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What is the Hilbert transform?
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The Hilbert Transform
B We consider continuous functions f on T = [−π,π] with f (−π) = f (π).

B Assume f can be represented by its Fourier series

f (t) =
∞

∑
n=−∞

cn(f )eint with Fourier coefficients cn(f ) =
1

2π

∫
π

−π

f (τ)e−inτ dτ .

B Its harmonic conjugate f̃ is given by

f̃ (t) =
(
Hf
)
(t) =−i

∞

∑
n=−∞

sgn(n)cn(f )eint with sgn(n) =

 −1 : n < 0
0 : n = 0
1 : n > 0

such that

F (t) = f (t) + ĩf (t) = c0(f ) + 2
∞

∑
n=1

cn(f )eint =
∞

∑
n=0

cn(F )eint ,

i.e. such that
cn(F ) = cn(f + ĩf ) = 0 for all n < 0 .

B The mapping H : f 7→ f̃ is called Hilbert transform.
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The Hilbert Transform – Illustration

f (t) =
∞

∑
n=−∞

cn(f )eint ĩf (t) =
∞

∑
n=−∞

sgn(n)cn(f )eint f (t) + ĩf (t) = c0(f ) + 2
∞

∑
n=1

cn(f )eint
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The Hilbert Transform – Closed Form
So the Hilbert transform is the mapping

H : f 7→ f̃

H : ∑n∈Z cn(f )eint 7→ −i∑n∈Z sgn(n)cn(f )eint
(1)

with the Fourier coefficients
cn(f ) =

1
2π

∫
π

−π

f (τ)e−inτ dτ (2)

Inserting the Fourier coefficients (2) into (1), one obtains a closed form expression for H : f 7→ f̃

f̃ (t) =
(
Hf
)
(t) = lim

ε→0

1
2π

∫
ε≤|t−τ|≤π

f (τ)

tan([t− τ]/2)
dτ , t ∈ T = [−π,π] . (HT)
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The Hilbert Transform – Trigonometric Form
B Assume f can be represented by its Fourier series

f (t) =
∞

∑
n=−∞

cn(f )eint with Fourier coefficients cn(f ) =
1

2π

∫
T

f (τ)e−inτ dτ .

B The Fourier series of f can be written equivalently as

f (t) =
a0(f )

2
+

∞

∑
n=1

an(f ) cos(nt) + bn(f )sin(nt) .

with the Fourier coefficients

an(f ) =
1
π

∫
T

f (t)cos(nt)dt and bn(f ) =
1
π

∫
T

f (t)sin(nt)dt .

B Then its harmonic conjugate is given by

f̃ (t) =
(
Hf
)
(t) =

∞

∑
n=1

an(f ) sin(nt)−bn(f )cos(nt) .

Volker Pohl (TUM) | On the possibility of calculating the Hilbert Transform on digital computers 6



Why the Hilbert transform is important?
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Hilbert Transform and Causality
B The Hilbert transform is closely related to "causality".

B Therefore, it plays an important role in science and engineering.

B In physics, it is also known as Kramers-Kronig relation.

Hardy spaces – Spaces of "causal functions"
• For 1≤ p < ∞, let LP(T) be the usual spaces of p-integrable functions on T.
• For every f ∈ Lp(T) its Fourier coefficients cn(f ), n = 0,±1,±2, . . . are well defined
• Define the "causal subspaces"

H p = {f ∈ Lp(T) : cn(f ) = 0 for all n < 0} .

B Let f ∈H p be arbitrary and write f (t) = u(t) + iv(t) = |f (t)| eiϕ(t)

B By the definition of the Hilbert transform, we have

v(t) = (Hu)(t) Kramers-Kronig relation

ϕ(t) = H(log |f (t)|) Phase retrieval

I V. Pohl, N. Li, H. Boche, “Phase Retrieval in Spaces of Analytic Functions on the Unit Disk,” SampTA 2017.
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Example – Causal Linear Systems
B Input-output relation of a linear system S

yn =
∞

∑
k=0

ckxn−k , n ∈ Z

Input sequence : {xn}n∈Z ⊂ C
Output sequence : {yn}n∈Z ⊂ C
Impulse response of S : {cn}n∈Z ⊂ C

B ck = 0 for all k < 0
⇒ the output yn depends only on the past input symbols {xn,xn−1,xn−2, . . .}
⇒ S is a causal system.

B Take discrete-time Fourier transform (DTFT) of the input-output relation yields

Y (ω) = C(ω)X (ω) , ω ∈ [−π,π)

with the transfer function C(ω) of S

C(ω) =
∞

∑
k=0

ck eikω

B Because S is causal, we have C ∈H p and therefore

ℑ [C(ω)] = H(ℜ [C(ω)]) and arg [C(ω)] = H(log |C(ω)|) .

− So C(ω) is already uniquely determined by its real part ℜ [C(ω)] or by its amplitude |C(ω)|.
− The corresponding imaginary part or phase can be calculated using the Hilbert transform.
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Applications and Properties
Applications

B Phase retrieval
B Prediction and estimation of stationary time series – spectral factorization.
− Let x = {xn}∞

n=−∞
be a w.s.s. stochastic process with spectral density Φx ∈ L1(T).

− We want to have a linear estimate of future values based on past observations

x̂n+τ =
∞

∑
k=0

ckxn−k , τ = 1,2, . . .

− The transfer function C(ω) of the optimal (MMSE) filter is determined by the spectral factor Φ+
x .

− The mapping Φx → Φ+
x involves the Hilbert transform (Kolmogorov or ceptral method).

B Solution of the Kardion, Quanteninformation theory, etc.

Properties

B Hilbert transform is a bounded mapping H : Lp(T)→ Lp(T), 1 < p < ∞.
B The Hilbert transform is a bounded mapping H : L∞(T)→ BMO.
B H : C (T)→ C (T) is not bounded but H : C α(T)→ C (T) is bounded.

B For f ∈ C (T), we have f̃ = Hf ∈ Lp(T) for every 1≤ p < ∞ but f̃ = Hf /∈ C (T), in general.
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How to calculate the Hilbert transform?
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Calculation on Analog Computers

There do exist analog computers for calculating the Hilbert transform.

Example (Hilbert Transformation with a 4f imaging system)

f (t) f̃ (t)

input
plain

input
plain

f f f f

lens Fourier
domain

f̂ (ω) −sign(ω )̂f (ω)

lens
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Calculation on Digital Computers
We want calculate numerically the Hilbert transform of a given f ∈B =

{
f ∈ C (T) : f̃ ∈ C (T)

}
f̃ (t) =

(
Hf
)
(t) = lim

ε→0

1
2π

∫
ε≤|t−τ|≤π

f (τ)

tan([t− τ]/2)
dτ , t ∈ T = [−π,π] . (HT)

Challenges

B Singular integral kernel⇒ principal value integral in (HT)
B Calculation on digital computers
⇒ calculation of (HT) has to be based on finitely many samples of the function f :{

f (λn) : n = 1,2, . . . ,N
}

− finite storage (memory)
− finite computing time

⇒ we neglect quantization errors
B Find an approximation HN : {f (λn)}N

n=1 7→ f̃N such that

lim
N→∞

∥∥∥f̃ − f̃N
∥∥∥

∞

= lim
N→∞

∥∥∥f̃ −HN f
∥∥∥

∞

= lim
N→∞

max
t∈T

∣∣∣̃f (t)− (HN f )(t)
∣∣∣= 0 for all f ∈B .
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Calculation on Digital Computers – Illustration
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Calculation on Digital Computers – Illustration

A linear approximation procedure

Sampling set: ΛN =
{

λN,n =
(2n−N

N

)
π : n = 0,1,2, . . . ,N−1

}
Operators: (HN f )(t) = ∑

N−1
n=0 f (λN,n)DN(t−λN,n)

Interpolation kernel: DN(t) = 2
N ∑

N/2−1
n=1 sin(nt)
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1. Example of a Hilbert Transform Approximation
B For every N ∈ N, we define the equidistant sampling set

ΛN =
{

λN,n = 2n−N
N π : n = 0,1, . . . ,N−1

}
.

B We know that

f̃ (t) =
(
Hf
)
(t) =−i

∞

∑
n=−∞

sgn(n)cn(f )eint with cn(f ) =
1

2π

∫
π

−π

f (τ)e−inτ dτ

B We approximate f̃ by its partial conjugate Fourier series(
HN f

)
(t) =−i

N/2−1

∑
n=−(N/2−1)

sgn(n)cN,n(f )eint

and exchange the exact Fourier coefficients cn(f ) for approximations cN,n(f ), obtained by replacing
the integral in the formula for the Fourier coefficients with the left Riemann sum with nodes ΛN .

cn(f ) =
1

2π

∫
π

−π

f (τ)e−inτ dτ 7→ cN,n(f ) = 1
N

N−1

∑
k=0

f
(
λN,k)einλN,k

B This yields the approximation operator(
HN f

)
(t) =

N−1

∑
n=0

f
(
λN,n

)
DN
(
t−λN,n

)
with kernel DN(t) =

2
N

N/2−1

∑
n=1

sin(n t) .
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Example 2: Calculation via Linear Interpolation

Sampling set: ΛN = {λN,n}N−1
n=0

Interpolation: (IN f )(t) = ∑
N−1
n=0 f (λN,n)hN(t−λN,n)

Operators: (HN f )(t) = ∑
N−1
n=0 f (λN,n) h̃N(t−λN,n)
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Variations of the Previous Examples
To obtain other approximation operators {HN}N∈N, the previous two examples can be varied in
different ways:

1. Approximation by Fourier series

(
HN f

)
(t) =−i

N/2−1

∑
n=−(N/2−1)

sgn(n)cN,n(f )eint with cN,n(f ) = 1
N

N−1

∑
k=0

f
(
λN,k)einλN,k

B Consider non-equidistant sampling sets
B Use different numerical integration methods (trapezoidal rule, Newton–Cotes formulas, etc.)
B Consider other summation formulas (Cesaro, Fejér, etc.)

2. Linear Interpolation
(
HN f

)
(t) = (HIN t) (t)

B Consider non-equidistant sampling sets
B Apply other interpolation methods IN , e.g. higher order splines

All these linear methods will have the form

(HN f )(t) = ∑
λ∈ΛN

f (λ )κN(t−λ )
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Hilbert Transform Approximations – Design Goal

Hilbert Transform: f̃ (t) =
(
Hf
)
(t) = lim

ε→0

1
2π

∫
ε≤|t−τ|≤π

f (τ)

tan([t− τ]/2)
dτ , t ∈ [−π,π) .

B Design a sequence {ΛN}N∈N of sampling sets:

ΛN = {λN,1,λN,2, . . . ,λN,M} ⊂ T , N ∈ N .

B Design a sequence {HN}∞

N=1 of operators HN (each HN is concentrated on ΛN) such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= lim

N→∞
max

t∈[−π,π)

∣∣∣(HN f
)
(t)−

(
Hf
)
(t)
∣∣∣= 0 for all f ∈B ,

wherein B is our signal space (which has to be specified).

Questions
• Is this always possible?
• For which signal spaces B this is possible?
• Does there exists signal spaces for which this is impossible?
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Approach

1. We introduce a scale of Banach space
{
Bβ

}
β≥0 of continuous functions of finite energy.

− These are „good“ for the Hilbert transform.
− The parameter β ≥ 0 characterizes the energy concentration of the signals.

2. We introduce a class of sampling based Hilbert transform approximations {HN}N∈N.
− This class is characterizes by two simple axioms.
− This class contains basically all practically relevant Hilbert transform approximation methods.
− We consider linear and non-linear methods.

3. Divergence results for the spaces Bβ with β ≤ 1.
− For these spaces, there exists no Hilbert transform approximation in the class Bβ .

4. Convergence results for spaces Bβ with β > 1.
− For these spaces, there always exist a Hilbert transform approximation in the class.
− Simple examples of convergent methods can be found.

5. Application: Calculating the Hilbert transform on Turing machines.
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A Family of Signal Spaces
with Energy Concentration
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Motivation 1: Spaces of Smooth Functions
Space of all continuous functions f ∈ C (T) with a continuous conjugate f̃

B :=
{

f ∈ C (T) : f̃ = Hf ∈ C (T)
}

with norm ‖f‖B = max
(
‖f‖

∞
,‖Hf‖

∞

)
• Sampling operator f 7→ {f (λ ) : Λ ∈ ΛN} is well defined.
• The Hilbert transform H : B→B is well defined and bounded.

There does not exist any linear sampling based algorithm which is able to approximate the
Hilbert transform on B!

⇒ Consider subspaces of B.

⇒ Consider non linear approximation methods.

I H. Boche, V. Pohl, “On the Calculation of the Hilbert Transform from Interpolated Data,” IEEE Trans. Inf. Theory, vol. 54, no. 5 (May 2008).
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Motivation 2: Spaces of Smooth Functions
For sufficiently smooth functions, there are standard procedures to obtain the desired sequences
{HN}N∈N of linear Hilbert transform approximations:

B-spline interpolation + Hilbert transform
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Motivation 2: Spaces of Smooth Functions
B Assume f belongs to a Sobolev space Hs(T) = W s,2(T) with s > 1/2.

‖f‖Hs(T) =
(

∑
∞
n=1 n2s

[
|an(f )|2 + |bn|2

])1/2

B Sobolev embedding shows that f is Hölder continuous of index 0 < α < s−1/2, i.e. f ∈ C α(T).

B Assume ΛN = {λ1, . . . ,λN} is a sampling set with mesh size rN = minn 6=m |λn−λm|.
B There is a unique interpolating function fN which is continuous, piecewise linear, and which

satisfies
fN(λn) = (IN f )(λn) = f (λn) for all λn ∈ ΛN .

B Since f ∈ C α(T) it follows that for all 0 < α ′ < α

‖f − fN‖C α ′(T)→ 0 as rN → 0 .

B Since H : C α ′(T)→ C (T) is known to be bounded, we set f̃N = HfN and obtain∥∥f̃N− f̃
∥∥

∞
= ‖H(fN− f )‖

∞
≤ ‖H‖ ‖f − fN‖C α ′(T)→ 0 as rN → 0 .

Remark
• Procedure fails for s ≤ 1/2 because Sobolev embedding yields no longer Hölder continuity.
• Is this failure a particular property of the above procedure?⇒ Consider spaces close to H1/2(T).
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Sobolev-like Banach Spaces
B Space of all continuous functions f ∈ C (T) with a continuous conjugate f̃

B :=
{

f ∈ C (T) : f̃ = Hf ∈ C (T)
}

with norm ‖f‖B = max
(
‖f‖

∞
,‖Hf‖

∞

)
B For any f ∈B, we consider the trigonometric series

f (t) =
a0(f )

2
+

∞

∑
n=1

an(f ) cos(nt) + bn(f ) sin(nt) with
an(f ) = 1

π

∫
T f (τ) cos(nτ)dτ

bn(f ) = 1
π

∫
T f (τ) sin(nτ)dτ

B For β ≥ 0, we define the seminorm

‖f‖
β

=

(
∞

∑
n=1

n (1 + log n)β
[
|an(f )|2 + |bn(f )|2

])1/2

B For any β ≥ 0, we introduce the Banach space

Bβ =
{

f ∈B : ‖f‖
β
< ∞

}
with norm

∥∥f
∥∥

Bβ

= max
(∥∥f
∥∥

∞
,
∥∥f̃
∥∥

∞
,
∥∥f
∥∥

β

)
.
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Our Scale of Signal Spaces – Properties
For β ≥ 0 we consider the Banach spaces

Bβ =

{
f ∈B : ‖f‖2

β
=

∞

∑
n=1

n (1 + log n)β
[
|an(f )|2 + |bn(f )|2

]
< ∞

}
.

B Each Bβ is a Banach space

B Every f ∈Bβ is continuous with a continuous conjugate

B Bβ ⊂ L2(T)

B Every f ∈Bβ has finite Dirichlet energy (cf. next slide)

B Bβ2
⊂Bβ1

⊂B0 ⊂B ⊂ C (T) for all β2 > β1 > 0.

B The parameter β ≥ 0 characterizes the smoothness of the functions.

B β ≥ 0 characterizes how fast the Fourier coefficients converges to zero as n→ ∞.

B The seminorm ‖·‖0 corresponds to the norm in the critical Sobolev space H1/2(T), i.e.

B0 = B∩H1/2(T)

B H1/2(T) is of fundamental importance in quantum information theory for Gaussian channels.

I A. S. Holevo, “The classical capacity of quantum Gaussian gauge-covariant channels: Beyond i.i.d.,” IEEE Inf. Theory Soc. Newsletter, 66 (4) (2016) 3–6,
Extension of the Shannon Lecture at ISIT 2016, Barcelona, Spain.
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Relation to the Dirichlet Problem
Dirichlet Problem on the Unit Circle
Let f be a given function on the unit circle T = {z ∈ C : |z|= 1}. We look for an u inside the unit circle
D = {z ∈ C : |z|< 1} such that

1.
∂ 2u
∂x2 (z) +

∂ 2u
∂y2 (z) =

(
∆u
)
(z) = 0 for all z = x + iy ∈ D

2. u(eit) = f (t) for all t ∈ T = [−π,π)

Dirichlet’s Principle
The solution of the Dirichlet problem can be obtained by minimizing the
Dirichlet energy

D(u) =
1

2π

∫∫
D

∥∥(gradu)(z)
∥∥2
R2 dz =

∞

∑
n=−∞

|n| |cn(f )|2 =
∥∥f
∥∥2

H1/2

∆u = 0

f (eiθ )

• The boundary function of solutions of the Dirichlet problem belongs to the Sobolev space H1/2(T).

• If f is additionally in B then f ∈B0.
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Linear Approximation Operators
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A Class of Hilbert Transform Approximations
We consider sequences {HN}N∈N of bounded linear operators HN : Bβ → C (T) which satisfy the
following two axioms:

(A) Concentration on a sampling set:
To every N ∈ N there exists a finite set ΛN = {λN,n : n = 1, . . . ,MN} ⊂ T such that for all f1, f2 ∈B

f1(λN,n) = f2(λN,n) for all λN,n ∈ ΛN

implies
(
HN f1

)
(t) =

(
HN f2

)
(t) for all t ∈ T .

(B) Convergence on a dense subset of B:
There exists a dense subset M ⊂Bβ such that

lim
N→∞
‖HN f −Hf‖

∞
= 0 for all f ∈M .

Remark:
If {HN}N∈N satisfies Axiom (A) then each HN has the form

(
HN f )(t) =

MN

∑
n=1

f (λN,n)κN,n(t) with {κN,1,κN,2, . . . ,κN,MN} ⊂Bβ .
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Divergence Results for 0≤ β ≤ 1

Theorem: Let β ∈ [0,1] be arbitrary, and let H = {HN}N∈N be a sequence of bounded linear operators
HN : Bβ → C (T) satisfying Axioms (A), (B). Then

Rβ (H) =
{

f ∈Bβ : limsupN→∞‖HN f‖
∞

= +∞
}

is a residual set (a non-meager and dense subset) in Bβ .

By the uniform boundedness principle for linear operators, one obtains:

Corollary: limN→∞

∥∥HN
∥∥

Bβ→C (T)
= +∞.

Corollary: Let 0≤ β ≤ 1 be arbitrary and let H = {HN}N∈N be a sequence of bounded linear operators
HN : Bβ → C (T) which satisfies Axiom (A). Then there exists a residual set Rβ (H)⊂Bβ such that

limsup
N→∞

∥∥HN f∗−Hf∗
∥∥

∞
> 0 , for all f ∈Rβ (H) .

Corollary: There is no sequence {HN}N∈N of bounded linear operators HN : Bβ → C (T) which can
be implemented on an idealized digital computer and which approximates the Hilbert transform Hf for
every f ∈Bβ with 0≤ β ≤ 1.

I H. Boche, V. Pohl, “Calculating the Hilbert transform on spaces with energy concentration: Convergence and divergence regions” IEEE Trans. Inf. Theory, (2018), in Press.
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Proof – Interpolation Lemma

Lemma: Let 0≤ β ≤ 1 and 0 < ε < 1 be arbitrary and let Λ = {λ1, . . . ,λN} ⊂ T be a finite sampling
set. To every g ∈ C (T) there exists a f ∈Bβ which solves the interpolation problem

f (λn) = g(λn) for all n = 1, . . . ,N ,

and such that ‖f‖Bβ
≤
(
1 + ε

)
‖g‖

∞
.

Remark: Note that we have to control
∥∥f
∥∥

∞
,
∥∥f̃
∥∥

∞
, and

∥∥f
∥∥

β
of the interpolating function.

B So we can extend the operators HN : Bβ → C (T) to operators HN : C (T)→ C (T).
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Proof – Main Ideas
B Assume the Theorem would be wrong⇒ Operator norms would be uniformly bounded

‖HN‖Bβ→C (T) ≤ C < ∞ for all N ∈ N .

B The interpolation lemma shows that the operators HN : Bβ → C (T) can be extendet to operators
HN : C (T)→ C (T) and we have

‖HN‖C (T)→C (T) = sup
g∈C (T)

‖HNg‖
∞

‖g‖
∞

≤ (1 + ε) sup
f∈Bβ

‖HN f‖
∞

‖f‖Bβ

= (1 + ε)‖HN‖Bβ→C (T)

B Together with Axiom (B), it would follow that ‖H‖C (T)→C (T) ≤ (1 + ε)C ⇒ Contradiction!

pL(t) = ∑
L
k=1

1
k sin(kt) p̃L(t) = ∑

L
k=1

1
k cos(kt)
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Spaces with Convergent Approximation Methods

Theorem: For any β > 1 there exit sequences {HN}N∈N of bounded linear operators HN : B→ C (T)

satisfying Axioms (A) and (B) and such that

lim
N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈Bβ .

B If the energy of the signals is sufficiently concentrated then there always exist sampling based
approximation methods which converges for all signals in the space Bβ with β > 1.

B Theorem can be proven by constructing a particular convergent approximation method (cf.
motivating example).
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Characterization of Convergent Method

Theorem: Let β > 1 and let {HN}N∈N be a sequence of bounded linear operators HN : B→ C (T)

such that

1. For every n ∈ N holds

lim
N→∞

∥∥HN [cos(n ·)]− sin(n ·)
∥∥

∞
= 0 and lim

N→∞

∥∥HN [sin(n ·)] + cos(n ·)
∥∥

∞
= 0 .

2. There exists a constant C such that for every n ∈ N

max
(∥∥HN [cos(n·)]

∥∥
∞
,
∥∥HN [sin(n·)]

∥∥
∞

)
≤ C for all N ∈ N .

Then one has
lim

N→∞

∥∥HN f −Hf
∥∥

∞
= 0 for all f ∈Bβ .

Thus, if an approximation method {HN}N∈N
B converges for the sine- and cosine functions (i.e. for the pure frequencies), and

B if the approximations of the pure frequencies are uniformly bounded

then the method {HN}N∈N converges for all f ∈Bβ with β > 1.
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A Convergent Hilbert Transform Approximation

We consider again the sequence {DN}N∈N of the sampled conjugate Fourier series from the beginning

(
DN f

)
(t) =−i

N−1

∑
n=−(N−1)

sgn(n)cN,n(f )eint =
2N−1

∑
k=0

f
(
λN,k

)
DN

(
t−k

π

N

)
,

with the conjugate Dirichlet kernel DN(t) = 1
N ∑

N−1
n=1 sin(n t) and which is concentrated on the

equidistant sampling sets
ΛN =

{
λN,k = k π

N : k = 0,1, . . . ,2N−1
}
.

It is fairly easy to show that this sequence {DN}N∈N

B satisfies Axioms (A) and (B)

B has the two properties of the previous theorem which characterized all convergent methods

and so, we have
lim

N→∞

∥∥DN f −Hf
∥∥

∞
= 0 for all f ∈Bβ with β > 1 .
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Remarks
B So even on the important space B0 = H1/2(T)∩B of functions with finite Dirichlet energy there

exists no linear, sampling based approximation methods {HN}N∈N.

B Not only the initially given approximation procedure (based on linear interpolation and Sobolev
embedding) fails, but every sampling based method fails on the spaces Bβ with 0≤ β ≤ 1.

B The transition between spaces on which no approximation method exists to spaces where such
methods exist is slightly off the critical space B0 = H1/2(T)∩B from the initial example.
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Nonlinear Approximation Operators
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Nonlinear Approximation Methods
B We replace the sequence {HN}N∈N of bounded linear operators HN : Bβ → C (T) by sequences
{ΨN}N∈N of arbitrary, not necessarily linear, operators.

B With every operator ΨN : Bβ → C (T), we associate the functional

ΦN(f ) = ‖ΨN(f )‖
∞
.

B We require that these functionals are lower semicontinuous.

Definition: Let Φ : Bβ → R+ be a functional on a Banach space Bβ .
One says that Φ is lower semicontinuous if for every λ ≥ 0

{f ∈B : Φ(f )≤ λ}

is a closed set.
We write LCS(Bβ ,R+) for the set of all lower semicontinuous functionals Φ : Bβ → R+.
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Nonlinear Approximations – Axiomatic
Let 0≤ β ≤ 1 be arbitrary and let ΨΨΨ = {ΨN}N∈N be a sequence of mappings ΨN : Bβ → C (T) with
the associated functionals ΦN(f ) = ‖ΨN(f )‖

∞
. We say that ΨΨΨ satisfies Axiom

(A) Concentration on a discrete sampling set
if {ΦN}N∈N ⊂ LSC(Bβ ,R+) and if for every N ∈ N there exists a finite subset ΛN ⊂ T such that for
arbitrary f1, f2 ∈Bβ

f1(λn) = f2(λn) for all λn ∈ ΛN

implies
(
ΨN f1

)
(t) =

(
ΨN f2

)
(t) for all t ∈ T .

(B) Convergence on a dense subset
if there exists a dense subset M ⊂Bβ such that

lim
N→∞
‖ΨN(f )−Hf‖

∞
= 0 for all f ∈M .

B Axiom (A) requires basically that the approximation f̃N = ΨN(f ) is uniquely determined by the
values of f on the finite sampling set ΛN ⊂ T.

B Axioms (B) describe {ΨN}N∈N as a sequence which approximates the Hilbert transform.

B Note that the set M has no linear structure, in general.
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Nonlinear Approximations – Divergence Result

Theorem: Let 0≤ β ≤ 1 be arbitrary and let ΨΨΨ = {ΨN}N∈N be a sequence of mappings
ΨN : Bβ → C (T) which satisfies Axioms (A) and (B). Then

Rβ (ΨΨΨ) =

{
f ∈Bβ : limsup

N→∞

∥∥ΨN(f )
∥∥

∞
= +∞

}
is a residual set in Bβ .

Corollary: Let 0≤ β ≤ 1 be arbitrary and let ΨΨΨ = {ΨN}N∈N be a sequence of operators
ΨN : Bβ → C (T) which satisfies Axiom (A) and let

Dβ (ΨΨΨ) =
{

f ∈Bβ : limsupN→∞

∥∥ΨN(f )−Hf
∥∥

∞
> 0
}
. (3)

be the divergence set associated with ΨΨΨ. Then for Dβ (ΨΨΨ) holds at least one of the following two
statements:

• Dβ (ΨΨΨ)
Bβ = Bβ

• Dβ (ΨΨΨ) contains an open ball from Bβ .
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Proof Ingredients
1. The interpolation lemma for Bβ .

2. A generalization of the uniform boundedness principle.

Lemma (Generalized uniform boundedness principle):
Let X be a Banach space and let ΦΦΦ⊂ LSC(X ,R+) be a family of functionals on X such that there
exists a set K ⊂X of second category so that

sup
ϕ∈ΦΦΦ

ϕ(f ) = M(f ) < +∞ for all f ∈ K .

Then there exist an MΦΦΦ < ∞, an f0 ∈X , and a δ > 0 such that for all f ∈ Bδ (f0,X ) always

ϕ(f )≤MΦΦΦ for all ϕ ∈ ΦΦΦ ,

where Bδ (f0,B) = {f ∈X : ‖f − f0‖X < δ}.
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Application: Turing Computable Approximations
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Structure of non-linear Approximation Methods

Definition: We write O(M) for the set of all functions F : RM×T→ R such that for every x ∈ RM

• F (x; ·) ∈ C (T)

• G(x) = ‖F (x; ·)‖
∞

is a lower semicontinuous functional.

B We show that each (non-linear) mapping ΨN in our approximation methods ΨΨΨ = {ΨN}N∈N is
characterized by a function in the class O(M).

Lemma: A sequence ΨΨΨ = {ΨN}N∈N of mappings ΨN : Bβ → C (T) satisfies Axiom (A) if and only if to
every N ∈ N there exists an M = M(N) ∈ N and a function FN ∈ O(M) such that for all f ∈Bβ always(

ΨN f
)
(t) = FN

(
f (tN,1), . . . , f (tM,N) ; t

)
, t ∈ T .

B We require next that the functions FN are Turing computable.
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Computability

Definition (Computable vectors):
Let x ∈ RM be an M-dimensional real vector.

1. A sequence {xn}n∈N ⊂QM of rational vectors is said to be a rapidly converging Cauchy name of
x, if xn converges rapidly to x in the following sense: For all n,m ∈ N with m > n, we have
‖xm−xn‖RM ≤ 2−n.

2. The vector x is said to be computable, if there exists a rapidly converging Cauchy name of x.

3. We write RM
c for the set of all commutable vectors in RM .

Definition (Computable Function):
We call F : RM

c → Rc a computable function if there is an algorithm that transforms each rapidly
converging Cauchy name of an arbitrary x ∈ RM

c into a rapidly converging Cauchy name of F (x).
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Computable Approximations – Definitions

Definition (Computable approximation method):
Let ΨΨΨ = {ΨN}N∈N be a sequence of mappings Bβ → C (T). We call ΨΨΨ a computable approximation
method if to every N ∈ N there exists

• an M = M(N) ∈ N,

• a finite sampling set ΛN =
{

λN,1,λN,2, . . . ,λN,M(N)

}
⊂ T,

• a computable function FN ∈ O(M)

such that for all f ∈Bβ(
ΨN f

)
(t) = FN

(
f (λN,1), f (λN,2), . . . , f (λN,M(N)); t

)
for all t ∈ T .
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No-Go for Computable Approximations

Theorem: Let 0≤ β ≤ 1 be arbitrary and let ΨΨΨ = {ΨN}N∈N be a sampling based computable
approximation method such that there exists a dense subset M ⊂Bβ so that

lim
N→∞

∥∥ΨN(f )−Hf
∥∥

∞
= 0 for all f ∈M ,

then {
f ∈Bβ : limsupN→∞‖ΨN(f )‖

∞
= +∞

}
is a residual set in Bβ .

Corollary: Let 0≤ β ≤ 1 be arbitrary and let ΨΨΨ = {ΨN}N∈N be a sampling based computable
approximation method which satisfies the conditions of the previous Theorem. Then there always
exists an f∗ ∈Bβ such that

lim
N→∞

∥∥ΨN(f∗)−Hf∗
∥∥

∞
> 0 .

I H. Boche, V. Pohl, “Investigations on the approximability and computability of the Hilbert transform with applications,” Appl. Comput. Harmon. Anal., (2017),
submitted for publ.
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Summary and Outlook

B We introduced a scale of Banach spaces Bβ , β ≥ 0 of functions
− which are continuous with a continuous conjugate
− with finite (Dirichlet) energy
− with energy concentration characterized by β

B In the scale
{
Bβ

}
β≥0, we characterized precisely those spaces on which

− there do not exist sampling based Hilbert transform approximations: β ∈ [0,1]
− there do exist sampling based Hilbert transform approximations: β > 1.
− nonlinear approximations give no improvement (with respect to this divergence behavior) over

linear approximation operators.

B For β > 1 even very simple linear approximation methods (sampled conjugate Fourier series)
converge for all f ∈Bβ .

Outlook
B Other operators: Fourier series approximation, spectral factorization, Wiener filter, etc.
B (Turing) Computability of these operators.
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Thank You! – Questions?
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