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Needs careful distinction between causal and non-causal codes,
that is not simply displayed in this “one-shot” picture.



@ Model / non-causal codes
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@ Model / causal codes

___
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® Basics / Notation

e The quantum systems K under consideration are modeled on finite
dimensional Hilbert spaces labelled by the same letter K.

e A classical-quantum (cq) channel takes inputs from a finite set Y,
generating outputs in . The set of all such channels is CQ(Y, K).

e Forus, Y =S x X, where Alice controls X and James controls S.

e Inputs made by James (channel states) are revealed to Alice but
not to Bob.

e James chooses inputs randomly according to p € B(X).

e The channel is memoryless over n channel uses, the jammer’s
choice i.i.d. according to p.

e Thus, the system is completely described by the pair
(Wsxx—x, P)-

e We distinguish two cases: First when Alice has causal channel

knowledge, second when she has non-causal channel state
knowledge.
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® Basics / Performance Measure

e Forget about James (for the moment).

e Alice has messages [M] = {1,..., M}. She wants to send them to
Bob.

e Alice uses a stochastic encoding E, which assigns to her message
m the code word x with probability e(x|m).

e She puts x into W € CQ(X,K), and Bob receives py.

e Bob tries to guess the message - he measures the output system
with a POVM D = (D, ..., Dp).

e Probability of (perhaps wrongly) guessing m when m’ was sent
over channel W:

> e(x|m')tr{ Dm- px }.
xeX

e Measure of successful transmission:

LSS eldm)tx( Dy} € [0.1]



e Non-causal code K,: M, € N, E : [M,] x 8" — PB(X") and a
decoding POVM D on K®". Its average error is

err(KCp) Z Z p (x"m, s")tr{psn xnDm}.
m=1s"x"
e Causal code: for t € [n] the distributions e;(-|m, s") € P(X?),
ee(x|m,s") := 3", .« €(x"|m,s"), depend only on s°.
e A number R > 0 is a (non-) causally achievable rate if there exists
a sequence (ICp)pen of (non-) causal codes such that

lim err(K,) =1, lim inf1 log(M,) > R.

n—o00 n—oco n
e The non-causal capacity C of (Wsxx—_x,p) is the supremum over
all rates that are non-causally achievable for (Wsxx_i, p)-

e The causal capacity Cc of (Wsxx— i, p) is the supremum over all
rates that are causally achievable for (Wsyx—ic, p)-



® Results / Causal Codes

e Any map E : U — PB(X) defines a new channel
Wuxs—k = Wsxx—ic 0 E via fs =D cx e(x|u)ps .

Theorem

Let Wsxx—x € CQ(S x X,K), p € PB(S). Then

Cc (W ,p) = max maxx(q, W oV
(Wsxx—i, p) qeqs(U)VGTX(q Sxx—k 0 V)

where T is the set of classical channels with conditional probability
distributions of the form

v(s, x|u) = V(x|s,u)p(s) V (s,u,x) €S xUxX.

Cardinality bounds apply.




® Results / Non-Causal Codes

It holds C(Wsxx—ic,p) = n||—>n<;o %CC(Wégxnx_)]Cv P®n).

Further, for all n € N,
C(Wsxx—x,p) > %‘r?neé;\x (x(qu,» Wu, sxcen) — 1(Un; S)).

Here we set A, = {gsru,x» € B(S",U,X") : gs» = p®"} and to
every q € A, we define Wy, _,xen via

Wy, xcen(u) == Z q(s", x"|u) Ws®xnx—>/c(5"7X")-

s xn

It may be assumed that |U,| < (|S|-2- |X|)". In addition,

C(Wsxxxc, p) = lim 2 max (x(pu,, Wy,—ken) = 1(Uni S™)

n— o0 geAn




@ Ingredients / Direct Part of Proof

e Use sequential decoding [Aar06,Sen11,Wil15,Gaol5]

e “Typical” projections as defined in [N6t14], exploiting some
representation theory

e Codewords are sampled i.i.d. according to flat distribution on set
of specified type

e Given a particular choice s" of James, the encoder sends
sequences that are jointly typical s”



® Conclusions / related work

e Surprisingly, we were not able to get a single-letter formula for
non-causal encoding.

e This is less surprising when taking into account that the usual
¢ — qq wiretap channel [Dev05,CWYO04] has no such capacity
formula as well.

e Thus we found a new instance of a coding theorem where new
ideas seem necessary to gain a deeper understanding.

e Where do things go wrong? — next slide!



® Conclusions / painpoint

e Proof of converse in classical setting [GP80] uses a telescoping
argument similar to the Csiszar-sum identity (find different
versions of such identities in [Krall], where the relation to the
classical Gel'fand Pinsker problem is explained)

e Standard arguments yield (both for causal and non-causal
encoding)

n
log(Mn) <> 1M, Q1 Qi) +n-€n-|X],
i=1
where the overall state of the quantum system is

®n(en
J:ZZZ”M(:)-wm@wsn

m,rm s",x"

@ e(x"|m, s")thxn @ psn xn @ tr{Dpsn xn }1) s

and / the quantum mutual information.



THANK YOU.
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