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¶ Model / causal codes



· Basics / Notation

• The quantum systems K under consideration are modeled on finite
dimensional Hilbert spaces labelled by the same letter K.

• A classical-quantum (cq) channel takes inputs from a finite set Y,
generating outputs in K. The set of all such channels is CQ(Y,K).

• For us, Y = S× X, where Alice controls X and James controls S.

• Inputs made by James (channel states) are revealed to Alice but
not to Bob.

• James chooses inputs randomly according to p ∈ P(X).

• The channel is memoryless over n channel uses, the jammer’s
choice i.i.d. according to p.

• Thus, the system is completely described by the pair
(WS×X→K, p).

• We distinguish two cases: First when Alice has causal channel
knowledge, second when she has non-causal channel state
knowledge.



· Basics / Performance Measure

• Forget about James (for the moment).

• Alice has messages [M] = {1, . . . ,M}. She wants to send them to
Bob.

• Alice uses a stochastic encoding E , which assigns to her message
m the code word x with probability e(x |m).

• She puts x into W ∈ CQ(X,K), and Bob receives ρx .

• Bob tries to guess the message - he measures the output system
with a POVM D = (D1, . . . ,Dm).

• Probability of (perhaps wrongly) guessing m when m′ was sent
over channel W : ∑

x∈X
e(x |m′)tr{ Dm · ρx }.

• Measure of successful transmission:

1

M

∑
m

∑
x

e(x |m)tr{ Dm · ρx } ∈ [0, 1].
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¸ Definitions

• Non-causal code Kn: Mn ∈ N, E : [Mn]× Sn → P(Xn) and a
decoding POVM D on K⊗n. Its average error is

err(Kn) := 1−
Mn∑
m=1

∑
sn,xn

p⊗n(sn)

Mn
e(xn|m, sn)tr{ρsn,xnDm}.

• Causal code: for t ∈ [n] the distributions et(·|m, sn) ∈ P(Xt),
et(x

t |m, sn) :=
∑

(xt+1,...,xn)
e(xn|m, sn), depend only on st .

• A number R ≥ 0 is a (non-) causally achievable rate if there exists
a sequence (Kn)n∈N of (non-) causal codes such that

lim
n→∞

err(Kn) = 1, lim inf
n→∞

1

n
log(Mn) ≥ R.

• The non-causal capacity C of (WS×X→K, p) is the supremum over
all rates that are non-causally achievable for (WS×X→K, p).

• The causal capacity Cc of (WS×X→K, p) is the supremum over all
rates that are causally achievable for (WS×X→K, p).



¹ Results / Causal Codes

• Any map E : U→ P(X) defines a new channel
W̃U×S→K := WS×X→K ◦ E via ρ̃s,u :=

∑
x∈X e(x |u)ρs,x .

Theorem

Let WS×X→K ∈ CQ(S× X,K), p ∈ P(S). Then

Cc(WS×X→K, p) = max
q∈P(U)

max
V∈T

χ(q,WS×X→K ◦ V )

where T is the set of classical channels with conditional probability
distributions of the form

v(s, x |u) = ṽ(x |s, u)p(s) ∀ (s, u, x) ∈ S×U× X.

Cardinality bounds apply.



¹ Results / Non-Causal Codes

Theorem

It holds C (WS×X→K, p) = lim
n→∞

1
nCc(W⊗n

S×X→K, p
⊗n).

Further, for all n ∈ N,

C (WS×X→K, p) ≥ 1
n max
q∈An

(χ(qUn ,WUn→K⊗n)− I (Un;Sn)) .

Here we set An := {qSnUnXn ∈ P(Sn,U,Xn) : qSn = p⊗n} and to
every q ∈ An we define WUn→K⊗n via

WUn→K⊗n(u) :=
∑
sn,xn

q(sn, xn|u)W⊗n
S×X→K(sn, xn).

It may be assumed that |Un| ≤ (|S| · 2 · |X|)n. In addition,

C (WS×X→K, p) = lim
n→∞

1
n max
q∈An

(χ(pUn ,WUn→K⊗n)− I (Un;Sn)) .



º Ingredients / Direct Part of Proof

• Use sequential decoding [Aar06,Sen11,Wil15,Gao15]

• “Typical” projections as defined in [Nöt14], exploiting some
representation theory

• Codewords are sampled i.i.d. according to flat distribution on set
of specified type

• Given a particular choice sn of James, the encoder sends
sequences that are jointly typical sn



» Conclusions / related work

• Surprisingly, we were not able to get a single-letter formula for
non-causal encoding.

• This is less surprising when taking into account that the usual
c → qq wiretap channel [Dev05,CWY04] has no such capacity
formula as well.

• Thus we found a new instance of a coding theorem where new
ideas seem necessary to gain a deeper understanding.

• Where do things go wrong? → next slide!



» Conclusions / painpoint

• Proof of converse in classical setting [GP80] uses a telescoping
argument similar to the Csiszar-sum identity (find different
versions of such identities in [Kra11], where the relation to the
classical Gel’fand Pinsker problem is explained)

• Standard arguments yield (both for causal and non-causal
encoding)

log(Mn) ≤
n∑

i=1

I (Mn,Q
i−1;Qi ) + n · εn · |X|,

where the overall state of the quantum system is

σ :=
∑
m,m̂

∑
sn,xn

p⊗n(sn)

Mn
· ψm ⊗ ψsn

⊗ e(xn|m, sn)ψxn ⊗ ρsn,xn ⊗ tr{Dm̂ρsn,xn}ψm̂

and I the quantum mutual information.



Thanks

THANK YOU.
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