(.A) = 0.

e Smith & Yard pointed out that the reasons for these two quantum
capacities being equal to zero may be different, so that some
compensation may become possible.

e According to state of knowledge at that time, super-activation seemed
to be a purely quantum effect with no counterpart in classical
information theory.

e The phenomenon is still actively researched [KMWY16].




® Super-Activation in a Classical System

e In [BS14], Boche and Schaefer presented a protocol that
demonstrated how to super-activate certain pairs of arbitrarily varying
wiretap channels (AVWGs).

e In [WNB16], we provided (among others) a capacity formula for the
AVWC

e In [NWB16], we investigated super-activation of the AVWC further. A
complete characterization in terms of the formula from [WNB16] was
achieved.

We will now:

@ introduce the AVWC,

® explain why it is even “strictly beyond [ID"

© explain how it can be super-activated

O then we present the extended characterization.



® The AVWC: Shared vs. Common Randomness
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® The AVWC: Without External Randomness
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® The AVWC: Without External Randomness

Capacity without any external assistance:

Cs

Discrete

Memoryless
Channel




® The AVWC: With External Randomness known by Eve
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® The AVWC: External Randomness used as Secret Key
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® The AVWC: External Randomness used as Secret Key
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® Why is this “beyond IID"?

e Forget about Eve (for the moment)

e The choices of James are not limited in any form.

e Thus, no probability distribution can be said to govern his choices,
especially no i.i.d. distribution.

e Any code between Alice and Bob has to work reliably both under such
extreme type of error and, simultaneously, under “usual” i.i.d. noise.

e One may think of the sources of the noise as split into two parts:
@ One where e.g. a car can cross the communication link (James being
the driver). Over the (short) time of communication, it may not be
suitable to model such rare events as random variables.
® One where noise happens e.g. in a receive antenna. When the
communication link is disturbed by a large obstacle (e.g. a car), the
lower SNR increases the noise level in the antenna.

e Only the influence of e.g. common randomness allows to transform
the model into the i.i.d. realm.

o We will give a short sketch of the respective mechanism:



® Why is this “beyond IID"?

Consider an AVC (Wj, W5). How can Alice and Bob transform the AVYWC
to something more 11D?

Alice and Bob agree on any code. Let it have length 10.

In addition, they choose (uniformly random) from the set of
permutations on {1,...,10}.

Consider James sending s'® = (1,1,1,1,1,2,2,2,2,2). The type of
this is 1071 - N(1]s1%) = 5/10.

Alice and Bob's random code effectively transforms James’ choice:

1 1 1 10 @10 10
o1 et = ITal ™ 1y (M) ) = (),

The communication cost of this is super-exponential, but may be
brought down to roughly log of the number of channel uses.

An external communication link is necessary for this, and James has
to be kept ignorant of the exact permutation!

This transforms the AVC to a compound channel.



® How super-activation occurs for AVWCs

e The effect is based on two observations:

@ symmetrizability. A symmetrizable AVWC cannot transmit messages,
but the defect can be repaired by using an external resource like e.g.
shared randomness (Ahlswede dichotomy)

@® There are AVWCs that allow for reliable but insecure transmission of
data.

Key idea:

@ Take one symmetrizable AVYWC which is secure when assisted by
common randomness (CR).

@® Take a second AVWC which is non-symmetrizable but not secure.

© Use the insecure AVYWC to transmit messages to Bob.

@ Use these messages as CR for the symmetrizable AVWC.

@ Benefit from the positive CR-assisted secrecy capacity of the first
AVWC.

Immediate question: Is this the whole story?
Answer: Still not known.
One step on the way: see the next slides.




@ Notation

e P(A) - the probability distributions on A.

o A":={(a1,...,an) 2 € AVie{l,... ,n} }.

e The set of channels from A to Bis C(A,B). w € C(A,B) is
identified with the transition probabilities (w(b|a))ac. peB-

ewe CAB),weCAB)=waaw e C(AxA,BxB) via
(w @ w)((b,b)|(a,ad)) = w(bla)w'(b'|d") (Va, b,d, b).

e The mutual information of a bipartite random variable (X, Y) is
denoted /(X;Y).

e For the remainder of the talk, fix S, X, Y and Z. The channel to Bob
is we C(S x X,Y). The channel to Eve is v € C(S x X, Z).

e w and v incorporate all the necessary details for this model.

e Equivalent representation: 20 := (w(:|s,-))ses € C(X,V)!S! and
Y = (v(:|s,"))ses € C(X, Z)I51.

Denote AVWCs by (20,0) in what follows.



® Definition of Codes

DEF I. Let n € N. A CR assisted code K, for n uses of (20, 0) consists of:
K,T €N, a set of encoders {E"}! _; < C({1,...,K},X™) and a collection

(Dv);fyr | of subsets D of V" satisfying D] N D}, = 0 for all v € [I],

whenever k £ k’. Every such code defines the random variables
Sen := (R, R, 00, Xn,Dsn, 3sn) (s" € S™) via
IP)(SS” = (k7 klv’YaXn7ynazn))
1 n n n ni.n n n n n n
= = (IR (WIS XY (2, X7),

The average error of IC,, is

err(ICp )—1—ST63§7— Z Ze7 x"|k)w®"(D]|s", x").
ky=1 x"



O Definition of Coding Schemes

DEF Il. A CR assisted secure coding scheme for (20, 0) operating at rate
R consists of a sequence (K,)nen of CR assisted codes such that

Ii_}m err(K,) =0, I|m|nf Iog(K) R,
and lim sup max l(ﬁn,35n|b ) =

n—oo S"ES

If I, =1forall n €N, (Kp)nen is called deterministic coding scheme.

DEF I1l. A secure CR assisted secure coding scheme K for (20, 0)
operating at rate R and using an amount G > 0 of secret CR consists of a
sequence (K ,,),,eN of CR assisted codes satisfying

nll_)r'goflog =g, I|m|nf Iog(K) R,
lim err(K,) =0, I|m sup max I(8p; 3sn) = 0.

n—o0 snesSn



O Definition of Capacities

DEF IV. Let G > 0. Gy (20,9, G) is the supremum over all R > 0 such
that there is a secure coding scheme K for (20, 0) operating at rate R and
using an amount G of secret CR.

DEF V. Cg(20,9) is the supremum over all R > 0 such that there is a
secure deterministic coding scheme C at rate R.

DEF VI. Cg1an(20,) is the supremum over all R > 0 such that there
exists a secure CR assisted coding scheme K at rate R.



RESULT 0. ([WNB16] Capacity with CR known by Eve) It holds

1
Csran(20,V) = lim — max max
n—00 N peP(Un) UEC(Un,X")

/ W®" U) — I(p: Ven o U
(qen;DIFS) (P ° ) sTeag(" (P s © )>

RESULT I. (Capacity with secret CR*) It holds
Ckey(ma %a G) = min { CS,ran(ma m) + Ga CS,ran(ma ‘Z) } )
where ¥ = {t} and t(z|x,s) =1/|Z|Vse S, xe€ X, z€ Z.

* Slightly sidestepping here, but it is important to see that searching for a
simpler expression for the capacities of an AVWC is not a hopeless task.



® Results

RESULT I. (Capacity with secret CR) It holds
Ciey (20,0, G) = min { C1an(2W, V) + G, Csran(W, %) },
where ¥ = {t} and t(z|x,s) =1/|Z|Vse S, xe€ X, z€ Z.

Ckey (mv an G)

N

CS,ran (QU, (Z) F--------

/

single-letter!




RESULT Il. (Symmetrizability)
1) If 20 is symmetrizable, then Cg(20,0) = 0.
2) If 20 is non-symmetrizable, then Cs(20,U) = Cs ran(20, V).

REMARK. The proof is based on [CN88], 4 additional tricks that account
for the randomization that is necessary at the encoder in order to keep Eve
obfuscated

REMARK. An AVC 25 is symmetrizable if there is a conditional
probability distribution (u(s|x))ses xex such that

Vx,% € X > u(slx)w(-ls, £) =) u(s|R)w(-]s, x).

seS seS



O Super-Activation: Preliminaries

For two AVWCs (207,01) and (202, 07), we define (21 ® W, V1 ® V)
to equal

((wa(-]8) @ o] ))s,wes, (vl 8) @ val-]8'))s sres);

Since all state alphabets are assumed to be finite, there is no loss of
generality in this definition. Then,

Cs(W1 ® Wa, V1 @ V) > Cs(Wi, V1) + Cs(Wa, Vo)
follows trivially from the definition of Cy. In contrast, if

Cs(W1 ® Wa, V1 @ Vp) > Cs(W1, V1) + Cs(Wo, Vo)
holds, we speak of super-additivity and if even

Cs(201,01) = Cs(2W2,05) =0,
Cs(2W1 ® W, V1 ®@Vs) >0

we speak of super-activation.



® Super-activation: results

RESULT Ill. (Super-activation) Let (20;,0;)i=1,, be AVWCs.
1) Assume that Cs(201,01) = Cs(W2, V) = 0. Then

Cs(W1 ® W,, V1 @ Vp) >0

if and only if 207 ® 25 is not symmetrizable and
CS,ran(ml & m2,m1 &® Q]Q) > 0.
If (20;,V;)i=1,2 can be super-activated it holds

CS(QIH ® W, V1 ® mg) = Cs7ran(QU1 ® W, V1 ® %2).
2) If Cgran shows super-activation for (201, 01) and (202, Y>), then Cg
shows super-activation for (201, 01) and (202, 0>) if and only if at least
one of W, or W is non-symmetrizable.
3) If Csran shows no super-activation for (201,21) and (22, Y>) then
super-activation of Cg happens if and only if 27 is non- symmetrizable and
20, is symmetrizable and Cg yan (21, V1) = 0 and Cg yan (W2, V) > 0.

There exist pairs of AVWCs satisfying all inequalities in 1) [BS13].



O Key ideas

In [CN88] the following was proven: If R < C(20), and 20 is
non-symmetrizable, there exists N € N such that for all n > N we
have P(3 reliable code at rate R) > 1 — exp(2~").

Use [CN88] and add secrecy results on top. Exponential number of
choices for James is OK because of double-exponentials in reliability
and secrecy results.

Requires heavy use of Chernoff-Hoeffding bound.

That way, you get a on-shot coding result (Resl) without pre-coding
U.

Idea: keep using Resl, but for many copies of the channel (this makes
use of a second characterization of Cg;an from [WNB16]).

Problem: pre-coding may turn a non-symmetrizable channel
symmetrizable. Thus, the optimal rates may not be achievable using
Resl!

We now demonstrate that it may indeed happen that pre-coding
makes a channel symmetrizable.

Then, we explain the way out.



® Example: Calculations

For x € [0,1] set x' :== 1 — x. Define 2 C C({x1,x2},{1,2,3}) by

W(-|51,X2) = 0.461 + 0.56> + 0.143,

w(-[s1,x1) := 01, w(:|sp,x1) := o, w(-|s2, x2) := I3
Then W is non-symmetrizable: If A\, u € [0, 1], the equation
Aw(ispx) £ X w(ts2,x) = g w(tlspx) + 10 wtls2, %)
has no solution. With pre-coding by BSC N, (W, := Ws o N,):

W/('|51,X1) = pd1 + p'(0.4(51 + 0.56, + 0.1(53),
W’('|51,X2) = p(0‘451 + 0.50> + 0.153) + p/51,
w'(¢|s2,x1) = pd2 + p'03, w'(-|s2, x2) = pdz + p'do.

For p = 0.4, A = 38/45, n = 32/45, the following holds:
A-w/(cfsp, x) + N - w (s, x1) = - w(tlst, xe) + 1 w52, x2).
Thus 20" = 2 0 Ng4 is symmetrizable.



® Example: Pictures

51 = W(-‘Sl,Xl) 51
[ ] [ ]
/
/
/
/// , W,(.’S]-7X2)
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Black dots denote probability distributions. Light gray lines are the edges of
the probability simplex P({1,2,3}). The sets conv({w(:|s1, x;), w(-|s2, x;)})
where i = 1,2 are visualized as dashed lines. The intersection of the
dashed lines in the right picture shows that 20’ is symmetrizable.



® The way out of the symmetrizability trap

e Use sub-optimal encodings:
@ Take the optimal U, for the n-th term in the capacity formula.
® Set Upyy :=1® U,
© Define 2 by (W, 0 Upy)smrcsna, T accordingly.
© This definition ensures that 20 is non-symmetrizable.
© Use one-shot coding results for (20, D).

e Prove that this incurs a negligible deviation from optimal the n-th
term in the capacity formula of order c¢/n for some constant c.

e As the capacity formula is regularized, the term ¢/n becomes
insignificant for increasing n.

e This strategy automatically lets one achieve capacity for any
non-symmetrizable AYWC, including those made up from pairs!

e Much more general than the activation protocol [BS13].

e Only one channel use is "insecure” (as compared to ~ log n in
[BS13]). One may think of this slot as the one where the CR is
transmitted.



@ Conclusion

e AVWC is an example of a channel where super-activation happens.
e The effect can be explained in a very practical way.

e We provided an additional and complete characterization in terms of
symmetrizability and Cg ran.

e Super-activation of Cgan remains an open problem. It is not clear
whether the situation underlying the BS protocol is the only way to
super-activate an AVWC.

e The expressions for Cg ran look intractable.

e We provided some hope that Cg ;an could be single-letterizable when
analyzing Cyey-

o Further results include:
e Characterization of discontinuity points
e Stronger ("maximum™) secrecy metric analyzed as well [WNB16]
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Backup: Continuity

DEFINITION Let M := {M C C(X,Y): [M| < oc}. Define
F(I0) := maxmin| Z w(-[s, %) — u(s[)w(:|s, x))ll1,
Then F(QU) =0"is equwalent to 'the AVC 20 is symmetrizable’.

DEFINITION. As metric on the set of AVWCs (and AVCs) we use the
Hausdorff-distance which is inherited from the one-norm (variational
distance) on probability distributions. Let this distance be denoted by d.

RESULT IIl. (Discontinuity)

1) Cy is discontinuous in (20,0) iff: C,(20,) > 0, F(20) =0 but: V

€ > 0 3 2, such that d(20,20,) < € and F(20,) > 0.

2) If Cy4 is discontinuous in the point (20,0) then it is discontinuous for
all I for which C,(20,%) > 0.

RESULT IV. (Stability) If C4(20,9) > 0 then there is € > 0 such that
d((2,9), (W',0')) < € implies C4(', ") > 0.



