

On the Computability of the Hilbert Transform

Volker Pohl

Technische Universität München Department of Electrical and Computer Engineering Chair of Theoretical Information Technology

August 28, 2018

Tun Uhrenturm

Outline

- 1. What is the Hilbert transform?
- 2. Why it is important?
- 3. How to calculate the Hilbert transform?
- 4. Our approach to investigate the computability of the Hilbert transform
 - Signal spaces of finite energy $\{\mathscr{B}_{\beta}\}_{\beta>1}$
 - Axiomatic for approximation operators
- 5. Main Results: Regions of Divergence and Convergence
- 6. Turing computability
- 7. Outlook

What is the Hilbert transform?

The Hilbert Transform

▷ We consider continuous functions *f* on $\mathbb{T} = [-\pi, \pi]$ with $f(-\pi) = f(\pi)$.

▷ Assume *f* can be represented by its Fourier series

$$f(t) = \sum_{n = -\infty}^{\infty} c_n(t) e^{int} \quad \text{with Fourier coefficients} \quad c_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau) e^{-in\tau} d\tau.$$

 \triangleright Its harmonic *conjugate* \tilde{f} is given by

$$\widetilde{f}(t) = (Hf)(t) = -i \sum_{n=-\infty}^{\infty} sgn(n) c_n(f) e^{int} \quad \text{with} \quad sgn(n) = \begin{cases} -1 : n < 0 \\ 0 : n = 0 \\ 1 : n > 0 \end{cases}$$

such that

$$F(t) = f(t) + i\tilde{f}(t) = c_0(f) + 2\sum_{n=1}^{\infty} c_n(f)e^{int} = \sum_{n=0}^{\infty} c_n(F)e^{int}$$

i.e. such that

$$c_n(F) = c_n(f + \mathrm{i}\widetilde{f}) = 0$$
 for all $n < 0$.

▷ The mapping $H : f \mapsto \tilde{f}$ is called *Hilbert transform*.

The Hilbert Transform – Illustration

The Hilbert Transform – Closed Form

So the Hilbert transform is the mapping

$$\begin{array}{lll} \mathrm{H} & : & f & \mapsto & \widetilde{f} \\ \mathrm{H} & : & \sum_{n \in \mathbb{Z}} c_n(f) \mathrm{e}^{\mathrm{i}nt} & \mapsto & -\mathrm{i} \sum_{n \in \mathbb{Z}} \mathrm{sgn}(n) \, c_n(f) \mathrm{e}^{\mathrm{i}nt} \end{array}$$
(1)

with the Fourier coefficients

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau) e^{-in\tau} d\tau$$
 (2)

Inserting the Fourier coefficients (2) into (1), one obtains a closed form expression for H : $f \mapsto \tilde{f}$

$$\widetilde{f}(t) = (\mathrm{H}f)(t) = \lim_{\varepsilon \to 0} \frac{1}{2\pi} \int_{\varepsilon \le |t-\tau| \le \pi} \frac{f(\tau)}{\tan([t-\tau]/2)} \mathrm{d}\tau , \qquad t \in \mathbb{T} = [-\pi,\pi] .$$
(HT)

The Hilbert Transform – Trigonometric Form

▷ Assume *f* can be represented by its Fourier series

$$f(t) = \sum_{n=-\infty}^{\infty} c_n(t) e^{int}$$
 with Fourier coefficients

$$c_n(f) = rac{1}{2\pi} \int_{\mathbb{T}} f(\tau) \mathrm{e}^{-\mathrm{i}n\tau} \mathrm{d} au$$

 \triangleright The Fourier series of *f* can be written equivalently as

$$f(t) = \frac{a_0(f)}{2} + \sum_{n=1}^{\infty} a_n(f) \cos(nt) + b_n(f) \sin(nt) .$$

with the Fourier coefficients

$$a_n(f) = \frac{1}{\pi} \int_{\mathbb{T}} f(t) \cos(nt) dt$$
 and $b_n(f) = \frac{1}{\pi} \int_{\mathbb{T}} f(t) \sin(nt) dt$.

▷ Then its harmonic conjugate is given by

$$\widetilde{f}(t) = (\mathrm{H}f)(t) = \sum_{n=1}^{\infty} a_n(f) \sin(nt) - b_n(f) \cos(nt)$$
.

Why the Hilbert transform is important?

Hilbert Transform and Causality

- \triangleright The Hilbert transform is closely related to "causality".
- \triangleright Therefore, it plays an important role in science and engineering.
- ▷ In physics, it is also known as Kramers-Kronig relation.

Hardy spaces - Spaces of "causal functions"

- For $1 \le p < \infty$, let $L^{P}(\mathbb{T})$ be the usual spaces of *p*-integrable functions on \mathbb{T} .
- For every $f \in L^p(\mathbb{T})$ its Fourier coefficients $c_n(f)$, $n = 0, \pm 1, \pm 2, ...$ are well defined
- Define the "causal subspaces"

$$\mathscr{H}^p = \{ f \in L^p(\mathbb{T}) : c_n(f) = 0 \text{ for all } n < 0 \}$$

- \triangleright Let $f \in \mathscr{H}^p$ be arbitrary and write $f(t) = u(t) + iv(t) = |f(t)| e^{i\varphi(t)}$
- ▷ By the definition of the Hilbert transform, we have

$$v(t) = (Hu)(t)$$
Kramers-Kronig relation $\phi(t) = H(\log |f(t)|)$ Phase retrieval

V. Pohl, N. Li, H. Boche, "Phase Retrieval in Spaces of Analytic Functions on the Unit Disk," *SampTA 2017*.
 Volker Pohl (TUM) | On the possibility of calculating the Hilbert Transform on digital computers

Example – Causal Linear Systems

 \triangleright Input-output relation of a linear system S

$$y_n = \sum_{k=0}^{\infty} c_k x_{n-k} , \qquad n \in \mathbb{Z}$$

Input sequence: $\{x_n\}_{n \in \mathbb{Z}} \subset \mathbb{C}$ Output sequence: $\{y_n\}_{n \in \mathbb{Z}} \subset \mathbb{C}$ Impulse response of S: $\{c_n\}_{n \in \mathbb{Z}} \subset \mathbb{C}$

 $\triangleright c_k = 0$ for all k < 0

- \Rightarrow the output y_n depends only on the past input symbols $\{x_n, x_{n-1}, x_{n-2}, ...\}$
- \Rightarrow *S* is a causal system.

> Take discrete-time Fourier transform (DTFT) of the input-output relation yields

$$Y(\omega)=\mathcal{C}(\omega)\,X(\omega)\,,\qquad\omega\in[-\pi,\pi)$$

with the *transfer function* $C(\omega)$ of *S*

$$C(\omega) = \sum_{k=0}^{\infty} c_k e^{ik\omega}$$

▷ Because *S* is causal, we have $C \in \mathscr{H}^p$ and therefore

 $\Im [C(\omega)] = H(\Re [C(\omega)])$ and $\arg [C(\omega)] = H(\log |C(\omega)|)$.

- So $C(\omega)$ is already uniquely determined by its real part $\Re[C(\omega)]$ or by its amplitude $|C(\omega)|$.

The corresponding imaginary part or phase can be calculated using the Hilbert transform.
 Volker Pohl (TUM) | On the possibility of calculating the Hilbert Transform on digital computers

Applications and Properties

Applications

- Phase retrieval
- ▷ Prediction and estimation of stationary time series spectral factorization.
 - Let $\mathbf{x} = \{x_n\}_{n=-\infty}^{\infty}$ be a w.s.s. stochastic process with spectral density $\Phi_{\mathbf{x}} \in L^1(\mathbb{T})$.
 - We want to have a linear estimate of future values based on past observations

$$\widehat{x}_{n+\tau} = \sum_{k=0}^{\infty} c_k x_{n-k}$$
, $\tau = 1, 2, \dots$

- The transfer function $C(\omega)$ of the optimal (MMSE) filter is determined by the spectral factor $\Phi_{\mathbf{x}}^+$.
- The mapping $\Phi_{\mathbf{x}} \rightarrow \Phi_{\mathbf{x}}^+$ involves the Hilbert transform (Kolmogorov or ceptral method).
- ▷ Solution of the Kardion, Quanteninformation theory, etc.

Properties

- ▷ Hilbert transform is a bounded mapping $H: L^{p}(\mathbb{T}) \to L^{p}(\mathbb{T})$, 1 .
- \triangleright The Hilbert transform is a bounded mapping $H: L^{\infty}(\mathbb{T}) \to BMO$.
- $\, \triangleright \, \operatorname{H}: \mathscr{C}(\mathbb{T}) \to \mathscr{C}(\mathbb{T}) \text{ is not bounded but } \operatorname{H}: \mathscr{C}^{\alpha}(\mathbb{T}) \to \mathscr{C}(\mathbb{T}) \text{ is bounded}.$
- ▷ For $f \in \mathscr{C}(\mathbb{T})$, we have $\tilde{f} = Hf \in L^p(\mathbb{T})$ for every $1 \leq p < \infty$ but $\tilde{f} = Hf \notin \mathscr{C}(\mathbb{T})$, in general.

How to calculate the Hilbert transform?

Calculation on Analog Computers

There do exist analog computers for calculating the Hilbert transform.

Example (Hilbert Transformation with a 4*f* imaging system)

Calculation on Digital Computers

We want calculate numerically the Hilbert transform of a given $f \in \mathscr{B} = \left\{ f \in \mathscr{C}(\mathbb{T}) : \widetilde{f} \in \mathscr{C}(\mathbb{T}) \right\}$

$$\widetilde{f}(t) = (\mathrm{H}f)(t) = \lim_{\varepsilon \to 0} \frac{1}{2\pi} \int_{\substack{\varepsilon \le |t-\tau| \le \pi}} \frac{f(\tau)}{\tan([t-\tau]/2)} \mathrm{d}\tau , \qquad t \in \mathbb{T} = [-\pi,\pi] .$$
(HT)

Challenges

- \triangleright Singular integral kernel \Rightarrow principal value integral in (HT)
- ▷ Calculation on digital computers

 \Rightarrow calculation of (HT) has to be based on finitely many samples of the function *f*:

$$\left\{f(\lambda_n): n=1,2,\ldots,N\right\}$$

- finite storage (memory)
- finite computing time
- \Rightarrow we neglect quantization errors

▷ Find an approximation $H_N : {f(\lambda_n)}_{n=1}^N \mapsto \widetilde{f}_N$ such that

$$\lim_{N\to\infty} \left\|\widetilde{f}-\widetilde{f}_{N}\right\|_{\infty} = \lim_{N\to\infty} \left\|\widetilde{f}-\mathrm{H}_{N}f\right\|_{\infty} = \lim_{N\to\infty} \max_{t\in\mathbb{T}} \left|\widetilde{f}(t)-(\mathrm{H}_{N}f)(t)\right| = 0 \quad \text{for all } f\in\mathscr{B}.$$

Sampling set:
$$\Lambda_N = \left\{ \lambda_{N,n} = \left(\frac{2n-N}{N} \right) \pi : n = 0, 1, 2, ..., N-1 \right\}$$

Operators: $(H_N f)(t) = \sum_{n=0}^{N-1} f(\lambda_{N,n}) \mathscr{D}_N(t - \lambda_{N,n})$
Interpolation kernel: $\mathscr{D}_N(t) = \frac{2}{N} \sum_{n=1}^{N/2-1} \sin(nt)$

Sampling set:
$$\Lambda_N = \left\{ \lambda_{N,n} = \left(\frac{2n-N}{N} \right) \pi : n = 0, 1, 2, ..., N-1 \right\}$$

Operators: $(H_N f)(t) = \sum_{n=0}^{N-1} f(\lambda_{N,n}) \mathscr{D}_N(t - \lambda_{N,n})$
Interpolation kernel: $\mathscr{D}_N(t) = \frac{2}{N} \sum_{n=1}^{N/2-1} \sin(nt)$

Sampling set:
$$\Lambda_N = \left\{ \lambda_{N,n} = \left(\frac{2n-N}{N} \right) \pi : n = 0, 1, 2, ..., N-1 \right\}$$

Operators: $(H_N f)(t) = \sum_{n=0}^{N-1} f(\lambda_{N,n}) \mathscr{D}_N(t - \lambda_{N,n})$
Interpolation kernel: $\mathscr{D}_N(t) = \frac{2}{N} \sum_{n=1}^{N/2-1} \sin(nt)$

Sampling set:
$$\Lambda_N = \left\{ \lambda_{N,n} = \left(\frac{2n-N}{N} \right) \pi : n = 0, 1, 2, \dots, N-1 \right\}$$
Operators: $(H_N f)(t) = \sum_{n=0}^{N-1} f(\lambda_{N,n}) \mathscr{D}_N(t - \lambda_{N,n})$ Interpolation kernel: $\mathscr{D}_N(t) = \frac{2}{N} \sum_{n=1}^{N/2-1} \sin(nt)$

Sampling set:
$$\Lambda_N = \left\{ \lambda_{N,n} = \left(\frac{2n-N}{N} \right) \pi : n = 0, 1, 2, \dots, N-1 \right\}$$
Operators: $(H_N f)(t) = \sum_{n=0}^{N-1} f(\lambda_{N,n}) \mathscr{D}_N(t - \lambda_{N,n})$ Interpolation kernel: $\mathscr{D}_N(t) = \frac{2}{N} \sum_{n=1}^{N/2-1} \sin(nt)$

Sampling set:
$$\Lambda_N = \left\{ \lambda_{N,n} = \left(\frac{2n-N}{N} \right) \pi : n = 0, 1, 2, \dots, N-1 \right\}$$
Operators: $(H_N f)(t) = \sum_{n=0}^{N-1} f(\lambda_{N,n}) \mathscr{D}_N(t - \lambda_{N,n})$ Interpolation kernel: $\mathscr{D}_N(t) = \frac{2}{N} \sum_{n=1}^{N/2-1} \sin(nt)$

1. Example of a Hilbert Transform Approximation

 \triangleright For every $N \in \mathbb{N}$, we define the equidistant sampling set

$$\Lambda_N = \left\{ \lambda_{N,n} = \frac{2n-N}{N}\pi : n = 0, 1, \dots, N-1 \right\}.$$

> We know that

$$\widetilde{f}(t) = (\mathrm{H}f)(t) = -\mathrm{i}\sum_{n=-\infty}^{\infty} \mathrm{sgn}(n) c_n(f) \mathrm{e}^{\mathrm{i}nt} \quad \text{with} \quad c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau) \mathrm{e}^{-\mathrm{i}n\tau} \mathrm{d}\tau$$

 \triangleright We approximate \tilde{f} by its partial conjugate Fourier series

$$(H_N f)(t) = -i \sum_{n=-(N/2-1)}^{N/2-1} \operatorname{sgn}(n) c_{N,n}(f) e^{int}$$

and exchange the exact Fourier coefficients $c_n(f)$ for approximations $c_{N,n}(f)$, obtained by replacing the integral in the formula for the Fourier coefficients with the left Riemann sum with nodes Λ_N .

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau) e^{-in\tau} d\tau \qquad \mapsto \qquad c_{N,n}(f) = \frac{1}{N} \sum_{k=0}^{N-1} f(\lambda_{N,k}) e^{in\lambda_{N,k}}$$

▷ This yields the approximation operator

$$(\mathbf{H}_N f)(t) = \sum_{n=0}^{N-1} f(\lambda_{N,n}) \mathscr{D}_N(t-\lambda_{N,n})$$
 with kernel $\mathscr{D}_N(t) = \frac{2}{N} \sum_{n=1}^{N/2-1} \sin(nt)$.

Variations of the Previous Examples

To obtain other approximation operators $\{H_N\}_{N\in\mathbb{N}}$, the previous two examples can be varied in different ways:

1. Approximation by Fourier series

$$(H_N f)(t) = -i \sum_{n=-(N/2-1)}^{N/2-1} \operatorname{sgn}(n) c_{N,n}(f) e^{int}$$
 with $c_{N,n}(f) = \frac{1}{N} \sum_{k=0}^{N-1} f(\lambda_{N,k}) e^{in\lambda_{N,k}}$

- ▷ Consider non-equidistant sampling sets
- ▷ Use different numerical integration methods (trapezoidal rule, Newton–Cotes formulas, etc.)
- ▷ Consider other summation formulas (Cesaro, Fejér, etc.)

2. Linear Interpolation $(H_N f)(t) = (HI_N t)(t)$

- Consider non-equidistant sampling sets
- \triangleright Apply other interpolation methods I_N, e.g. higher order splines

All these linear methods will have the form

$$(\mathbf{H}_N f)(t) = \sum_{\lambda \in \Lambda_N} f(\lambda) \kappa_N(t-\lambda)$$

Hilbert Transform Approximations – Design Goal

Hilbert Transform:
$$\widetilde{f}(t) = (\mathrm{H}f)(t) = \lim_{\epsilon \to 0} \frac{1}{2\pi} \int_{\substack{\epsilon \le |t-\tau| \le \pi}} \frac{f(\tau)}{\operatorname{tan}([t-\tau]/2)} \mathrm{d}\tau, \quad t \in [-\pi,\pi).$$

▷ Design a sequence $\{\Lambda_N\}_{N \in \mathbb{N}}$ of sampling sets:

$$\Lambda_{N} = \{\lambda_{N,1}, \lambda_{N,2}, \dots, \lambda_{N,M}\} \subset \mathbb{T} , \qquad N \in \mathbb{N} .$$

▷ Design a sequence $\{H_N\}_{N=1}^{\infty}$ of operators H_N (each H_N is concentrated on Λ_N) such that

$$\lim_{N\to\infty} \left\| \mathrm{H}_N f - \mathrm{H}f \right\|_{\infty} = \lim_{N\to\infty} \max_{t\in[-\pi,\pi)} \left| (\mathrm{H}_N f)(t) - (\mathrm{H}f)(t) \right| = 0 \quad \text{for all } f \in \mathscr{B} ,$$

wherein \mathcal{B} is our signal space (which has to be specified).

Questions

- Is this always possible?
- For which signal spaces \mathscr{B} this is possible?
- Does there exists signal spaces for which this is impossible?

ПΠ

Approach

- 1. We introduce a scale of Banach space $\{\mathscr{B}_{\beta}\}_{\beta>0}$ of continuous functions of finite energy.
 - These are "good" for the Hilbert transform.
 - The parameter $\beta \ge 0$ characterizes the energy concentration of the signals.
- 2. We introduce a class of sampling based Hilbert transform approximations $\{H_N\}_{N \in \mathbb{N}}$.
 - This class is characterizes by two simple axioms.
 - This class contains basically all practically relevant Hilbert transform approximation methods.
 - We consider linear and non-linear methods.
- 3. Divergence results for the spaces \mathscr{B}_{β} with $\beta \leq 1$.
 - For these spaces, there exists no Hilbert transform approximation in the class \mathscr{B}_{β} .
- 4. Convergence results for spaces \mathscr{B}_{β} with $\beta > 1$.
 - For these spaces, there always exist a Hilbert transform approximation in the class.
 - Simple examples of convergent methods can be found.
- 5. Application: Calculating the Hilbert transform on Turing machines.

A Family of Signal Spaces with Energy Concentration

ТШ

Motivation 1: Spaces of Smooth Functions

Space of all continuous functions $f \in \mathscr{C}(\mathbb{T})$ with a continuous conjugate \tilde{f}

 $\mathscr{B} := \left\{ f \in \mathscr{C}(\mathbb{T}) : \widetilde{f} = \mathrm{H}f \in \mathscr{C}(\mathbb{T}) \right\} \quad \text{with norm} \quad \|f\|_{\mathscr{B}} = \max\left(\|f\|_{\infty}, \|\mathrm{H}f\|_{\infty}\right)$

- Sampling operator $f \mapsto \{f(\lambda) : \Lambda \in \Lambda_N\}$ is well defined.
- The Hilbert transform $H:\mathscr{B}\to\mathscr{B}$ is well defined and bounded.

There does not exist any *linear* sampling based algorithm which is able to approximate the Hilbert transform on ℬ!

- \Rightarrow Consider subspaces of \mathscr{B} .
- \Rightarrow Consider *non linear* approximation methods.

▶ H. Boche, V. Pohl, "On the Calculation of the Hilbert Transform from Interpolated Data," *IEEE Trans. Inf. Theory*, vol. 54, no. 5 (May 2008).

Motivation 2: Spaces of Smooth Functions

For sufficiently smooth functions, there are standard procedures to obtain the desired sequences $\{H_N\}_{N\in\mathbb{N}}$ of linear Hilbert transform approximations:

B-spline interpolation + Hilbert transform

Motivation 2: Spaces of Smooth Functions

▷ Assume *f* belongs to a Sobolev space $H^{s}(\mathbb{T}) = W^{s,2}(\mathbb{T})$ with s > 1/2.

$$||f||_{H^{s}(\mathbb{T})} = \left(\sum_{n=1}^{\infty} n^{2s} \left[|a_{n}(f)|^{2} + |b_{n}|^{2}\right]\right)^{1/2}$$

▷ Sobolev embedding shows that *f* is *Hölder continuous* of index $0 < \alpha < s - 1/2$, i.e. $f \in \mathscr{C}^{\alpha}(\mathbb{T})$.

- ▷ Assume $\Lambda_N = \{\lambda_1, ..., \lambda_N\}$ is a sampling set with mesh size $r_N = \min_{n \neq m} |\lambda_n \lambda_m|$.
- > There is a unique interpolating function f_N which is continuous, piecewise linear, and which satisfies

$$f_N(\lambda_n) = (\mathrm{I}_N f)(\lambda_n) = f(\lambda_n) \qquad ext{for all } \lambda_n \in \Lambda_N \ .$$

 $\,\triangleright\,$ Since $f\in \mathscr{C}^{lpha}(\mathbb{T})$ it follows that for all 0<lpha'<lpha

$$\|f-f_N\|_{\mathscr{C}^{lpha'}(\mathbb{T})} o 0 \qquad \text{as} \qquad r_N o 0 \;.$$

▷ Since $H : \mathscr{C}^{\alpha'}(\mathbb{T}) \to \mathscr{C}(\mathbb{T})$ is known to be bounded, we set $\tilde{f}_N = H f_N$ and obtain

$$\left\|\widetilde{f}_{N}-\widetilde{f}\right\|_{\infty}=\left\|\mathrm{H}\left(f_{N}-f\right)\right\|_{\infty}\leq\left\|\mathrm{H}\right\|\left\|f-f_{N}\right\|_{\mathscr{C}^{\alpha'}(\mathbb{T})}\to0\qquad\text{as }r_{N}\to0\ .$$

Remark

- Procedure fails for $s \le 1/2$ because Sobolev embedding yields no longer Hölder continuity.
- Is this failure a particular property of the above procedure? \Rightarrow Consider spaces close to $H^{1/2}(\mathbb{T})$.

Sobolev-like Banach Spaces

 \triangleright Space of all continuous functions $f \in \mathscr{C}(\mathbb{T})$ with a continuous conjugate \widetilde{f}

 $\mathscr{B} := \left\{ f \in \mathscr{C}(\mathbb{T}) : \widetilde{f} = \mathrm{H}f \in \mathscr{C}(\mathbb{T}) \right\} \quad \text{with norm} \quad \|f\|_{\mathscr{B}} = \max\left(\|f\|_{\infty}, \|\mathrm{H}f\|_{\infty}\right)$

▷ For any $f \in \mathscr{B}$, we consider the trigonometric series

$$f(t) = \frac{a_0(f)}{2} + \sum_{n=1}^{\infty} a_n(f) \cos(nt) + b_n(f) \sin(nt) \quad \text{with}$$

$$a_n(f) = \frac{1}{\pi} \int_{\mathbb{T}} f(\tau) \cos(n\tau) \,\mathrm{d}\tau$$
$$b_n(f) = \frac{1}{\pi} \int_{\mathbb{T}} f(\tau) \sin(n\tau) \,\mathrm{d}\tau$$

 \triangleright For $\beta \geq$ 0, we define the seminorm

$$\|f\|_{\beta} = \left(\sum_{n=1}^{\infty} n(1+\log n)^{\beta} \left[|a_n(f)|^2 + |b_n(f)|^2 \right] \right)^{1/2}$$

 $\,\triangleright\,$ For any $eta\geq$ 0, we introduce the Banach space

$$\mathscr{B}_{\beta} = \left\{ f \in \mathscr{B} : \|f\|_{\beta} < \infty \right\} \quad \text{with norm} \quad \|f\|_{\mathscr{B}_{\beta}} = \max\left(\|f\|_{\infty}, \|\tilde{f}\|_{\infty}, \|f\|_{\beta} \right)$$

Our Scale of Signal Spaces – Properties

For $\beta \geq 0$ we consider the Banach spaces

$$\mathscr{B}_{\beta} = \left\{ f \in \mathscr{B} : \|f\|_{\beta}^2 = \sum_{n=1}^{\infty} n(1+\log n)^{\beta} \left[|a_n(f)|^2 + |b_n(f)|^2 \right] < \infty \right\}$$

- \triangleright Each \mathscr{B}_{β} is a Banach space
- ▷ Every $f \in \mathscr{B}_{\beta}$ is continuous with a continuous conjugate
- $\vartriangleright \ \mathscr{B}_{\beta} \subset L^{2}(\mathbb{T})$
- ▷ Every $f \in \mathscr{B}_{\beta}$ has finite Dirichlet energy (cf. next slide)
- $\triangleright \ \mathscr{B}_{\beta_2} \subset \mathscr{B}_{\beta_1} \subset \mathscr{B}_0 \subset \mathscr{B} \subset \mathscr{C}(\mathbb{T}) \text{ for all } \beta_2 > \beta_1 > 0.$
- \triangleright The parameter $\beta \ge 0$ characterizes the smoothness of the functions.
- ▷ $\beta \ge 0$ characterizes how fast the Fourier coefficients converges to zero as $n \to \infty$.
- ▷ The seminorm $\|\cdot\|_0$ corresponds to the norm in the critical Sobolev space $H^{1/2}(\mathbb{T})$, i.e.

$$\mathscr{B}_0 = \mathscr{B} \cap H^{1/2}(\mathbb{T})$$

 $> H^{1/2}(\mathbb{T})$ is of fundamental importance in quantum information theory for Gaussian channels.

A. S. Holevo, "The classical capacity of quantum Gaussian gauge-covariant channels: Beyond i.i.d.," IEEE Inf. Theory Soc. Newsletter, 66 (4) (2016) 3–6, Extension of the Shannon Lecture at ISIT 2016, Barcelona, Spain.

Relation to the Dirichlet Problem

Dirichlet Problem on the Unit Circle

Let *f* be a given function on the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. We look for an *u* inside the unit circle $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ such that

1.
$$\frac{\partial^2 u}{\partial x^2}(z) + \frac{\partial^2 u}{\partial y^2}(z) = (\Delta u)(z) = 0$$
 for all $z = x + iy \in \mathbb{D}$
2. $u(e^{it}) = f(t)$ for all $t \in \mathbb{T} = [-\pi, \pi]$

Dirichlet's Principle

The solution of the Dirichlet problem can be obtained by minimizing the Dirichlet energy

$$D(u) = \frac{1}{2\pi} \iint_{\mathbb{D}} \left\| (\operatorname{grad} u)(z) \right\|_{\mathbb{R}^2}^2 \mathrm{d}z = \sum_{n = -\infty}^{\infty} |n| |c_n(f)|^2 = \left\| f \right\|_{H^{1/2}}^2$$

- The boundary function of solutions of the Dirichlet problem belongs to the Sobolev space $H^{1/2}(\mathbb{T})$.
- If *f* is additionally in \mathscr{B} then $f \in \mathscr{B}_0$.

Linear Approximation Operators

A Class of Hilbert Transform Approximations

We consider sequences $\{H_N\}_{N \in \mathbb{N}}$ of bounded linear operators $H_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ which satisfy the following two axioms:

(A) Concentration on a sampling set:

To every $N \in \mathbb{N}$ there exists a finite set $\Lambda_N = \{\lambda_{N,n} : n = 1, \dots, M_N\} \subset \mathbb{T}$ such that for all $f_1, f_2 \in \mathscr{B}$

$$\begin{split} f_1(\lambda_{N,n}) &= f_2(\lambda_{N,n}) & \text{ for all } \lambda_{N,n} \in \Lambda_N \\ \text{implies } \big(\mathrm{H}_N f_1\big)(t) &= \big(\mathrm{H}_N f_2\big)(t) & \text{ for all } t \in \mathbb{T} \ . \end{split}$$

(B) Convergence on a dense subset of \mathcal{B} :

There exists a dense subset $\mathscr{M} \subset \mathscr{B}_{\beta}$ such that

$$\lim_{N\to\infty} \|\mathrm{H}_N f - \mathrm{H} f\|_{\infty} = 0 \qquad \text{for all } f \in \mathscr{M} \ .$$

Remark:

If $\{H_N\}_{N \in \mathbb{N}}$ satisfies Axiom (A) then each H_N has the form

$$(\mathbf{H}_{N}f)(t) = \sum_{n=1}^{M_{N}} f(\lambda_{N,n}) \, \kappa_{N,n}(t) \qquad \text{with} \qquad \{\kappa_{N,1}, \kappa_{N,2}, \dots, \kappa_{N,M_{N}}\} \subset \mathscr{B}_{\beta} \, .$$

Divergence Results for $0 \le \beta \le 1$

Theorem: Let $\beta \in [0,1]$ be arbitrary, and let $H = \{H_N\}_{N \in \mathbb{N}}$ be a sequence of bounded linear operators $H_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ satisfying Axioms (A), (B). Then

 $\mathscr{R}_{\beta}(\boldsymbol{H}) = \left\{ f \in \mathscr{B}_{\beta} : \limsup_{N \to \infty} \| \mathbf{H}_{N} f \|_{\infty} = +\infty \right\}$

is a residual set (a non-meager and dense subset) in \mathscr{B}_{β} .

By the uniform boundedness principle for linear operators, one obtains:

Corollary: $\lim_{N\to\infty} \left\| \mathrm{H}_N \right\|_{\mathscr{B}_{\beta}\to\mathscr{C}(\mathbb{T})} = +\infty.$

Corollary: Let $0 \le \beta \le 1$ be arbitrary and let $\boldsymbol{H} = \{H_N\}_{N \in \mathbb{N}}$ be a sequence of bounded linear operators $H_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ which satisfies Axiom (A). Then there exists a residual set $\mathscr{R}_\beta(\boldsymbol{H}) \subset \mathscr{B}_\beta$ such that

$$\limsup_{N\to\infty} \left\| \mathrm{H}_N f_* - \mathrm{H} f_* \right\|_{\infty} > 0 \;, \qquad \text{for all } f \in \mathscr{R}_{\beta}(\boldsymbol{H}) \;.$$

Corollary: There is *no* sequence $\{H_N\}_{N \in \mathbb{N}}$ of bounded linear operators $H_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ which can be implemented on an idealized digital computer and which approximates the Hilbert transform Hf for every $f \in \mathscr{B}_\beta$ with $0 \le \beta \le 1$.

H. Boche, V. Pohl, "Calculating the Hilbert transform on spaces with energy concentration: Convergence and divergence regions" *IEEE Trans. Inf. Theory*, (2018), in Press.
 Volker Pohl (TUM) | On the possibility of calculating the Hilbert Transform on digital computers
 30

Proof – Interpolation Lemma

Lemma: Let $0 \le \beta \le 1$ and $0 < \varepsilon < 1$ be arbitrary and let $\Lambda = \{\lambda_1, \dots, \lambda_N\} \subset \mathbb{T}$ be a finite sampling set. To every $g \in \mathscr{C}(\mathbb{T})$ there exists a $f \in \mathscr{B}_{\beta}$ which solves the interpolation problem

$$f(\lambda_n) = g(\lambda_n)$$
 for all $n = 1, \dots, N$,

and such that $\|f\|_{\mathscr{B}_{\beta}} \leq (1+\varepsilon) \|g\|_{\infty}$.

Remark: Note that we have to control $||f||_{\infty}$, $||\tilde{f}||_{\infty}$, and $||f||_{\beta}$ of the interpolating function.

 $\triangleright \text{ So we can extend the operators } H_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T}) \text{ to operators } H_N : \mathscr{C}(\mathbb{T}) \to \mathscr{C}(\mathbb{T}).$

Proof – Main Ideas

 \triangleright Assume the Theorem would be wrong \Rightarrow Operator norms would be uniformly bounded

$$\|H_N\|_{\mathscr{B}_{eta}
ightarrow \mathscr{C}(\mathbb{T})} \leq C < \infty \qquad ext{for all } N \in \mathbb{N} \;.$$

▷ The interpolation lemma shows that the operators $H_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ can be extended to operators $H_N : \mathscr{C}(\mathbb{T}) \to \mathscr{C}(\mathbb{T})$ and we have

$$\|\mathbf{H}_{N}\|_{\mathscr{C}(\mathbb{T})\to\mathscr{C}(\mathbb{T})} = \sup_{g\in\mathscr{C}(\mathbb{T})} \frac{\|\mathbf{H}_{N}g\|_{\infty}}{\|g\|_{\infty}} \leq (1+\varepsilon) \sup_{f\in\mathscr{B}_{\beta}} \frac{\|\mathbf{H}_{N}f\|_{\infty}}{\|f\|_{\mathscr{B}_{\beta}}} = (1+\varepsilon) \|\mathbf{H}_{N}\|_{\mathscr{B}_{\beta}\to\mathscr{C}(\mathbb{T})}$$

▷ Together with Axiom (B), it would follow that $\|H\|_{\mathscr{C}(\mathbb{T})\to\mathscr{C}(\mathbb{T})} \leq (1+\varepsilon)C \Rightarrow \text{Contradiction}!$

Spaces with Convergent Approximation Methods

Theorem: For any $\beta > 1$ there exit sequences $\{H_N\}_{N \in \mathbb{N}}$ of bounded linear operators $H_N : \mathscr{B} \to \mathscr{C}(\mathbb{T})$ satisfying Axioms (A) and (B) and such that

$$\lim_{N\to\infty} \left\| \mathrm{H}_N f - \mathrm{H} f \right\|_{\infty} = 0 \qquad \text{for all } f \in \mathscr{B}_{\beta} \ .$$

- ▷ If the energy of the signals is sufficiently concentrated then there always exist sampling based approximation methods which converges for all signals in the space \mathscr{B}_{β} with $\beta > 1$.
- Theorem can be proven by constructing a particular convergent approximation method (cf. motivating example).

Characterization of Convergent Method

Theorem: Let $\beta > 1$ and let $\{H_N\}_{N \in \mathbb{N}}$ be a sequence of bounded linear operators $H_N : \mathscr{B} \to \mathscr{C}(\mathbb{T})$ such that

1. For every $n \in \mathbb{N}$ holds

$$\lim_{N \to \infty} \left\| \mathrm{H}_{N}[\cos(n \cdot)] - \sin(n \cdot) \right\|_{\infty} = 0 \qquad \text{and} \qquad \lim_{N \to \infty} \left\| \mathrm{H}_{N}[\sin(n \cdot)] + \cos(n \cdot) \right\|_{\infty} = 0 \; .$$

2. There exists a constant *C* such that for every $n \in \mathbb{N}$

$$\max\left(\left\|\mathrm{H}_{\mathsf{N}}[\cos(n\cdot)]\right\|_{\infty},\ \left\|\mathrm{H}_{\mathsf{N}}[\sin(n\cdot)]\right\|_{\infty}
ight)\leq \mathcal{C}\qquad ext{for all }\mathsf{N}\in\mathbb{N}\ .$$

Then one has

$$\lim_{N\to\infty} \left\| \mathrm{H}_N f - \mathrm{H} f \right\|_{\infty} = 0 \qquad \text{for all } f \in \mathscr{B}_{\beta} \ .$$

Thus, if an approximation method $\{H_N\}_{N \in \mathbb{N}}$

▷ converges for the sine- and cosine functions (i.e. for the pure frequencies), and

▷ if the approximations of the pure frequencies are uniformly bounded

then the method $\{H_N\}_{N \in \mathbb{N}}$ converges for all $f \in \mathscr{B}_{\beta}$ with $\beta > 1$.

A Convergent Hilbert Transform Approximation

We consider again the sequence $\{D_N\}_{N \in \mathbb{N}}$ of the sampled conjugate Fourier series from the beginning

$$(\mathbf{D}_N f)(t) = -\mathbf{i} \sum_{n=-(N-1)}^{N-1} \operatorname{sgn}(n) c_{N,n}(f) e^{\mathbf{i} n t} = \sum_{k=0}^{2N-1} f(\lambda_{N,k}) \mathscr{D}_N \left(t - k \frac{\pi}{N}\right) ,$$

with the conjugate Dirichlet kernel $\mathscr{D}_N(t) = \frac{1}{N} \sum_{n=1}^{N-1} \sin(nt)$ and which is concentrated on the equidistant sampling sets

$$\Lambda_N = \left\{ \lambda_{N,k} = k \frac{\pi}{N} : k = 0, 1, \dots, 2N - 1 \right\}.$$

It is fairly easy to show that this sequence $\{D_N\}_{N\in\mathbb{N}}$

 \triangleright satisfies Axioms (A) and (B)

▷ has the two properties of the previous theorem which characterized all convergent methods and so, we have

$$\lim_{N \to \infty} \left\| \mathrm{D}_N f - \mathrm{H} f \right\|_{\infty} = 0 \qquad \text{for all } f \in \mathscr{B}_{\beta} \quad \text{with} \quad \beta > 1 \; .$$

Remarks

- ▷ So even on the important space $\mathscr{B}_0 = H^{1/2}(\mathbb{T}) \cap \mathscr{B}$ of functions with finite Dirichlet energy there exists no linear, sampling based approximation methods $\{H_N\}_{N \in \mathbb{N}}$.
- ▷ Not only the initially given approximation procedure (based on linear interpolation and Sobolev embedding) fails, but every sampling based method fails on the spaces \mathscr{B}_{β} with $0 \le \beta \le 1$.
- ▷ The transition between spaces on which no approximation method exists to spaces where such methods exist is slightly off the critical space $\mathscr{B}_0 = H^{1/2}(\mathbb{T}) \cap \mathscr{B}$ from the initial example.

Nonlinear Approximation Operators

Nonlinear Approximation Methods

- ▷ We replace the sequence $\{H_N\}_{N \in \mathbb{N}}$ of bounded linear operators $H_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ by sequences $\{\Psi_N\}_{N \in \mathbb{N}}$ of arbitrary, not necessarily linear, operators.
- \triangleright With every operator $\Psi_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$, we associate the functional

$$\Phi_N(f) = \|\Psi_N(f)\|_{\infty} .$$

▷ We require that these functionals are lower semicontinuous.

Definition: Let $\Phi : \mathscr{B}_{\beta} \to \mathbb{R}_{+}$ be a functional on a Banach space \mathscr{B}_{β} . One says that Φ is lower semicontinuous if for every $\lambda \ge 0$

$$\{f\in\mathscr{B} : \Phi(f)\leq\lambda\}$$

is a closed set.

We write $LCS(\mathscr{B}_{\beta}, \mathbb{R}_{+})$ for the set of all lower semicontinuous functionals $\Phi : \mathscr{B}_{\beta} \to \mathbb{R}_{+}$.

ПП

Nonlinear Approximations – Axiomatic

Let $0 \leq \beta \leq 1$ be arbitrary and let $\Psi = \{\Psi_N\}_{N \in \mathbb{N}}$ be a sequence of mappings $\Psi_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ with the associated functionals $\Phi_N(f) = \|\Psi_N(f)\|_{\infty}$. We say that Ψ satisfies Axiom

(A) Concentration on a discrete sampling set

if $\{\Phi_N\}_{N\in\mathbb{N}} \subset LSC(\mathscr{B}_{\beta},\mathbb{R}_+)$ and if for every $N\in\mathbb{N}$ there exists a finite subset $\Lambda_N\subset\mathbb{T}$ such that for arbitrary $f_1, f_2\in\mathscr{B}_{\beta}$

 $f_1(\lambda_n) = f_2(\lambda_n)$ for all $\lambda_n \in \Lambda_N$

implies $(\Psi_N f_1)(t) = (\Psi_N f_2)(t)$ for all $t \in \mathbb{T}$.

(B) Convergence on a dense subset

if there exists a dense subset $\mathscr{M} \subset \mathscr{B}_{\beta}$ such that

$$\lim_{N\to\infty} \|\Psi_N(f) - \mathrm{H}f\|_{\infty} = 0 \qquad \text{for all } f \in \mathscr{M} \ .$$

- ▷ Axiom (A) requires basically that the approximation $\tilde{f}_N = \Psi_N(f)$ is uniquely determined by the values of *f* on the finite sampling set $\Lambda_N \subset \mathbb{T}$.
- ▷ Axioms (B) describe $\{\Psi_N\}_{N \in \mathbb{N}}$ as a sequence which approximates the Hilbert transform.
- \triangleright Note that the set \mathscr{M} has no linear structure, in general.

Nonlinear Approximations – Divergence Result

Theorem: Let $0 \le \beta \le 1$ be arbitrary and let $\Psi = \{\Psi_N\}_{N \in \mathbb{N}}$ be a sequence of mappings $\Psi_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ which satisfies Axioms (A) and (B). Then

$$\mathscr{R}_{\beta}(\mathbf{\Psi}) = \left\{ f \in \mathscr{B}_{\beta} : \limsup_{N \to \infty} \left\| \Psi_{N}(f) \right\|_{\infty} = +\infty
ight\}$$

is a residual set in \mathscr{B}_{β} .

Corollary: Let $0 \le \beta \le 1$ be arbitrary and let $\Psi = \{\Psi_N\}_{N \in \mathbb{N}}$ be a sequence of operators $\Psi_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ which satisfies Axiom (A) and let

$$\mathscr{D}_{\beta}(\Psi) = \left\{ f \in \mathscr{B}_{\beta} : \limsup_{N \to \infty} \left\| \Psi_N(f) - Hf \right\|_{\infty} > 0 \right\} .$$
(3)

be the *divergence set* associated with Ψ . Then for $\mathscr{D}_{\beta}(\Psi)$ holds at least one of the following two statements:

D_β(Ψ)^{ℬ_β} = ℬ_β
 D_β(Ψ) contains an open ball from ℬ_β.

Proof Ingredients

- 1. The interpolation lemma for \mathscr{B}_{β} .
- 2. A generalization of the uniform boundedness principle.

Lemma (Generalized uniform boundedness principle):

Let \mathscr{X} be a Banach space and let $\Phi \subset LSC(\mathscr{X}, \mathbb{R}_+)$ be a family of functionals on \mathscr{X} such that there exists a set $K \subset \mathscr{X}$ of second category so that

$$\sup_{p\in oldsymbol{\Phi}} arphi(f) = M(f) < +\infty \qquad ext{for all } f\in K \;.$$

Then there exist an $M_{\Phi} < \infty$, an $f_0 \in \mathscr{X}$, and a $\delta > 0$ such that for all $f \in B_{\delta}(f_0, \mathscr{X})$ always

 $\varphi(f) \leq M_{\mathbf{\Phi}} \qquad ext{for all } \varphi \in \mathbf{\Phi} \; ,$

where $B_{\delta}(f_0, B) = \{f \in \mathscr{X} : \|f - f_0\|_{\mathscr{X}} < \delta\}.$

Application: Turing Computable Approximations

ПΠ

Structure of non-linear Approximation Methods

Definition: We write $\mathscr{O}(M)$ for the set of all functions $F : \mathbb{R}^M \times \mathbb{T} \to \mathbb{R}$ such that for every $\mathbf{x} \in \mathbb{R}^M$

- $F(\mathbf{x}; \cdot) \in \mathscr{C}(\mathbb{T})$
- $G(\mathbf{x}) = \|F(\mathbf{x}; \cdot)\|_{\infty}$ is a lower semicontinuous functional.
- ▷ We show that each (non-linear) mapping Ψ_N in our approximation methods $\Psi = {\{\Psi_N\}}_{N \in \mathbb{N}}$ is characterized by a function in the class $\mathscr{O}(M)$.

Lemma: A sequence $\Psi = \{\Psi_N\}_{N \in \mathbb{N}}$ of mappings $\Psi_N : \mathscr{B}_\beta \to \mathscr{C}(\mathbb{T})$ satisfies Axiom (A) if and only if to every $N \in \mathbb{N}$ there exists an $M = M(N) \in \mathbb{N}$ and a function $F_N \in \mathscr{O}(M)$ such that for all $f \in \mathscr{B}_\beta$ always

$$(\Psi_N f)(t) = F_N(f(t_{N,1}),\ldots,f(t_{M,N}); t), \qquad t \in \mathbb{T}.$$

 \triangleright We require next that the functions F_N are Turing computable.

Computability

Definition (Computable vectors):

Let $\mathbf{x} \in \mathbb{R}^{M}$ be an *M*-dimensional real vector.

- 1. A sequence $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subset\mathbb{Q}^M$ of rational vectors is said to be a *rapidly converging Cauchy name* of **x**, if **x**_n converges rapidly to **x** in the following sense: For all $n, m \in \mathbb{N}$ with m > n, we have $\|\mathbf{x}_m \mathbf{x}_n\|_{\mathbb{R}^M} \leq 2^{-n}$.
- 2. The vector **x** is said to be *computable*, if there exists a rapidly converging Cauchy name of **x**.
- 3. We write \mathbb{R}_c^M for the set of all commutable vectors in \mathbb{R}^M .

Definition (Computable Function):

We call $F : \mathbb{R}_c^M \to \mathbb{R}_c$ a *computable function* if there is an algorithm that transforms each rapidly converging Cauchy name of an arbitrary $\mathbf{x} \in \mathbb{R}_c^M$ into a rapidly converging Cauchy name of $F(\mathbf{x})$.

Computable Approximations – Definitions

Definition (Computable approximation method):

Let $\Psi = {\{\Psi_N\}}_{N \in \mathbb{N}}$ be a sequence of mappings $\mathscr{B}_{\beta} \to \mathscr{C}(\mathbb{T})$. We call Ψ a *computable approximation method* if to every $N \in \mathbb{N}$ there exists

- an $M = M(N) \in \mathbb{N}$,
- a finite sampling set $\Lambda_N = \{\lambda_{N,1}, \lambda_{N,2}, \dots, \lambda_{N,M(N)}\} \subset \mathbb{T}$,
- a computable function $F_N \in \mathscr{O}(M)$

such that for all $f \in \mathscr{B}_{\beta}$

 $(\Psi_N f)(t) = F_N(f(\lambda_{N,1}), f(\lambda_{N,2}), \dots, f(\lambda_{N,M(N)}); t)$ for all $t \in \mathbb{T}$.

No-Go for Computable Approximations

Theorem: Let $0 \le \beta \le 1$ be arbitrary and let $\Psi = \{\Psi_N\}_{N \in \mathbb{N}}$ be a sampling based computable approximation method such that there exists a dense subset $\mathcal{M} \subset \mathcal{B}_{\beta}$ so that

$$\lim_{N\to\infty} \left\| \Psi_N(f) - \mathrm{H}f \right\|_{\infty} = 0 \qquad \text{for all } f \in \mathcal{M} \;,$$

then

$$\left\{f \in \mathscr{B}_{\beta} : \limsup_{N \to \infty} \|\Psi_N(f)\|_{\infty} = +\infty\right\}$$

is a residual set in \mathscr{B}_{β} .

Corollary: Let $0 \le \beta \le 1$ be arbitrary and let $\Psi = \{\Psi_N\}_{N \in \mathbb{N}}$ be a sampling based computable approximation method which satisfies the conditions of the previous Theorem. Then there always exists an $f_* \in \mathscr{B}_\beta$ such that

$$\lim_{N\to\infty} \left\|\Psi_N(f_*) - \mathrm{H}f_*\right\|_{\infty} > 0$$

H. Boche, V. Pohl, "Investigations on the approximability and computability of the Hilbert transform with applications," Appl. Comput. Harmon. Anal., (2017), submitted for publ.

ТШ

Summary and Outlook

- \triangleright We introduced a scale of Banach spaces \mathscr{B}_{β} , $\beta \geq 0$ of functions
 - which are continuous with a continuous conjugate
 - with finite (Dirichlet) energy
 - with energy concentration characterized by eta
- ▷ In the scale $\{\mathscr{B}_{\beta}\}_{\beta>0}$, we characterized precisely those spaces on which
 - there do not exist sampling based Hilbert transform approximations: $\beta \in [0, 1]$
 - there do exist sampling based Hilbert transform approximations: $\beta > 1$.
 - nonlinear approximations give no improvement (with respect to this divergence behavior) over linear approximation operators.
- ▷ For β > 1 even very simple linear approximation methods (sampled conjugate Fourier series) converge for all $f \in \mathscr{B}_{\beta}$.

Outlook

- ▷ Other operators: Fourier series approximation, spectral factorization, Wiener filter, etc.
- ▷ (Turing) Computability of these operators.

ПП

References

- H. Boche, V. Pohl, "Investigations on the approximability and computability of the Hilbert transform with applications," *Appl. Comput. Harmon. Anal.*, (2018), revision submitted.
- H. Boche, V. Pohl, "Calculating the Hilbert Transform on Spaces with Energy Concentration: Convergence and Divergence Regions," IEEE Trans. Inform. Theory, (2018), in Press.
- H. Boche, V. Pohl, "Limits of Calculating the Finite Hilbert Transform from Discrete Samples," Appl. Comput. Harmon. Anal., (2017), in Press.
- H. Boche, V. Pohl, "On the Strong Divergence of Hilbert Transform Approximations and a Problem of Ul'yanov," J. Approx. Theory, vol. 204 (April 2016).
- ► H. Boche, V. Pohl, "On the Approximability of the Hilbert Transform," *IEEE Intern. Symposium on Inform. Theory* (*ISIT*), Vail, CO, USA, June 2018
- H. Boche, V. Pohl, "On the Computability of System Approximations under Causality Constraints," IEEE Intern. Conf. Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, April 2018
- ► H. Boche, V. Pohl, "Characterization of the Stability Range of the Hilbert Transform with Applications to Spectral Factorization," *IEEE Intern. Symposium on Inform. Theory (ISIT)*, Aachen, Germany, June 2017
- H. Boche, V. Pohl, "Peak Value Blowup of Approximations of the Hilbert Transform of Signals with Finite Energy," American Control Conf. (ACC), Seattle, WA, USA, May 2017

Thank You! – Questions?