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Identification Systems Recap
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I Enrollment Phase: Data from each user is compressed and stored via

φn : X n →M1.

I Identification Phase:
I Observation sequence yn is related to one randomly chosen user in the

system.
I The processing center searches for the true user

ψn : Yn ×MM
1 →W ∪ {e}.

I The pair (φn, ψn) is called an ID-code.
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Relevant previous results for given PX and PY |X

I Requirements for an arbitrary δ > 0

1

n
log |M1| ≤ Rc + δ,

1

n
logM ≥ Ri − δ,

Pr{W 6= Ŵ} ≤ δ, ∀n ≥ n0(δ).
I Willems1 et.al gave the characterization of identification capacity

C = I(X;Y ).

I Tuncel2 studied the identification-compression trade-off RID

Rc ≥ I(X;U), Ri ≤ I(Y ;U)

Y −X − U, |U| ≤ |X |+ 1.

1F. Willems, T. Kalker, and J.-P. Linnartz, “On the capacity of a biometrical
identification system,” in ISIT 2003

2E. Tuncel, “Capacity/storage tradeoff in high-dimensional identification systems,”
T-IT, vol. 55, no. 5.
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Related works

Compression of data

I E. Tuncel and D. Gündüz, “Identification and lossy reconstruction in
noisy databases,” IEEE Trans. Inf. Theory, vol. 60

I M. B. Westover and J. A. O’Sullivan, “Achievable rates for pattern
recognition,” IEEE Trans. Inf. Theory, vol. 54

Arbitrary/Compound settings

I D. Blackwell, L. Breiman, and A. Thomasian, “The capacity of a
class of channels,” The Annals of Mathematical Statistics, 1959.

I —“The capacities of certain channel classes under random coding,”
The Annals of Mathematical Statistics, 1960.

I R. Ahlswede, “Elimination of correlation in random codes for
arbitrarily varying channels,” Probability Theory and Related Fields,
vol. 44.
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Uncertainties

Motivation:

I Knowing the exact users’ data distribution and the observation
channel is restrictive.

I We relax this assumption by assume that the data distribution comes
from the set

Ps = {PX|S=s, s ∈ S}
and the channel is selected by nature from

Pc = {PY |X,τ , τ ∈ T }.

I S can be the set of different locations, while T could be the set of
different collecting methods.
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Compound source-channel

I We assume that all users’ data are generated from the same but
unknown distribution, i.e., Xn(i) ∼ P⊗nX|S=s for all i ∈ [1 :M ].

I The channel is given by P⊗nY |X,τ for an unknown τ .

I A pair (Rc, Ri) is achievable if

1

n
log |M1| < Rc + δ,

1

n
logM > Ri − δ,

sup
τ,s

Pr{W 6= Ŵ |S = s, T = τ} < δ,

for all sufficiently large n. The set of all achievable rate pairs is
denoted by Rsc.
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Compound source-channel

Theorem

In case both X and Y are finite, Rsc is given by set of all (Rc, Ri) such
that

Rc ≥ max
s
I(X;U |S = s)

Ri ≤ min
s,τ

I(Y ;U |S = s, T = τ),

where PXY U |T=τ,S=s = PY |X,τ × PX|S=s × PU |X,S=s and |U| ≤ |X |+ |T |.
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Compound source-channel: Coding scheme

I Enrollment:
I State estimation for each user ŝi = TX(xn(i)). It can be shown that

Pr{Ŝi = s|S = s} → 1,∀s ∈ S.

I Compress xn(i) into un(mŝi,i) using random coding. Store (ŝi,mŝi,i)
in the database. We need Rc > maxs I(X;U |S = s).

I Identification:
I Estimate the underlying observation state κ̂ = TY (y

n) and deduce the
channel state τ̂ with high probability.

I Since all xn(i) are generated from P⊗nX|S=s, set ŝ = s1.
I Search for a unique ŵ such that

(yn, un(mŝŵ,ŵ)) ∈ T nε (PY U |T=τ̂ ,S=ŝ).

We need Ri < mins,τ I(Y ;U |S = s, T = τ).
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Individual state varying

I Each user has its own state si and the data are generated according
to Xn(i) ∼ P⊗nX|S=si for all i ∈ [1 :M ].

I We assume that the channel PY |X is fixed.

I A pair (Rc, Ri) is achievable if

1

n
log |M1| < Rc + δ,

1

n
logM > Ri − δ,

sup
(si)Mi=1∈SM

Pr{W 6= Ŵ |(Si)Mi=1 = (si)
M
i=1} < δ,

for all sufficiently large n. We denote the set of all achievable rate
pairs by Riis.

I The number of constraints is exponential.
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Individual state varying

Theorem

For finite alphabets Riis is the collection of (Rc, Ri) such that

Rc ≥ max
s
I(X;U |S = s)

Ri ≤ min
s
I(Y ;U |S = s),

where PXY U |S=s = PY |X × PX|S=s × PU |X,S=s and |U| ≤ |X |+ 1.

I We observe that when |T | = 1, Rsc = Riis.
I Riis is a convex set.

I Proof Sketch: We observe that Riis ⊆ Rsc due to the independent of
users. The achievability follows from the same coding arguments as in
the proof of Rsc.
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A connection to WAK-network

I Motivation: The achievability proofs of Rsc and Riis when |T | = 1
are shown by similar random coding arguments. Perhaps we can show
them for the large class.

I Recap WAK-network: Assume that (Xn, Y n) ∼ P⊗nXY . A WAK-code
consists of

I Encoding and decoding mapping

φ1n : Xn →M1, φ2n : Yn →M2

ψn :M1 ×M2 → Yn

I Requirement
Pr{Y n 6= Ŷ n} → 0, as n→∞.

I Denote the trade-off region by RWAK.
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A connection to WAK-network

WAK-region

R1 ≥ I(X;U), R2 ≥ H(Y |U)

Y−X − U

ID-region

Rc ≥ I(X;U), Ri ≤ I(Y ;U)

Y−X − U
I It can be seen that

(Rc, Ri) ∈ RID ⇔ (Rc, H(Y )−Ri) ∈ RWAK.

I Our observation:

Proposition

From a WAK-code (φ1n, φ2n, ψn) we can construct a corresponding
(φ1n, ψ

′
n) ID-code such that

Pr{Ŵ 6= w|W = w} ≤ PWAK{error}+ Pr{Y n /∈ Anγ}
+M |M2|e−n(H(Y )−γ),

where γ > 0 and Anγ is the weak typical set.
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A connection to WAK-network

I In case |T | = 1 the code constructed from an arbitrary collection
{φ1n,s, φ2n,s, ψn,s}s∈S performs similarly for both settings.

I The keys
I Users’ data are independent conditioning on the underlying states
I vanishing estimation error probability.

I We also show that: Given an ID-code (φn, ψn) there exists a
WAK-code (φn, φ

′
2n, ψ

′
n) such that

Pr{Ŷ n 6= Y n} ≤ PID(error) + e−nγ + Pr{Y n /∈ Anγ}
+ e−nR2en(H(Y )+3γ−Ri).

I Combining both directions we have

Theorem

Suppose (Ra, Rb) ∈ R2
+ with Rb ≤ H(Y ) then

(Ra, Rb) ∈ RWAK,ε ⇔ (Ra, H(Y )−Rb) ∈ RID,ε,

Or the strong converse for the identification holds.
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Summary

I We studied models for the uncertainties in identification systems.

I We showed a connection between the identification problem and the
WAK problem.

Extensions:

I We also study several mixture models with countable state space.

I An argument for the strong converse of the ID problem which can be
transferred to the Gaussian case is investigated.
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Thank you for your attention!
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