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Motivation

Key problem: Efficient computation of functions of
the measurements

To combat interference, traditional schemes like
TDMA were used.

The fusion center reconstructs each sensor signal
separately and subsequently computes f .

Separating communication and computation can be
highly inefficient [Nazer,Gastpar 07].

To combine the processes, interpret the wireless
multiple-access channel (MAC) as a computer.

Every multivariate function is analog-computable via
the wireless MAC [Goldenbaum,Boche,Stańczak 11].

�
�
�
�

x6

x1

x2

x3

x4

x5

Question:

What happens in more general networks?

CISS 2012 2/16



Motivation

Key problem: Efficient computation of functions of
the measurements

To combat interference, traditional schemes like
TDMA were used.

The fusion center reconstructs each sensor signal
separately and subsequently computes f .

Separating communication and computation can be
highly inefficient [Nazer,Gastpar 07].

To combine the processes, interpret the wireless
multiple-access channel (MAC) as a computer.

Every multivariate function is analog-computable via
the wireless MAC [Goldenbaum,Boche,Stańczak 11].
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���
���
���
���

���
���
���
���

x6

x1

x2

x3

x4

x5

f(x1, . . . , x6)

Question:

What happens in more general networks?

CISS 2012 2/16



Motivation

Key problem: Efficient computation of functions of
the measurements

To combat interference, traditional schemes like
TDMA were used.

The fusion center reconstructs each sensor signal
separately and subsequently computes f .

Separating communication and computation can be
highly inefficient [Nazer,Gastpar 07].

To combine the processes, interpret the wireless
multiple-access channel (MAC) as a computer.

Every multivariate function is analog-computable via
the wireless MAC [Goldenbaum,Boche,Stańczak 11].
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System Model & Problem Statement

N sensor nodes organized into K clusters
Ck (Ck ∩ C` 6= ∅)
Sensor readings xn ∈ [0, 1], n = 1, . . . , N

C2

C3

C1

C4

f2

fusion center 4

f3
f4

f1

sensor nodes

Intra-cluster Communication

yk =
∑

n∈Ck

hknxn + vk , k = 1, . . . ,K

Problem: Efficiently computing f : [0, 1]N → RK

f(x1, . . . , xN ) =


f1
(
x11 , . . . , x1|C1|

)
...

fK
(
xK1 , . . . , xK|CK |

)

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Preliminaries (single cluster case) [Goldenbaum,Boche,Stańczak 11]

Receive Signal

y =
N∑
i=1

hixi + v (∗)

⇒ The ideal MAC can be used to compute every function f : [0, 1]N → R that has a
representation (∗).

Examples:

Arithmetic Mean: f(x1, . . . , xN ) = 1
N

∑
i xi, ϕi(x) = x, ψ(y) = 1

N y

Geometric Mean: f(x1, . . . , xN ) =
(∏

i xi
)1/N , ϕi(x) = log(x), ψ(y) = exp(y/N)

Euclidean Norm: f(x1, . . . , xN ) =
√
x2
1 + · · ·+ x2

N , ϕi(x) = x2, ψ(y) =
√
y

Observation

The space of functions (∗) is exactly the space of nomographic functions.

CISS 2012 7/16



Preliminaries (single cluster case) [Goldenbaum,Boche,Stańczak 11]
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Preliminaries (single cluster case) [Goldenbaum,Boche,Stańczak 11]

Theorem

Every function is universally computable via an ideal MAC, since every f : [0, 1]N → R is
nomographic.

Universality: ∃ϕi, i = 1, . . . , N , such that for every f there is ψ with
f(x1, . . . , xN ) = ψ(

∑
i ϕi(xi))

Question: Is the theorem valid if pre- and post-processing functions are required to be
continuous?

Theorem [Arnol’d 57], [Buck 82]

The space of nomographic functions with continuous pre- and post-processing functions is
nowhere dense in the Banach-space of continuous functions.
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Preliminaries (single cluster case) [Goldenbaum,Boche,Stańczak 11]

Let ` ∈ N and {ϕij}1≤i≤N,1≤j≤` be a collection of `N pre-processing functions and
consider the sequence of receive signals{

y1 =
N∑
i=1

ϕi1(xi), . . . , y` =
N∑
i=1

ϕi`(xi)

}

Question: Which functions are computable with such sequence of length `?

The question is closely related to the 13th Hilbert problem formulated in 1900.

Hilbert’s conjecture: The computation of continuous multivariate functions is in general not
possible with finite `.

The conjecture was disproven by Kolmogorov in 1957. He has shown that every continuous
f : [0, 1]N → R has a representation

f(x1, . . . , xN ) =
2N∑
i=0

ψi

 N∑
j=1

ϕij(xj)

 .

2N + 1 can not be reduced [Sternfeld 85].

⇒ Unfortunately, continuity requires more wireless resources.
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Analog Computation of Vector-Valued Functions (Geometry)

f(x1, . . . , xN ) =


f1
(
x11 , . . . , x1|C1|

)
...

fK
(
xK1

, . . . , xK|CK |

)


C2

C3

C1

C4

f2

fusion center 4

f3
f4

f1

sensor nodes

Geometric interpretation (single cluster case):

f(x1, . . . , xN ) =
2N∑
i=0

ψi

 N∑
j=1

ϕij(xj)

 =
2N∑
i=0

ψi(yi)

(x1, . . . , xN ) 7→ (y0, . . . , y2N ) ∈ Γ is a homeomorphic embedding of [0, 1]N in Γ ⊂ R2N+1

⇒ There is a bijection between all continuous f(x1, . . . , xN ) on [0, 1]N and all continuous
F (y0, . . . , y2N ) on Γ
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Analog Computation of Vector-Valued Functions (Geometry & Scheme)

Geometric interpretation (multiple cluster case):

yk =

 y0k
...

y2N,k

 =


∑

j∈Ck ϕ0j(xj)

...∑
j∈Ck ϕ2N,j(xj)

 , k = 1, . . . ,K

⇒ Not every continuous function is computable
But: consider shifted signals

zk := yk + γk
γk =

 γ0k
...

γ2N,k

 =


∑

j /∈Ck ϕ0j(0)

...∑
j /∈Ck ϕ2N,j(0)


︸ ︷︷ ︸

constants for all k

⇒ Every continuous function is computable on each fusion center without any coordination

f(x1, . . . , xN ) =


∑2N

i=0 ψi1(yi1 + γi1)
...∑2N

i=0 ψiK(yiK + γiK)


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Performance & Properties

Standard TDMA

Computation

Coordination
Layer

f1 f2

f3f4

f4 f3

f2
f1

Layer

Wireless resources per function value f(·)

O
(
KL ≥ Kmax

k
|Ck|

)

Analog Computation via Channels

Computation

Coordination
Layer

f1 f2

f3f4

f4 f3

f2
f1

Layer

Wireless resources per function value f(·)

O(2N + 1) , O(1)

Due to the universality property

à The hard- and software of sensor nodes is independent of f

à Only dumb (cheap) nodes are required

à Feedback about functions is not necessary
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Summary

By a geometric interpretation of Kolmogorov’s theorem, we proposed an efficient analog
computation scheme for clustered wireless networks

Analog systems are gaining more attention for sensor networks (digitial signal processing has
some fundamental limits [Boche,Mönich 11])

The scheme exploits the superposition property of wireless channels

With and without restrictions on pre- and post-processing functions, huge performance gains
are possible compared with orthogonal approaches

Coordination of nodes and clusters is not necessary

No information about the functions at nodes is necessary (i.e., no feedback, dumb sensor
nodes).

Realistic MACs: power constraints, fading, noise, synchronization for some Nomographic
examples [Goldenbaum,Stańczak 09]

Node failures/loss or inclusions of new nodes [Goldenbaum,Boche,Stańczak 12]

Thanks for your attention
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Thanks for your attention

CISS 2012 16/16



Summary

By a geometric interpretation of Kolmogorov’s theorem, we proposed an efficient analog
computation scheme for clustered wireless networks

Analog systems are gaining more attention for sensor networks (digitial signal processing has
some fundamental limits [Boche,Mönich 11])

The scheme exploits the superposition property of wireless channels

With and without restrictions on pre- and post-processing functions, huge performance gains
are possible compared with orthogonal approaches

Coordination of nodes and clusters is not necessary

No information about the functions at nodes is necessary (i.e., no feedback, dumb sensor
nodes).

Realistic MACs: power constraints, fading, noise, synchronization for some Nomographic
examples [Goldenbaum,Stańczak 09]
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