


Let S := {1;…;T} be a finite set. 
For every s S  let ( . ,s) be a quantum channel X → S(H). 
The set of is an arbitrarily varying classical-quantum channel
(AVCQC) when s varies in an arbitrary manner.



The jammer may know

coding scheme
input codeword
message

Jammer knows only coding scheme:
• R. Ahlswede and V. Blinovsky, 2007
• R. Ahlswede, I. Bjelaković , H. Boche, and J. Nötzel, 2013





Deterministic capacity:

 Jammer does not know codeword Ahlswede dichotomy
 Jammer knows codeword no dichotomy (example in extended 

version)

Deterministic code
Knowing the message = knowing the input of the channel

Random code 
Knowing the message ≠ knowing the input of the channel.



In this scenario jammer knows input codeword

Now the jammer knows both input codeword and message



The maximum probability of error is defined as

We define the average probability of error in scenario 1 by



The maximum probability of error is defined as

We define the average probability of error in scenario 2 by

the jammer knows not only the coding scheme but also the message



2 jamming scenarios + 2 error criteria

4 combinations:

random correlated capacity under the average error criterion in 
scenario 1, denoted by
random correlated capacity under the maximal error criterion in 
scenario 1, denoted by
random correlated capacity under the average error criterion in 
scenario 2, denoted by
random correlated capacity under the maximal error criterion in 
scenario 2, denoted by

It is easy to show that 



Moreover all capacities can be achieved by codes with vanishing 
key rates.

For an AVCQC W={ (x,s): x X, s S} let

We have



Capacity of classical arbitrarily varying channels in this scenario was 
first considered by Sarwate in 2008 

 List decoding
 Vanishing key rate



How to apply list decoding for quantum channels is still an open 
problem

We need a different approach



The proof to the converse is simple.
The idea of the proof to the direct part:

If the jammer knew the random key k, The best strategy for the 
jammer would be to choose the most dangerous state to attack 
the k-th deterministic coding, which we do not want.

To this end every used codeword must be used by “many” 
outcomes



Instead of generating codebooks from the whole product set of the 
alphabet or the typical set

we randomly generate a ground set B with a cardinality 
| ௡| “slightly” (polynomially) larger that our desired size of 
codebooks



randomly uniformly generate ௡| codebooks
U(k) := {u(j,k), j ௡, k ௡} with size | ௡| from this ground set

| ௡| smaller than 
௡| = Poly(n)



We show that with a high probability
every codeword x(i) appears in “sufficiently many” codebooks
and each state sequence is “bad” only in “very few” of those
codebooks.



By some modification we can show:

C*(W)=C**(W)

Further knowing message to be sent, may not help a 
jammer to reduce the capacity.






