

Message Transmission over Classical Quantum Channels with a Jammer with Side Information: Message Transmission Capacity and Resources

Holger Bocke · Minglai Cai · Ning Cai

Let S := {1;...;T} be a finite set. For every $s \in S$ let $\rho(..,s)$ be a quantum channel $X \rightarrow S(H)$. The set of { $\rho(x,s): x \in X, s \in S$ } is an **arbitrarily varying classical-quantum channel** (AVCQC) when s varies in an arbitrary manner.

The jammer may know

coding scheme
input codeword
message

Jammer knows only coding scheme:

- R. Ahlswede and V. Blinovsky, 2007
- R. Ahlswede, I. Bjelaković, H. Boche, and J. Nötzel, 2013

Definition:

- A code $\gamma := (\mathcal{U}, \{\mathcal{D}(i), i \in \mathcal{I}\})$ of length n consists of its code book $\mathcal{U} := \{\mathbf{u}(i), i \in \mathcal{I}\} \subset \mathcal{X}^n$ and the decoding measurement $\{\mathcal{D}(i), i \in \mathcal{I}\} \subset \mathcal{S}(\mathcal{H}^{\otimes n})$: $\mathcal{D}(i) \geq 0$ for all i and $\sum_{i \in \mathcal{I}}, \mathcal{D}(i) = id$.
 - A random correlated code Γ is a uniformly distributed random variable taking values in a set of codes $\{(\mathcal{U}(k), \{\mathcal{D}(j,k), j \in \mathcal{J}\}), k \in \mathcal{K}\}$ with a common message set \mathcal{J} , where $|\mathcal{K}|$ is called the key size.

Deterministic capacity:

Jammer does not know codeword Ahlswede dichotomy
Jammer knows codeword no dichotomy (example in extended version)

Deterministic code

Knowing the message = knowing the input of the channel Random code

Knowing the message \neq knowing the input of the channel.

In this scenario jammer knows input codeword

Now the jammer knows both input codeword and message

Scenario 1:

Scenario 2:

Definition:

- We define the average probability of error in scenario 1 by
- $p_a(\Gamma) = \max_{s} Etr[\rho^{\otimes n}(\mathbf{u}(J,K),s(\mathbf{u}(J,K)))(I_{\mathcal{H}} \mathcal{D}(J,K))]$

- The maximum probability of error is defined as
 - $p_m(\Gamma) = \max_{j \in \mathcal{J}} \max_{s} Etr[\rho^{\otimes n}(\mathbf{u}(j,K),s(\mathbf{u}(j,K)))(I_{\mathcal{H}} \mathcal{D}(j,K))].$

We define the average probability of error in scenario 2 by

 $p_a(\Gamma) = \max_{s} Etr[\rho^{\otimes n}(\mathbf{u}(J,K),s(\mathbf{u}(J,K),J))(I_{\mathcal{H}} - \mathcal{D}(J,K))]$

The maximum probability of error is defined as

 $p_m(\Gamma) = \max_{j \in \mathcal{J}} \max_s Etr[\rho^{\otimes n}(\mathbf{u}(j,K),s(\mathbf{u}(j,K),j))(I_{\mathcal{H}} - \mathcal{D}(j,K))].$

the jammer knows not only the coding scheme but also the message

Communication Scenarios

- 2 jamming scenarios + 2 error criteria
 - 4 combinations:
- random correlated capacity under the average error criterion in scenario 1, denoted by $C^*(W)$
- random correlated capacity under the maximal error criterion in scenario 1, denoted by $C_m^*(\mathcal{W})$
- a random correlated capacity under the average error criterion in scenario 2, denoted by $C^{**}(W)$

random correlated capacity under the maximal error criterion in scenario 2, denoted by $C_m^{**}(W)$

It is easy to show that $C^*(\mathcal{W}) \ge C^*_m(\mathcal{W}) = C^{**}(\mathcal{W}) = C^{**}_m(\mathcal{W})$

Main Results

Theorem:

For an AVCQC W={ $\rho(x,s)$: x $\in X$, s $\in S$ } let

$$\bar{\mathcal{W}} := \{\{\bar{\rho}_Q(x) := \sum_s Q(s|x)\rho(x,s), x \in \mathcal{X}\} : \text{ for all } Q : \mathcal{X} \to \mathcal{S}\}$$

We have

$$C^*(\mathcal{W}) = C^*_m(\mathcal{W}) = C^{**}(\mathcal{W}) = C^{**}_m(\mathcal{W}) = \max_{P} \min_{\bar{\rho}(\cdot) \in \bar{\mathcal{W}}} \chi(P, \bar{\rho}(\cdot))$$

Moreover all capacities can be achieved by codes with vanishing key rates.

Previous Works

Capacity of classical arbitrarily varying channels in this scenario was first considered by Sarwate in 2008

List decodingVanishing key rate

Previous Works

How to apply list decoding for quantum channels is still an open problem

We need a different approach

Quantum Arbitrarily Varying Channel When the Jammer Knows Input Codeword Outline of Proof

The proof to the converse is simple. The idea of the proof to the direct part:

- If the jammer knew the random key k, The best strategy for the jammer would be to choose the most dangerous state to attack the k-th deterministic coding, which we do not want.
- To this end every used codeword must be used by "many" outcomes

Outline of Proof

vanishing key rate

Instead of generating codebooks from the whole product set of the alphabet or the typical set

we randomly generate a ground set B with a cardinality $|I_n|$ "slightly" (polynomially) larger that our desired size of codebooks

Outline of Proof

randomly uniformly generate $|K_n|$ codebooks $U(k) := \{u(j,k), j \in J_n, k \in K_n\}$ with size $|J_n|$ from this ground set $|J_n|$ smaller than $2^{-n[\min_{\bar{\rho}(\cdot) \in \bar{W}} \chi(P_X, \bar{\rho}(\cdot))]}|$ $|K_n| = Poly(n)$

Outline of Proof

We show that with a high probability every codeword x(i) appears in "sufficiently many" codebooks and each state sequence is "bad" only in "very few" of those codebooks.

Outline of Proof

By some modification we can show:

 $C^{*}(W) = C^{**}(W)$

Further knowing message to be sent, may not help a jammer to reduce the capacity.

Further perspective

Extending the scenario that the jammer knows input codeword to:

AVCQC with quantum jammer

correlation as resource instead of randomness

secrecy capacity of an AVCQC with an

eavesdropper

deterministic capacity

