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Motivation

Consensus problems have a long history in computer science and form the foundation of the
field of distributed computing.
A consensus protocol specifies the information exchange between nodes in a network and all
of its neighbors.

The f -consensus problem [Olfati-Saber et al. 07]

The state of all nodes in a network has to asymptotically become equal to a function f of the
initial states.

=⇒ Goal: global consensus based on local data exchange (gossiping) as fast as possible

Relevance:
synchronization issues
data fusion in sensor networks
distributed coordination of mobile autonomous agents
distributed spectrum sensing in cognitive radio systems
distributed decision making in control systems
etc.

Most work on consensus algorithms do not take properties of the wireless channel into
account.

Computation and Communication are often viewed as distinct processes.
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Network Model & Problem Statement

N wireless nodes organized into K single-hop
clusters Ci

G = (C,E) associated graph with (i, j) ∈ E iff
Ci ∩ Cj 6= ∅
Connected clustered WN: for any Ci and Cj

there is a sequence of connected clusters from
Ci to Cj

Initial states xn(0) ∈ [0, 1], n = 1, . . . , N

C1

C4

cluster head 04 common nodes
C3

C2 C2C1

G

C3C4

Intra-cluster Communication

y0i (t) =
∑

n∈Ci\{0i}
hin(t)xn(t) + vi(t) , i = 1, . . . ,K

f -consensus problem

Let f : [0, 1]N → R be any desired consensus. Then,

∀n = 1, . . . , N : lim
t→∞

∥∥xn(t)− f(x1(0), . . . , xN (0)
)∥∥ = 0
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Preliminaries (single cluster case)

Receive Signal

y =
N∑

n=1

hnxn + v (∗)

⇒ The ideal MAC can be used to compute every function f : [0, 1]N → R that has a
representation (∗).

Examples:

Arithmetic Mean: f(x1, . . . , xN ) = 1
N

∑
i xi, ϕi(x) = x, ψ(y) = 1

N y

Geometric Mean: f(x1, . . . , xN ) =
(∏

i xi

)1/N , ϕi(x) = log(x), ψ(y) = exp(y/N)

Euclidean Norm: f(x1, . . . , xN ) =
√
x2
1 + · · ·+ x2

N , ϕi(x) = x2, ψ(y) =
√
y

Observation

The space of functions (∗) is exactly the space of nomographic functions.
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Preliminaries (single cluster case)

Theorem [Goldenbaum,Boche,Stańczak 11]

Every function is universally computable via an ideal MAC, since every f : [0, 1]N → R is
nomographic.

Universality: ∃ϕi, i = 1, . . . , N , such that for every f there is ψ with
f(x1, . . . , xN ) = ψ(

∑
i ϕi(xi)) [Goldenbaum,Boche,Stańczak 12]

The theorem constitutes the basis for Nomographic Gossiping

Gossiping: nodes have only a local view on network dynamics

We propose two classes of corresponding algorithms that differ in the way clusters are
activated

Deterministic: coordinated cluster activation
Randomized: clusters randomly wake up
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Deterministic Nomographic Gossiping

t = 0:

C2

z2(0)

z4(0)

C1

z1(0)
z5(0)

z6(0)

z3(0)

C3

C1 C2

G

C3

Let f be the desired consensus and let ϕ1, . . . , ϕ6, ψ be such that

f
(
x1(0), . . . , x6(0)

)
= ψ

( 6∑
n=1

ϕn(xn(0))︸ ︷︷ ︸
=:zn(0)

)

Activation sequence: W.l.o.g. π(t) = {1, 2, 3, 1, 2, 3, 1, . . . }
Nodes are equipped with a transmission counter and they know their status (standard or
common nodes)
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Deterministic Nomographic Gossiping
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Deterministic Nomographic Gossiping (Convergence)

Theorem

Let f be any desired consensus. Deterministic nomographic gossiping always converges to f in a
finite number of steps. If the associated graph is hamiltonian, then convergence can be achieved
in at most 2K − 1 steps.

The fast convergence to the exact desired consensus comes at the cost of some coordination

Due to the universality property, the pre-processing at nodes do not have to be updated if
the desired consensus changes
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Randomized Nomographic Gossiping

Each cluster head has a clock that ticks independently at a rate µi ∈ R+ Poisson process,
i = 1, . . . ,K

The µi are chosen such that with high probability two cluster heads do not wake up
simultaneously

Local averaging in each cluster: z0i (t) =
1

Ni−1

∑
n∈Ci

zn(t− 1), t ∈ Z+

Theorem

Let f be any desired consensus with continuous pre- and post-processing functions. Then,
randomized nomographic gossiping converges to f almost surely.
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Numerical Examples
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Summary

Nomographic gossip algorithms partly allow to achieve a consensus with respect to an
arbitrary function of the initial states

The algorithms rely on the representation of multivariate functions as post-processed
superpositions of pre-processed initial states

Superpositions can be efficiently achieved via the channel by letting nodes transmit
simultaneously

The class of nomographic gossip algorithms consists of deterministic and randomized
approaches

Deterministic nomographic gossiping always converges in a finite number of iterations

Randomized nomographic gossiping converges almost surely

Nomographic gossiping allows huge performance gains in comparison to standard algorithms

Future work: Considering noisy links

Thanks for your attention
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