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Motivation

This talk will provide some survey on the use of various
function spaces which allow to discuss the robustness of a
number of procedures in analysis (such as reconstruction of
smooth functions from their sampling values or atomic
decompositions). As we want to point out, the family if Lp-spaces
is too small to provide good estimates, so some alternative
function spaces (such as Wiener amalgam spaces or modulation
spaces) will be needed. We will discuss their relevance, mostly in
the context of sampling theory, time-frequency or Gabor analysis
and for the theory of Banach frames.
As time permits we will also describe the situation from the
point of view of coorbit theory. We will restrict our attention
to the setting of function spaces on Rd .
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What are Function Spaces good for?

This talk is a contribution to the question in the title. As
Yves Meyer (Abel Prize Winner of 2017):
Function Spaces should serve the description of operators.
There is a long list of examples, e.g. Lp-spaces describing to some
extent the behaviour of the Fourier transform (Hausdorff-Young),
or the classical Besov-Triebel-Lizorkin spaces well suited for
Calderon-Zygmund operators or pseudo-differential operators.
But this application does not have to come first. The modulation
spaces (introduced in 1983) being a good example. Once their
basic properties where established it was realized that they are
good well suited to describe certain pseudo-differential operators,
e.g. those (underspread channels) which can be used to model
slowly varying channels.
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Which Function Spaces fit to which problems?

So instead of discarding the idea that in the long run function
spaces should show their usefulness (in whatever sense) let us try
to be more specific. We could ask the following questions:

1 For which families of operators one can say that a particular
kind of function spaces is “most appropriate”?

2 Can one always describe the members of these families by
atomic decompositions or by the behaviour of some
continuous transform (generalized wavelet transform or
STFT)?

3 What kind of mathematical arguments do we have to show
that particular function spaces fit best in order to guarantee
certain properties of its members?

In this talk we want to concentrate on robustness issues
(to be explained in a moment).
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Optimal Function Spaces I

Let us also mention a few general ideas which influence the use of
certain function spaces within certain fields. We just list the
corresponding properties of the “interesting ones” (or the “most
used” ones):

1 First of all those spaces are considered as most suitable for a
particular problem which give the strongest results (in the
logical sense), i.e. which allow to describe the largest domain
or the smallest target space under given circumstances;

2 Often these logically optimal spaces are complicated objects,
and thus they might be of limited use for applications;
learning the technical details for a single application
may not be worthwhile;

Hans G. Feichtinger Function Spaces and Robustness Considerations



Optimal Function Spaces II

1 Even if the spaces are easily described in mathematical term it
may be quite difficult to check in concrete cases whether a
given function or distribution satisfies (e.g. an infinity of
conditions or asymptotic behaviour);

2 So sometimes simple spaces allowing good suboptimal
statements might be used much more often;

3 Some function spaces are not just very useful for one
application but for a number of different (maybe related)
settings. Then it makes even more sense to learn the detailed
properties of such a space.
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Optimal Function Spaces, Why are they good?

Given certain useful spaces we can reverse the view-point:

1 What are the applications where these spaces fit well?

2 Which of their properties makes them so useful?

3 Is it earning relevance from the relevance of concrete
applications?

4 At a more technical level: Which feature and which key
observations provide these “good spaces” with their
convenient properties?

Of course such questions should be kept in the back of your
mind and we will only be able to offer some indications for
concrete cases.
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Suboptimal Spaces (private opinion)

Probably everybody here knows some cases of spaces which are
just to complicated, or not well suited to describe a given operator
(often the motivatin to introduce new and better ones):

The Schwartz-Bruhat space S(G ) over LCA groups is
certainly a (nuclear Frechet) space having almost all the nice
properties of S(Rd) but is a terrible complicated object;

Quasimeasures have been introduced specifically in order to
describe translation invariant linear operators;

Transformable measures are a specific class of Radon
measures which still have a Fourier transform which is a
measure;

Often these spaces are difficult to describe, they are only
applicable to a small range of problems or simply did not find
widespread distribution for other reasons.
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Notations and Conventions

Let us collect here the normalizations of the Fourier transform and
relevant transformations of function spaces.

f̂ (ω) =

∫
Rd

f (t) · e−2πiω·t dt (1)

The inverse Fourier transform then has the form

f (t) =

∫
Rd

f̂ (ω) · e2πit·ω dω, (2)

which is valid at least for those continuous, integrable functions
which have a Fourier transform f̂ ∈ L1(Rd).
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The key-players for time-frequency analysis

Time-shifts and Frequency shifts

Tx f (t) = f (t − x)

and x , ω, t ∈ Rd

Mωf (t) = e2πiω·t f (t) .

Behavior under Fourier transform

(Tx f )̂ = M−x f̂ (Mωf )̂ = Tω f̂

The Short-Time Fourier Transform

Vg f (λ) = 〈f ,MωTtg〉 = 〈f , π(λ)g〉 = 〈f , gλ〉, λ = (t, ω);
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Typical Musical STFT: Beethoven Piano Sonata
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The Classical Shannon Theorem

For bandlimited functions f ∈ L2(R), with
spec(f ) := supp(f̂ ) ⊂ [−1/2, 1/2] we have the well-known
reconstruction using the SINC-function sinc := F−1(box)

f =
∑
k∈Z

f (k)Tk sinc . (3)

Good and bad properties of this expansion:

1 Since f = f ∗ sinc in this situation we have
f (k) = 〈f ,Tk sinc〉, and thus (3) is just the expansion of f
with respect to an ONB for the underlying Hilbert space;

2 The formula is valid for band-limited Lp-functions, for
1 < p <∞, but not for p = 1 or p =∞.

3 For p → 1 (or →∞) the constants for the synthesis ope-
rator (ck)→

∑
k ckTk sinc from `p to Lp(Rd) explode.
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The Practical Version of Shannon’s Theorem

The poor decay of the sinc-function, resulting in the fact that
sinc /∈ L1(R) also spoils the locality of the representation (3) and
therefore also engineering books suggest to allow a bit of
oversampling, i.e. sample at some rate α < 1 which allows to
obtain a reconstruction of a very similar nature, namely

f =
∑
k∈Z

f (αk)Tαkg , (4)

for some α < 1, where g ∈ L1(R) can be any function with
ĝ(ω) = 1 on [−1/2, 1/2] but with supp(ĝ) ⊂ α−1[−1/2, 1/2].
Alternatively one could use the reconstruction formula

f =
∑
k∈Z

f (k)Tkg , (5)

but only for functions with spec(f ) ⊂ α · [−1/2, 1/2].
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The Practical Version of Shannon’s Theorem II

If we compare the two versions, we observe that:

The first version (3) appears to be perfect, but only from the
(very narrow) perspective of Hilbert spaces: ONB!

The second version (4) requires a higher sampling density,
hence the shifted building blocks are not anymore an ONB,
but might be redundant (just think of the case α = 0.5!);

The third version (5) restricts the representation (atomic
decomposition) to certain subspaces of band-limited functions.

There are also some clear benefits:

by requiring enough smoothness of ĝ one can use the theorem
for families of weighted Lp-spaces;

there is good locality of the representation!

there is automatically some robustness towards e.g.
jitter error, for the family of spaces involved.
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Perturbation results: Kadets Theorem

Early in the history of sampling theory the question came up:
Can we still reconstruct, if the samples are taken not exactly at a
regular grid (with sufficiently high density), but instead at (known)
points near those given lattice points.
The classical answer to this problem is the Kadets 1/4 Theorem.
In a functional analytic description it tells us that the perturbation
of the integer lattice points by at most 1/4 guarantees that the
resulting system of shifted SINC functions is at least a Riesz basis
for the space of band-limited functions. Consequently one can find
a biorthogonal system (bounded in the L2(R)-sense) which allows
to reconstruct f from the (jittered) sampling values.
But what happens if f /∈ L2(R) or if it is not strictly band-
limited. In those cases one has to be careful. But the modified
versions of Shannon’s Theorem are certainly more robust.
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The story of irregular sampling

The story of irregular sampling theory allows to treat much more
general situations. Given the sampling values of band-limited
functions (on Rd or LCA groups), together with known a-priori
information about the spectral support of f allows to reconstruct f
using iterative methods.
The typical theorems describes the situation as follows: Assume
that the maximal gap size is small enough (compared to the size of
the spectrum, comparable to a Nyquist criterion) then various
iterative algorithms can be described which reconstruct
band-limited functions f in any member of a family of Banach
spaces (B, ‖ · ‖B) in a linear way (the limit of a sequence of
interations). The convergence (at a geometric reat) can be
described by means of the function space norm on B, and the
guaranteed speed of convergence improves with the density of
sampling information.
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Connections to Frame Theory

The redundancy issue above is of course closely related to the
theory of frames. Mostly because there is meanwhile a huge body
of literature let us mention a few related concepts:

Classical: frames for Hilbert spaces (or subspaces);

atomic systems, quasi-frames (e.g. Shidong Li, Ogawa,.);

Banach frames (K. Gröchenig);

g-frames (W. Sun);

continuous frames (long history, preceding the discrete case!).

Without discussing it here a hidden agenda of this talk will
be the emphasis on unconditional Banach frames for families
of Banach spaces (of distributions).
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Irregular sampling in spline-type spaces

The irregular sampling problem for shift-invariant spaces (also
called spline-type spaces) is a natural modification of the
band-limited case.
One may think of the reconstruction of functions in spaces of cubic
polynomials as a non-trival propotypical example.

But let us first describe the situation, noting that in the context of
wavelet MRA construction they arise as level zero spaces V 0, with
a Riesz basis of integer shifts of some “father wavelet”, or
generator ϕ of the principle shift invariant space V ϕ,Λ, which is the
set of translates of ϕ along some lattice in Rd :

Vϕ,Λ = {f =
∑
λ∈Λ

aλTλϕ, (aλ) ∈ `2(Λ)} (6)
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Irregular Sampling in spline-type spaces II

Again we have similar (linear and iterative) reconstruction
techniques once the density is suitable, given the atom ϕ or at least
some good qualitative description of its decay and smoothness.
What is (technically) important is the fact, that the set of
translates is no only describing the Hilbert space situation, i.e.
cubic splines in

(
L

2(Rd), ‖ · ‖2

)
, but that this situation extends to

a family of function spaces, e.g. weighted Lp-spaces on Rd with
polynomial weights.

For example we expect (discussing only the unweighted case, but
for the full range p ∈ [1,∞)) that the closure of the finite linear
combinations of translates of ϕ in

(
L
p(Rd), ‖ · ‖p

)
coincides

with those functions in Lp(Rd) which can be represented as
unconditionally convergent infinite sums with `p-coefficients.
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Irregular Sampling in spline-type spaces III

The typical questions arising in this context are then:

Which qualities of ϕ allow to formulate irregular sampling
theorems (e.g. iterative, linear reconstruction theorems) which
are valid for a certain range/family of function spaces, i.e.
how can one derive sufficient conditions for recovery based on
smoothness and decay of ϕ?

Can one estimate e.g. the jitter error (uniformly over the
family of function spaces), given a certain maximal jitter error
at each of the points independently.

Assume there is a model error, i.e. the building block ϕ is
not known exactly, but only approximately. How does this
influence the result of these reconstruction methods?
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The relevant space: Wiener’s Algebra

It has turned out (there is meanwhile a long list of publications on
the subject) that the most natural and simple condition on ϕ
which allows to provide such estimates is in terms of Wiener’s
algebra

(
W (C0, `

1)(Rd), ‖ · ‖W
)
.

This space (of bounded and continuous) functions on Rd can be
described roughly as the linear space of all absolutely Rieman
integrable functions, resp. the space of all continuous functions
with finite upper Riemannian sum.

A sufficient condition for a continuous function f on Rd is:

|f (x)| ≤ C (1 + |x |)−(d+ε), x ∈ Rd .
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The relevant space: Wiener’s Algebra II

Among the main reasons, why Wiener’s algebra is so important, we
can identify these two most important ones:

1 The atomic decomposition: Every f ∈W (C0, `
1) is the

absolutely convergent sum of functions (in
(
C0(Rd), ‖ · ‖∞

)
)

of functions with support in sets of the form of xn + Q
(e.g. in the unit cube Q = [0, 1]d);

2 The convolution relations between the more general Wiener
amalgam spaces and Wiener’s algebra, e.g.

W (M , `p) ∗W (C0, `
1) ⊂W (C0, `

p).
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Recalling the concept of Wiener Amalgam Spaces

Wiener amalgam spaces are a generally useful family of spaces
with a wide range of applications in analysis. The main motivation
for the introduction of these spaces came from the observations
that the non-inclusion results between spaes

(
L
p(Rd), ‖ · ‖p

)
for

different values of p are either of local or of global nature. Hence it
makes sense to separate these to properties using BUPUs.

Definition

A bounded family Ψ = (ψn)n∈Zd in some Banach algebra
(A, ‖ · ‖A) of continuous functions on Rd is called a regular
Uniform Partition of Unity if ψn = Tαnψ0, n ∈ Zd , 0 ≤ ψ0 ≤ 1,
for some ψ0 with compact support, and∑

n∈Zd

ψn(x) =
∑
n∈Zd

ψ(x − αn) = 1 for all x ∈ Rd .
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Illustration of the B-splines providing BUPUs
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Recalling the concept of Wiener Amalgam Spaces II

Note that one can define the Wiener amalgam space W (B, `q)
by the condition that the sequence ‖f ψn‖B belongs to `q(Zd) and
its norm is one of the (many equivalent) norms on this space.

Different BUPUs define the same space and equivalent norms.
Moreover, for 1 ≤ q ≤ ∞ one has Banach spaces, with natural
inclusion, duality and interpolation properties.
Many known function spaces are also Wiener amalgam spaces:

L
p(Rd) = W (Lp, `p), same for weighted spaces;

Hs(Rd) (the Sobolev space) satisfies the so-called `2-puzzle
condition (P. Tchamitchian): Hs(Rd) = W (Hs , `

2),
and consequently for s > d/2 (Sobolev embedding) the
pointwise multipliers (V. Mazya) equal W (Hs , `

∞).
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Introducing Modulation Spaces

Having the possibility to define Wiener amalgam spaces with
FLp(Rd) (the Fourier image of Lp(Rd) in the sense of
distributions) as a local component allowed to introduce
modulation spaces in analogy to Besov spaces, replacing more or
less the dyadic decompositions on the Fourier transform side by
uniform ones.
Formally one can define the (unweighted) modulation spaces as

M
p,q(Rd) := F−1 (W (FLp, `q)) . (7)

or more generally the now classical modulation spaces

M
s
p,q(Rd) := F−1

(
W (FLp, `qvs )

)
. (8)
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Fourier invariant modulation spaces

It is an interesting variant of the classical Hausdorff-Young
theorem to observe that one has

Theorem

For 1 ≤ r ≤ p ≤ ∞ one has

F(W (F p, `r )) ⊆W (F r , `p);

and as a consequence for 1 ≤ p, q ≤ 2:

F(W (Lp, `q)) ⊆W (Lq
′
, `p

′
).
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The Banach Gelfand Triple (S0,L
2,S ′0)(Rd)

Within the family of Banach spaces of (tempered) distributions of
the form M

p,q(Rd) we have natural inclusions. The smallest in
this family is the space M1,1

0 (Rd) = S0(Rd), which is a Segal
algebra and the smallest non-trivial Banach space isometrically
invariant under time-frequency shifts.
It is Fourier invariant, as well as all the spaces Mp := M

p,p, with
1 ≤ q ≤ ∞. This last mentioned space M∞(Rd) coincides with
S
′
0(Rd), the dual of S0(Rd), and is the largest TF-invariant

Banach space.
In the middle we have the space M2 := M

2,2 = W (FL2, `2).
Together the triple of space (S0,L

2,S ′0)(Rd) forms a so-called
Banach Gelfand Triple which is highly useful for many
applications (especially TF-analysis).
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My favorite Function Space plot
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Usefulness of S0(Rd) in Fourier Analysis

Most consequences result form the following inclusion relations:

L
1(Rd) ∗ S0(Rd) ⊆ S0(Rd);

FL1(Rd) · S0(Rd) ⊆ S0(Rd);

(S ′0(Rd) ∗ S0(Rd)) · S0(Rd);

(S ′0(Rd) · S0(Rd)) ∗ S0(Rd);

1 S0(Rd) is a valid domain of Poisson’s formula;

2 all the classical Fourier summability kernels are in S0(Rd);

3 modelling of stationary stochastic processes;

4 the elements g ∈ S0(Rd) are the natural building blocks
for Gabor expansions;
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Summability kernels from the space S0(Rd)

First of all we have S0(Rd) ⊂ L1 ∩ C0(Rd). Its members and their
Fourier transforms are integrable (in the sense of Riemann).
Consequently Fourier inversion is valid in the pointwise sense:

f (t) =

∫
Rd

f̂ (x)e−2πit·sds, f ∈ S0(Rd).

On the other hand we have for any f ∈ L1(Rd)
f̂ ∈ FL1(Rd) ⊂ C0(Rd), but not necessarily in L1(Rd) so that the
inverse Fourier transform may not be feasible as a (Lebesgue)
integral. But we can argue that f̂ · h ∈ L1(Rd) (because it belongs
to S0(Rd)) and thus we can apply the inverse transform to this
pointwise product. Choosing h(s) = ĝ(ρs), ρ > 0 for some
g ∈ S0(Rd) with ĝ(0) =

∫
Rd g(x)dx = 1 we see that the

Fourier inversion recovers Stρg ∗ f (the compressed version
of g tending to δ0), which tends to f in the L1-sense.
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Recalling Gabor Expansions

A Gabor family (π(λ)g)λ∈Λ is an indexed family obtained by
applying time-frequency shifts of the form π(λ) = MsTt , for
λ = (t, s) ∈ Rd × R̂d to a Gabor atom g (in S0(Rd)/L2(Rd)).
We are mostly interested in Gabor frames or (for mobile
communication) in Gabor Riesz bases.
A function or distribution f has a Gabor expansion if

f =
∑
λ∈Λ

cλπ(λ)g =
∑
λ∈Λ

cλgλ (9)

for a suitable family of complex-valued coefficients (cλ)λ∈Λ.
A key player in this context is the Gabor frame-like operator:

S := Sg ,Λ : f 7→
∑
λ∈Λ

〈f , gλ〉gλ.

(g ,Λ) generates a Gabor frame iff S is invertible on L2.
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The Role of S0(Rd) for Gabor Analysis I

First we observe that (as a consequence of the abstract coorbit
theory, developed together with K. Gröchenig around 1988/89):

Theorem

Given g ∈ S0(Rd) there exists ε > 0 such that for every ε-dense
family (λi )i∈I in Rd × R̂d , i.e. with

⋃
i∈I Bε(λi ) = Rd × R̂d the

family (π(λ)g)λ∈Λ (with appropriate adaptive weights) forms an
(irregular) Gabor frame for L2(Rd).
There is a bounded linear mapping from L

2(Rd) into (a weighted
version of) `2(I ) which provides the appropriate coefficients for a
Gabor expansion of any L2(Rd).
The restriction of this linear mapping to S0(Rd) ⊂ L2(Rd) provides
coefficients in the corresponding `1-space. On the other hand this
mapping extends in a unique (w∗-w∗--continous) sense to S ′0(Rd),
providing coefficients in `∞.
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The Role of S0(Rd) for Gabor Analysis II

Although the invertibility of S = Sg ,Λ is considered a priori only as
operator on

(
L

2(Rd), ‖ · ‖2

)
it is of great interest to know whether

it is also invertible on other spaces, e.g. on
(
S0(Rd), ‖ · ‖S0

)
.

The fact that one has for the case of a lattice Λ = A ∗ Z2d :

π(λ) ◦ Sg ,Λ = Sg ,Λ ◦ π(λ), λ∈Λ,

implies that the canonical dual frame given as the family

(S−1gλ) = π(λ)(S−1g), λ∈Λ,

is again a regular Gabor frame, using the dual Gabor atom
g̃ := S−1g as Gabor atom.
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The Role of S0(Rd) for Gabor Analysis III

In fact, it is not difficult to check that for g ∈ S0(Rd) the
frame-operator is then also a bounded operator on(
S0(Rd), ‖ · ‖S0

)
, still the invertibility of the restriction of the

invertible frame operator Sg ,Λ to
(
S0(Rd), ‖ · ‖S0

)
might not be

invertible on that dense subspace. However, using deep Banach
algebra methods the following result (a non-commutative version
of Wiener’s Lemma) has been shown by Gröchenig and Leinert.

Theorem

If (g ,Λ) generates a Gabor frame for some g ∈ S0(Rd) then the
frame operator is also invertible on

(
S0(Rd), ‖ · ‖S0

)
, or

equivalently, also the dual Gabor atom g̃ = S−1
g ,Λ(g) ∈ S0(Rd).
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The Role of S0(Rd) for Gabor Analysis IV

In both cases an important question is the so-called Bessel
property:

Lemma

Given a compact set of non-singular matrices M and g ∈ S0(Rd)
there exists some constant C > 0 such that∑

λ∈Λ

|〈f , gλ〉|2 ≤ C‖f ‖2, ∀f ∈ L2(Rd)

for any lattice of the form A ∗ Z2d , with A ∈M .

If normalized suitable one can take the limit Λ→ Rd × R̂d ,
i.e. lattices which are more and more refined and then the
normalized dual windows will converge in S0(Rd) to g .
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The Role of S0(Rd) for Gabor Analysis V

This uniform is a minor building block for the question of “varying
the lattice”: What can we say about the dual Gabor atoms g̃ for
slightly different lattices? (e.g. a rational approximation of a
general lattice). Here only for S0(Rd) we can claim that the dual
window depends (in a reasonable way) continuous on the lattice
(and for simple reasons on the window, if continuity is expressed in
the S0(Rd)-norm). We have (HGFei + N. Kaiblinger):

Theorem

The set {(A, g) | (g ,Λ) forms a Gabor frame} is an open subset of
S0(Rd)× GL(n,R)} and the mapping (A, g)→ g̃ = S−1

g ,Λ(g) is a

continuous mapping into
(
S0(Rd), ‖ · ‖S0

)
.
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The Role of S0(Rd) for Gabor Analysis VI

It is important to have continuous dependence of dual Gabor
window in the norm of S0(Rd) and not just in the L2-norm,
because it may happen, that one has a computationally efficient
way to compute the dual window in a specific case (e.g. rational
lattices), and then one would like to use that computable dual
window g̃a as a replacement for the true dual window g̃ . Of course,
one would like to be sure that the approximate recovery operator

Sa : f 7→
∑
λ∈Λ

〈f , gλ〉π(λ)g̃a

is close to the identity operator, in the operator norm sense
(on

(
L

2(Rd), ‖ · ‖2

)
, for example), and for this it is not

enough to have a good L2-approximation of g̃ .
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The Role of S0(Rd) for Gabor Analysis VII

In practice it is usually not possible to invert an operator exactly
using numerical methods. Since Gabor analysis can be done over
general LCA groups we can formulate properties of Gabor families
also over finite Abelian groups such as ZN , for N ∈ N.
A result by N. Kaiblinger gives the following result:

Theorem

For any pair (g , aZ× bZ), with g ∈ S0(R) and ε > 0 there exists
N ∈ N and a finite Gabor family over ZN (i.e. a sampled version of
g in CN , and divisors aN , bN of N) such that the piecewise linear
interpolation g̃a of the computed discrete dual Gabor atom in CN

satisfies
‖g̃ − g̃a‖S0 ≤ ε.
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The Role of S0(Rd) for Gabor Analysis VIII

The control of irregular Gabor families for general discrete
(well-spread) sets Λ ⊂ Rd × R̂d with respect to modification of the
sampling set comes in two versions (the first as a consequence of
coorbit theory, the second proved by Ascensi/F/Kaiblinger):

Assume that (g ,Λ) generates a Gabor frame, with
g ∈ S0(Rd). Then for ε > 0 there exists δ > 0 such that for
any family Λ′ with |λ− λ′| < δ, ∀λ∈Λ implies

|‖Sg ,Λ − Sg ,Λ′ |‖
L

2(Rd ) < ε.

A similar statement is valid for Λ′ = B ∗ Λ with

‖B − Id2N‖ < δ.
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Illustrations 1

 jitter error of random point set

Figure: red points: jitter error
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Illustrations 2

rescaled point set by factor 1.1

Figure: red points: dilation of point set by 1.1
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Illustrations 3

rotation by 5 degress in the clockwise sense

Figure: red points: rotation of the point set by 5 degress
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Further Characterizations of S0(Rd)

atomic decompositions, e.g. using Gaussians;

modern approach: integrability of the STFT;

“algebraic irreducibility”: any element can be use to rebuild
S0(Rd) via absolutely convergent atomic series.
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Characterization of S0(Rd) via STFT

A function in f ∈ L2(Rd) is in the subspace S0(Rd) if for some
non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f ‖S0 := ‖Vg f ‖L1 =

∫∫
Rd×R̂d

|Vg f (x , ω)|dxdω <∞.

The space
(
S0(Rd), ‖ · ‖S0

)
is a Banach space, for any fixed,

non-zero g ∈ S0(Rd)), and different windows g define the same
space and equivalent norms. Since S0(Rd) contains the Schwartz
space S(Rd), any Schwartz function is suitable, but also
compactly supported functions having an integrable Fourier
transform (such as a trapezoidal or triangular function) are
suitable. It is convenient to use the Gaussian as a window.
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Characterization of S ′0(Rd) via STFT

The short-time Fourier transform with respect to any Schwartz
window g ∈ S(Rd) can be defined for any tempered distribution
σ ∈ S ′(Rd). It is not difficult to show that they are all growing at
most like some polynomial, e.g. (1 + |λ|2)k for some k ∈ N.
Since S(Rd) is dense in

(
S0(Rd), ‖ · ‖S0

)
we have a natural

embedding from S
′
0(Rd) into S ′(Rd).

Lemma

A tempered distribution defines a bounded, linear functional on(
S0(Rd), ‖ · ‖S0

)
, i.e. defines an element of S ′0(Rd) if and only if

its STFT is a bounded (continuous) function.

Norm convergence in (S ′0(Rd), ‖ · ‖S ′
0
) is equivalent

to uniform convergence of the corresponding STFTs. On the other
hand w∗-convergence of a net (σα) to some limit σ0 ∈ S ′0(Rd) is
the same as uniform convergence over compact subsets.
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Atomic Characterization of S0(Rd)

One important characterization of S0(Rd) is via (absolutely
convergent) atomic compositions of its elements.

Definition

Satom := {f ∈ L2(Rd) | f =
∞∑
k=1

ckπ(λk)g0 ,

∞∑
k=1

|ck | <∞}

It is a Banach space with the quotient norm

‖f ‖atom := inf{
∑
k

|ck |, over all admiss. representations of f }.

Using this criterion, with g = g0 (the Fourier invariant Gauss
function) it is quite obvious that this Banach space is
isometrically invariant under the Fourier transform.
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Further relevant application areas

Kernel theorems: e.g. Characterization of linear operators
from S0(Rd) to S ′0(Rd) are characterized by their
corresponding distributional “kernel” K (x , y) ∈ S ′0(Rd);

The spreading representation of operators, pseudo-diff. ops.;

Characterization of (Fourier) multipliers, e.g. from L
p(Rd)

into Lq(Rd) within S ′0(Rd);

BANACH GELFAND TRIPLES

FOURIER STANDARD SPACES
(TF-invariant spaces between S0(Rd) and S ′0(Rd).

For details on these subjects see the various talks
by the author at www.nuhag.eu/talks
and a forthcoming book with Georg Zimmermann.
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What is the key property of S0(Rd)?

Among the many properties of
(
S0(Rd), ‖ · ‖S0

)
at appears that

the minimality property is the most important one. One
formulation in the context of Schwartz theory is the following one:

Lemma(
S0(Rd), ‖ · ‖S0

)
is the smallest among all Banach spaces which

contain S(Rd) and are isometric invariant with respect to
TF-shifts π(λ) = MsTt , for λ = (t, s) ∈ Rd × R̂d .

Alternatively it can be described as the smallest among all Segal
algebras (dense Banach ideals in

(
L

1(Rd), ‖ · ‖1

)
) which are

isometrically invariant under multiplications with pure frequencies.

This is the reason for the choice of the symbol S0!
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Similar results for the weighted cases

It is a natural next step to ask, if there is also a smallest subspace
of L2(Rd) among all the Banach spaces (B, ‖ · ‖B) containing e.g.
S(Rd) and with the property that there exist submultiplicative
weight functions w1,w2 such that for all t, s ∈ Rd one has:

‖Tt f ‖ ≤ w1(t)‖f ‖B , ∀f ∈ B,

‖Ms f ‖ ≤ w2(s)‖f ‖B , ∀f ∈ B,

Lemma

The smallest among all such Banach spaces is the Wiener
amalgam space W (FL1

w2
, `1

w1
).
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Outlook on coorbit theory

There are very similar structures in the context of the so-called
coorbit theory (developed jointly with K. Gröchenig).

Instead of time-frequency shift which represent an irreducible
projective representation of Rd × R̂d on the Hilbert space(
L

2(Rd), ‖ · ‖2

)
one starts there from a unitary, irreducible and

integrable representation π of some locally compact
(non-Ablian!) group G on an abstract Hilbert space H and builds
up a very similar theory. Again Wiener amalgam spaces on G play
a crucial role for the analysis.

The STFT is replaced by the voice transform

Vg (f )(x) := 〈f , π(λ)g〉, f , g ∈ H.
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Outlook on coorbit theory II

The minimal spaces in this context are then of the form

Co(L1
w ) := {f ∈ H |Vg (f ) ∈ L1(G )}

with the norm ‖f ‖ := ‖Vg (f )‖
L

1
w (G) (for a weight on G ).

For the case of the ax + b-group (of affine transformations of the
real line) this transform comes out to coincide with the wavelet
transform (with window g).
The resulting coorbit spaces with respect to mixed-norm weighted
function spaces on that group turns out to contain the classical
function spaces, namely the Besov-Triebel-Lizorkin spaces.
The minimal ones are then homogeneous Besov space with
parameters p = 1 = q and well chosen s > 0.
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Publications related to this context

[4] K. Gröchenigs book is a standard book on time-frequency
analysis. The Segal algebra

(
S0(Rd), ‖ · ‖S0

)
is described there as

(M1(Rd), ‖ · ‖
M

1), the modulation space corresponding to the
parameters p = 1 = q.

Feichtinger, Hans G.: Choosing Function Spaces in Harmonic
Analysis [2]: Features some ideas concerning construction
principles of function spaces.

Cordero, Elena;Feichtinger, Hans G.;Luef, Franz: Banach Gelfand
triples for Gabor analysis [1] describes a simple approach to the
theory of Banach Gelfand Triples, with (S0,L

2,S ′0) as an imporant
special case.

Feichtinger, Hans G.: Thoughts on Numerical and Conceptual
Harmonic Analysis [3] describes ideas about the connection
between finite discrete groups approximating the continuous case.
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THANK YOU - Strobl18

Thank you for your attention!

If you are interested in the subject maybe our time-frequency
conference in Strobl near Salzburg, June 3-9th, 2018 is of
interst to you: see

www.nuhag.eu/strobl18
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