Classical-quantum channels with causal and non-causal channel state information at the sender

Holger Boche, Ning Cai, Janis Nötzel

ISIT 2016 Barcelona 14. Juli 2016

More information at

arXiv:1506.06479

Previous work on the topic

Gel'fand and Pinsker [GP80] Dupuis [Dup09]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Model
- Ø Basics
- Observation Definitions
 - A Results
 - **6** Ingredients
- Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Needs careful distinction between causal and non-causal codes, that is not simply displayed in this "one-shot" picture.

Time	Alice	Bob	James
-5	Agree on code	\mathcal{K}_n	
-4			Receive code \mathcal{K}_n
-3			Choose $s^n \sim p^{\otimes n}$
-2	Receive s^n		
-1	Pick $m \in [M_n]$		
0	Encode $\sim E(m, s^n)$		
1	send x_1		
n	send x_n		
n+1		Decode	

Time	Alice	Bob	James
-3	Agree on code \mathcal{K}_r	\imath	
-2			Receive code \mathcal{K}_n
-1			Choose $s^n \sim p^{\otimes n}$
0	Pick $m \in [M_n]$		
1	Receive s_1		
1	Send $x_1 \sim E_1(m, s_1)$		
2	Receive s_2		
2	Send $x_2 \sim E_2(m, s^2)$		
n+1		Decode	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

2 Basics / Notation

- The quantum systems \mathcal{K} under consideration are modeled on finite dimensional Hilbert spaces labelled by the same letter \mathcal{K} .
- A classical-quantum (cq) channel takes inputs from a finite set Y, generating outputs in K. The set of all such channels is CQ(Y, K).
- For us, $\mathbf{Y} = \mathbf{S} \times \mathbf{X}$, where Alice controls \mathbf{X} and James controls \mathbf{S} .
- Inputs made by James (channel states) are revealed to Alice but not to Bob.
- James chooses inputs randomly according to $p \in \mathfrak{P}(\mathsf{X})$.
- The channel is memoryless over *n* channel uses, the jammer's choice i.i.d. according to *p*.
- Thus, the system is completely described by the pair $(W_{S \times X \to \mathcal{K}}, p)$.
- We distinguish two cases: First when Alice has <u>causal</u> channel knowledge, second when she has <u>non-causal</u> channel state knowledge.

2 Basics / Performance Measure

• Forget about James (for the moment).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2 Basics / Performance Measure

- Forget about James (for the moment).
- Alice has messages $[M] = \{1, \dots, M\}$. She wants to send them to Bob.
- Alice uses a stochastic encoding *E*, which assigns to her message *m* the code word *x* with probability *e*(*x*|*m*).
- She puts x into $W \in CQ(\mathbf{X}, \mathcal{K})$, and Bob receives ρ_x .
- Bob tries to guess the message he measures the output system with a POVM D = (D₁,..., D_m).
- Probability of (perhaps wrongly) guessing *m* when *m'* was sent over channel *W*:

$$\sum_{x \in \mathbf{X}} e(x|m') \operatorname{tr} \{ D_m \cdot \rho_x \}.$$

• Measure of successful transmission:

$$\frac{1}{M}\sum_{m}\sum_{x}e(x|m)\mathrm{tr}\{D_{m}\cdot\rho_{x}\}\in[0,1].$$

3 Definitions

Non-causal code K_n: M_n ∈ N, E : [M_n] × Sⁿ → 𝔅(Xⁿ) and a decoding POVM D on K^{⊗n}. Its average error is

$$\operatorname{err}(\mathcal{K}_n) := 1 - \sum_{m=1}^{M_n} \sum_{s^n, x^n} \frac{p^{\otimes n}(s^n)}{M_n} e(x^n | m, s^n) \operatorname{tr}\{\rho_{s^n, x^n} D_m\}.$$

- Causal code: for $t \in [n]$ the distributions $e_t(\cdot|m, s^n) \in \mathfrak{P}(\mathbf{X}^t)$, $e_t(x^t|m, s^n) := \sum_{(x_{t+1}, \dots, x_n)} e(x^n|m, s^n)$, depend only on s^t .
- A number R ≥ 0 is a (non-) causally achievable rate if there exists a sequence (K_n)_{n∈N} of (non-) causal codes such that

$$\lim_{n\to\infty} \operatorname{err}(\mathcal{K}_n) = 1, \qquad \liminf_{n\to\infty} \frac{1}{n} \log(M_n) \geq R.$$

- The non-causal capacity C of (W_{S×X→K}, p) is the supremum over all rates that are non-causally achievable for (W_{S×X→K}, p).
- The causal capacity C_c of $(W_{S \times X \to K}, p)$ is the supremum over all rates that are causally achievable for $(W_{S \times X \to K}, p)$.

4 Results / Causal Codes

• Any map $E : \mathbf{U} \to \mathfrak{P}(\mathbf{X})$ defines a new channel $\widetilde{W}_{\mathbf{U}\times\mathbf{S}\to\mathcal{K}} := W_{\mathbf{S}\times\mathbf{X}\to\mathcal{K}} \circ E$ via $\widetilde{\rho}_{s,u} := \sum_{x\in\mathbf{X}} e(x|u)\rho_{s,x}$.

Theorem

Let $W_{S \times X \to K} \in CQ(S \times X, K)$, $p \in \mathfrak{P}(S)$. Then

$$C_{c}(W_{\mathbf{S}\times\mathbf{X}\to\mathcal{K}},p) = \max_{q\in\mathfrak{P}(\mathbf{U})} \max_{V\in\mathcal{T}} \chi(q,W_{\mathbf{S}\times\mathbf{X}\to\mathcal{K}}\circ V)$$

where T is the set of classical channels with conditional probability distributions of the form

$$v(s,x|u) = \tilde{v}(x|s,u)p(s) \quad \forall \ (s,u,x) \in \mathbf{S} \times \mathbf{U} \times \mathbf{X}.$$

Cardinality bounds apply.

4 Results / Non-Causal Codes

Theorem

It holds
$$C(W_{\mathbf{S}\times\mathbf{X}\to\mathcal{K}},p) = \lim_{n\to\infty} \frac{1}{n} C_c(W_{\mathbf{S}\times\mathbf{X}\to\mathcal{K}}^{\otimes n},p^{\otimes n}).$$

Further, for all $n \in \mathbb{N}$,

$$C(W_{\mathbf{S}\times\mathbf{X}\to\mathcal{K}},p)\geq \frac{1}{n}\max_{q\in\mathcal{A}_n}\left(\chi(q_{\mathbf{U}_n},W_{\mathbf{U}_n\to\mathcal{K}^{\otimes n}})-I(U_n;S^n)\right).$$

Here we set $A_n := \{q_{S^n U_n X^n} \in \mathfrak{P}(S^n, U, X^n) : q_{S^n} = p^{\otimes n}\}$ and to every $q \in A_n$ we define $W_{U_n \to \mathcal{K}^{\otimes n}}$ via

$$W_{\mathbf{U}_n o \mathcal{K}^{\otimes n}}(u) := \sum_{s^n, x^n} q(s^n, x^n | u) W_{\mathbf{S} imes \mathbf{X} o \mathcal{K}}^{\otimes n}(s^n, x^n).$$

It may be assumed that $|\mathbf{U}_n| \leq (|\mathbf{S}| \cdot 2 \cdot |\mathbf{X}|)^n$. In addition,

$$C(W_{\mathbf{S}\times\mathbf{X}\to\mathcal{K}},p) = \lim_{n\to\infty} \frac{1}{n} \max_{q\in A_n} \left(\chi(p_{\mathbf{U}_n}, W_{\mathbf{U}_n\to\mathcal{K}^{\otimes n}}) - I(U_n; S^n) \right).$$

- Use sequential decoding [Aar06,Sen11,Wil15,Gao15]
- "Typical" projections as defined in [Nöt14], exploiting some representation theory
- Codewords are sampled i.i.d. according to flat distribution on set of specified type

• Given a particular choice sⁿ of James, the encoder sends sequences that are jointly typical sⁿ

- Surprisingly, we were not able to get a single-letter formula for non-causal encoding.
- This is less surprising when taking into account that the usual $c \rightarrow qq$ wiretap channel [Dev05,CWY04] has no such capacity formula as well.
- Thus we found a new instance of a coding theorem where new ideas seem necessary to gain a deeper understanding.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Where do things go wrong? \rightarrow next slide!

6 Conclusions / painpoint

- Proof of converse in classical setting [GP80] uses a telescoping argument similar to the Csiszar-sum identity (find different versions of such identities in [Kra11], where the relation to the classical Gel'fand Pinsker problem is explained)
- Standard arguments yield (both for causal and non-causal encoding)

$$\log(M_n) \leq \sum_{i=1}^n I(\mathfrak{M}_n, Q^{i-1}; Q_i) + n \cdot \epsilon_n \cdot |\mathbf{X}|,$$

where the overall state of the quantum system is

$$\sigma := \sum_{m,\hat{m}} \sum_{s^n, x^n} \frac{p^{\otimes n}(s^n)}{M_n} \cdot \psi_m \otimes \psi_{s^n}$$
$$\otimes e(x^n | m, s^n) \psi_{x^n} \otimes \rho_{s^n, x^n} \otimes \operatorname{tr} \{ D_{\hat{m}} \rho_{s^n, x^n} \} \psi_{\hat{m}}$$

and I the quantum mutual information.

THANK YOU.

References

- [GP80] S. I. Gel'fand and M. S. Pinsker, "Coding for channels with random parameters", Probl. Control and Inform. Theory, Vol. 9, No. 1, 19-31 (1980)
- [Dup09] "The capacity of quantum channels with side information at the transmitter ", Inf. Theory, 2009. ISIT 2009. IEEE Intern. Symposium on, 948-952 (2009)
- [Aar06] S. Aaronson, Comp. Compl., 2006. CCC 2006. 21st Ann. IEEE Conf. 13-273 (2006)
- [Sen11] P. Sen, "Achieving the Han-Kobayashi inner bound for the quantum interference channel by sequential decoding", preprint, http://arxiv.org/abs/1109.0802 (2011)
- [Wil15] M.M. Wilde, "Sequential decoding of a general classical-quantum channel", Proc. R. Soc. A 469: 20130259 (2015)
- [Gao15] J. Gao, "Quantum union bounds for sequential projective measurements", to appear in Phys. Rev. A
- [Nöt14] J. Nötzel, "Hypothesis testing on invariant subspaces of the symmetric group: part I. Quantum Sanov's theorem and arbitrarily varying sources", J. Phys. A: Math. Theor. 47 235303 (2014)
- [Dev05] I. Devetak, "The private classical capacity and quantum capacity of a quantum channel", IEEE Trans. Inf. Theory, 51(1):44-55 (2005)
- [CWY04] N. Cai, A. Winter, R.W. Yeung, "Quantum privacy and quantum wiretap channels", Probl. Inf. Transm. Vol. 40, No. 4, 318-336 (2004)
- [Kra11] G. Kramer, "Teaching IT: An Identity for the Gelfand-Pinsker Converse", IEEE Inf. Theory Soc. Newsletter (2011)