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Motivation – An Approximation Problem

� Let T : B1 → B2 a bounded linear operator between Banach spaces.

� Approximate T by a sequence {TN}N∈N of bounded linear operators with
finite-dimensional rank such that

lim
N→∞

‖TNf − Tf‖B2
= 0 for all f ∈ B1

� Applications ⇒ Restrictions on class of admissible approximation operators

The calculation of TNf should be based on time-domain samples {f(λn)}Nn=1.

� Minimal requirement: {TNf} converges for all f from a dense subset of B1
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Strongly versus weakly divergent approximation processes Weak divergence

Weakly Divergent Series
There are many important examples, where

lim
N→∞

∥∥TNf − Tf
∥∥
B2

= 0 for all f ∈ B0 (1)

in a dense subset B0 ⊂ B1, but such that

lim
N→∞

‖TNf∗ − Tf∗‖B2 =∞ for some f∗ ∈ B1 . (2)

� Usually, it is fairly easy to construct {TN}N∈N such that (1) holds for some
dense subset B0.

� It is much harder to show that (2) holds. Or alternatively that

lim
N→∞

‖TNf − Tf‖B2
= 0 for all f ∈ B1

� Instead of (2) one often verifies the weaker divergence condition

lim sup
N→∞

∥∥TNf∗ − TNf∗
∥∥
B2

=∞ for some f∗ ∈ B1 .
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Strongly versus weakly divergent approximation processes Weak divergence

Weak Divergence & Banach-Steinhaus Theorem

Weak divergence results are often stated as

lim sup
N→∞

∥∥TNf∗‖B2
=∞ for some f∗ ∈ B1

and proofs are often based on the uniform boundedness principle.

Theorem (Banach-Steinhaus)

Let {TN}N∈N be a sequence of linear operators TN : B1 → B2 with norm

‖TN‖ = sup
f∈B1

‖TNf‖B2

‖f‖B1

.

If supN∈N ‖TN‖ =∞ then there exists an f∗ ∈ B1 such that

sup
N∈N
‖TNf∗‖B2

=∞ . (∆)

In fact, the set D of all f∗ ∈ B1 which satisfy (∆) is a residual set in B1.
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Strongly versus weakly divergent approximation processes Weak divergence

Example - Sampled Fourier Series
Let B1 = B2 = C(T) be the set of continuous functions on T = [−π, π].
Let T = IC be the identity operator on C(T).

Example (Sampled trigonometric Fourier series)

(
TNf

)
(t) =

N−1∑
k=0

f
(
k 2π
N

)
DN
(
t− k 2π

N

)
, t ∈ T , N ∈ N

with Dirichlet kernel

DN (τ) =
sin([N + 1/2]τ)

sin(τ/2)
.

� Convergence on a dense subset:

lim
N→∞

‖TNp− p‖∞ = 0 for all polynomials p on T .

� Weak divergence: There are functions f∗ ∈ C(T) such that

sup
N∈N
‖TNf∗‖∞ = +∞ ⇒ lim sup

N→∞
‖TNf∗ − f∗‖∞ = +∞ .
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Strongly versus weakly divergent approximation processes Weak divergence

The Weakness of Weak Divergence

Definition (Weak Divergence)

A sequence {TN}N∈N of bounded linear approximation operators TN : B1 → B2
is said to diverge weakly if

lim sup
N→∞

∥∥TNf∗ − Tf∗‖B2
=∞ for some f∗ ∈ B1 . (WD)

� Weak divergence only implies that there exists a
”
bad subsequence“ {Nk}k∈N

such that

lim
k→∞

‖TNk
f∗ − Tf∗‖B2

=∞ for some f∗ ∈ B1 .

� This notion of divergence does not exclude the possibility that there exist

”
good subsequences“ {Nk = Nk(f)}k∈N such that

inf
k∈N

∥∥TNk
f − Tf

∥∥
B2
<∞ or even lim

k→∞

∥∥TNk
f − Tf

∥∥
B2

= 0

for all f ∈ B1.
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Strongly versus weakly divergent approximation processes Weak divergence

Example – Approximation by Walsh Functions
Example (Weakly divergent with a convergent subsequence)

Let {ψn}∞n=0 be the orthonormal set of Walsh functions in L2([0, 1]).

Let PN : L2([0, 1])→ span{ψn : n = 0, 1, 2, . . . , N} be the orthogonal
projection onto the first N + 1 Walsh functions.

View PN as a mapping L∞([0, 1])→ L∞([0, 1]) with norm

‖PN‖ = sup{‖PNf‖∞ : f ∈ L∞([0, 1]), ‖f‖∞ ≤ 1} .

�
lim sup
N→∞

‖PN‖ = +∞ but ‖P2k‖ = 1 for all k ∈ N .

� Thus {PN}N∈N is weakly divergent.

� There exists a (universal) subsequence {Nk = 2k}∞k=0 such that

lim
k→∞

‖PNk
f − f‖∞ = 0 for all f ∈ C([0, 1])

lim sup
k→∞

‖PNk
f − f‖∞ <∞ for all f ∈ L∞([0, 1])
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Strongly versus weakly divergent approximation processes Strong divergence

Strong Divergence

Definition (Strong Divergence)

A sequence {TN}N∈N of bounded linear approximation operators TN : B1 → B2
is said to diverge strongly if

lim
N→∞

∥∥TNf∗ − Tf∗‖B2
=∞ for some f∗ ∈ B1 . (SD)

� Strong divergence excludes the possibility of the existence of good
subsequences {TNk

(f)}k∈N such that

lim inf
k→∞

∥∥TNk(f)f∗ − Tf∗
∥∥
B2 <∞ .

� We are going to investigate whether weakly divergent sequences {TN}N∈N
are even strongly divergent.
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Strongly versus weakly divergent approximation processes Strong divergence

Example – Pointwise Convergent Fourier Series
Example (Divergent operator norms – Not strongly divergent)

For any f ∈ C([−π, π]), let (UNf)(t) be the partial sum of the Fourier series:

(UNf)(t) =
∑N
k=−N f̂n eint with f̂n = 1

2π

∫ π
−π f(τ) e−inτ dτ .

Fix λ ∈ [−π, π] arbitrary and define the functionals UN,λ : C([−π, π])→ C by

UN,λf := (UNf)(λ) , N ∈ N .

� It is easy to see that ‖UN,λ‖ = ‖UN‖C→C . Therefore

lim
N→∞

∥∥UN,λ

∥∥ = lim
N→∞

∥∥UN

∥∥
C→C =∞ .

� Fejér: To each f ∈ C([−π, π]) there is a subsequence {Nk = Nk(f, λ)}k∈N
such that

lim
k→∞

UNk,λf = lim
k→∞

(UNk
f)(λ) = f(λ) .

⇒ No strong divergence of {UN,λ}N∈N.
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Strongly versus weakly divergent approximation processes Strong divergence

Strong Divergence and Adaptive Methods

Assume that a sequence {TN}N∈N diverges weakly but not strongly.

⇒ To every f ∈ B1 there exists a subsequence {Nk(f)}k∈N such that

sup
k∈N

∥∥TNk(f)f − Tf
∥∥
B2
<∞ .

! The convergent subsequence {Nk(f)}k∈N depends always on f

⇒ {TNk(f)}k∈N is a method adapted to the particular function f ∈ B1.

⇒ {TNk(f)f}k∈N is a non-linear approximation method

weak divergence related to existence of non-adaptive methods
strong divergence related to existence of adaptive methods

� Banach-Steinhaus Theorem is the perfect tool for non-adaptive methods.

� New techniques needed to investigate adaptive approximation methods.
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Strongly versus weakly divergent approximation processes Strong divergence

Historical Remark

Paul Erdős investigated strong divergence of Lagrange interpolation of
continuous functions on Chebyshev notes in 1941.

But he found himself that his proof was erroneous.

His question is still open until now.

P. Erdős, On divergence properties of the Lagrange interpolation parabolas

Ann. of Math. vol. 42, no. 1 (1941), pp. 309–315.

P. Erdős, Corrections to two of my papers

Ann. of Math. vol. 44, no. 4 (1943), pp. 647–651.
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Approximations of the Hilbert transform Hilbert transform: Definition, Properties, Examples

The Hilbert Transform

Definition

For any f ∈ L1(T), its conjugate function f̃ is given by the Hilbert transform
Hf of f . Thus

f̃(t) =
(
Hf
)
(t) = lim

ε→0

1

2π

∫
ε≤|τ |≤π

f(τ + t)

tan(τ/2)
dτ

where the integral on the right hand side exists for almost all t ∈ T.

This transformation plays a very important role in different areas of science and
engineering.

System theory: The real- and imaginary part the transfer function of a causal
system are related by the Hilbert transform.

Physics: Kramers-Kronig-Relation

Control theory
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Approximations of the Hilbert transform Hilbert transform: Definition, Properties, Examples

Illustration – Hilbert Transform for Polynomials
Let p ∈ P be a trigonometric polynomial
and p+ ∈ P+ be a causal trigonometric polynomial

p(t) =

N∑
n=−N

cn eint and p+(t) =

N∑
n=0

cn eint

Definition

The polynomial p̃ ∈ P is said to be the conjugate of p ∈ P if

p+ i p̃ ∈ P+ and

∫ π

−π
p̃(t) dt = 0 .

Example (even trigonometric polynomials)

p(t) = c0 + 2
N∑
n=1

cn cos(nt) ⇒ p̃(t) = 2
N∑
n=1

cn sin(nt)
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Approximations of the Hilbert transform Hilbert transform: Definition, Properties, Examples

Hilbert Transform – Basic Properties

Lp-Theory

� H : L1(T)→ weak L1(T) (Kolmogoroff)
� H : Lp(T)→ Lp(T), 1 < p <∞
� H : L∞(T)→ BMO (Ch. Fefferman and E. M. Stein)
� H : H1 → H1 (L. Carleson and E. M. Stein)
� H1–BMO Duality (Ch. Fefferman)

Hilbert transform on C(T)

� H : C(T)→ Lp(T), 1 ≤ p <∞
� H : C(T) 9 C(T)
� H : C(T)→ VMO (Ch. Fefferman)

J.B. Garnett Bounded analytic functions Academic Press, New York, 1981.
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Approximations of the Hilbert transform Hilbert transform: Definition, Properties, Examples

Signal Space for Hilbert Transform Approximations

We consider the Hilbert transform on the Banach space B of all continuous
functions on T = [−π, π] with continuous conjugate

B :=
{
f ∈ C(T) : f̃ = Hf ∈ C(T)

}
equipped with the norm∥∥f∥∥B := max

{
‖f‖∞, ‖Hf‖∞

}
with

∥∥f∥∥∞ = max
t∈T

∣∣f(t)
∣∣ .

Goal

Find a (practically relevant) sequence {HN}N∈N of linear operators HN : B → B
such that

lim
N→∞

∥∥HNf − f̃
∥∥
B = lim

N→∞

∥∥HNf −Hf
∥∥
B = 0 for all f ∈ B .
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Approximations of the Hilbert transform Hilbert transform: Definition, Properties, Examples

Approximation from Frequency Samples
Given f ∈ B arbitrary, and let {f̂n}n∈Z be its Fourier coefficients

f̂n =
1

2π

∫ π

−π
f(t) eint dt , n ∈ Z .

Consider the N th-order Fejér mean

(
FNf

)
(t) =

N∑
n=−N

(
1− |n|

N

)
f̂n eint =

N

2π

∫ π

−π
f(θ)FN (t− θ) dθ

and define F̃N := HFN .

Theorem

lim
N→∞

∥∥F̃Nf − f̃
∥∥
∞ = 0 for all f ∈ B .

Proof:∥∥F̃Nf − f̃
∥∥
∞ =

∥∥HFNf − f̃
∥∥
∞ =

∥∥F̃Nf − f̃
∥∥
∞ =

∥∥FN f̃ − f̃
∥∥
∞ .

19 / 52



Approximations of the Hilbert transform Hilbert transform: Definition, Properties, Examples

Example - A Pointwise Convergent Process
Example (Divergent operator norms – Not strongly divergent)

For any f ∈ B, let (UNf)(t) be the partial sum of the Fourier series.

Define ŨN := HUN = UNH

Fix λ ∈ [−π, π] arbitrary and define the functionals ŨN,λ : B → C by

ŨN,λf :=
(
ŨNf

)
(λ) =

(
HUNf

)
(λ) =

(
UNHf

)
(λ) =

(
UN f̃

)
(λ)

� It is easy to see that ‖ŨN,λ‖ = ‖ŨN‖B→B. Therefore

lim
N→∞

∥∥ŨN,λ

∥∥ = lim
N→∞

∥∥ŨN

∥∥
C→C =∞ .

� Using Fejér: To each f ∈ B there is a subsequence {Nk(f, λ)}k∈N such that

lim
k→∞

ŨNk,λf = lim
k→∞

(
UNk

f̃
)
(λ) = f̃(λ) .

⇒ No strong divergence of {ŨN,λ}N∈N.
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Approximations of the Hilbert transform Properties of approximation operators

Practical Constraints on Approximation Sequences

� Previous operators {F̃N}N∈N and {ŨN}N∈N are based on the exact

knowledge of the Fourier coefficients {f̂n}Nn=−N .

� Equivalently, these operators are based on the knowledge of f ∈ B on the
whole interval T.

⇒ Analog computers/devices are needed for implementation.

� Practical applications ⇒ digital signal processing.

� Signals f are only known on finite number of sampling points {f(λm)}Mm=1.

� Previous approximation sequence {F̃N}N∈N can not be implemented.

⇒ Consider approximation sequences {HN}N∈N which are based on
sampled data.

21 / 52



Approximations of the Hilbert transform Properties of approximation operators

Properties of our Approximation Sequences

(A) Concentration on a finite sampling set: For every N ∈ N there exists a
finite sampling set ΛN = {λn : n = 1, . . . ,MN} with λn ∈ T such that

f(λ) = g(λ) for all λ ∈ ΛN

implies
(HNf)(t) = (HNg)(t) for all t ∈ T .

(B) Convergence on a dense subset: The sequence {HN}N∈Z satisfies

lim
N→∞

∥∥HNf − f̃
∥∥
∞ = 0 for all f ∈ C∞(T) .

(C) Generated by a stable sampling series: To the sequence {HN}N∈N there
corresponds a sequence of approximation operators AN : B → B such that

lim
N→∞

‖ANf − f‖∞ = 0 for all f ∈ B

and such that HNf = HANf for all N ∈ N .
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Approximations of the Hilbert transform Properties of approximation operators

Consequences & Properties

� A sequence {HN}N∈N has property (A) if and only if to every N ∈ N there
exists a finite set

ΛN =
{
λ1,N , λ2,N , . . . , λMN ,N

}
with MN ∈ N and λn,N ∈ T

and functions {hn,N : n = 1, . . . ,MN} in B such that

(
HNf

)
(t) =

MN∑
n=1

f(λn,N )hn,N (t) for all f ∈ B .

� Then the approximation operators AN in property (C) have the form

(
ANf

)
(t) =

MN∑
n=1

f(λn,N ) an,N (t) , t ∈ T ,

with functions an,N ∈ B such that hn,N = H an,N .
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Approximations of the Hilbert transform Properties of approximation operators

Example – Sampled (Conjugate) Fejér Mean
Inserting the Fourier coefficients into the Fejér mean and exchanging the sum
with the integral, one obtains the integral representation(

FNf
)
(t) =

N

2π

∫ π

−π
f(θ)FN (t− θ) dθ (∆)

with the so-called Fejér kernel

FN (τ) =

(
sin(Nτ/2)

N sin(τ/2)

)2

.

Approximate the integral in (∆) by its Riemann sum based on the
rectangular integration rule yields the sampled Fejér mean

(
SNf

)
(t) =

N−1∑
n=0

f
(
n 2π
N

)
FN
(
t− n 2π

N

)
≈ (FNf)(t) .

It show the same approximation behavior as (∆):

lim
N→∞

∥∥SNf − f
∥∥
∞ = lim

N→∞

∥∥FNf − f
∥∥
∞ = 0 for all f ∈ C(T) .
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Approximations of the Hilbert transform Properties of approximation operators

Example – Sampled Conjugate Fejér Mean

Now we define the approximation operators HFN := HSN . This yields

(
HFNf

)
(t) =

(
HSNf

)
(t) =

N−1∑
n=0

f
(
n 2π
N

)
F̃N
(
t− n 2π

N

)
with the conjugate Fejér kernel F̃N = HFN given by

F̃N (τ) =
N sin τ − sin(Nτ)

2
[
N sin(τ/2)

]2 =
1

N

(
1

tan(τ/2)
− sin(Nτ)

2N sin2(τ/2)

)
.

� By this construction, it is easy to verify that {HFN}N∈N is indeed an
approximation sequence with the desired property (A), (B), and (C).

� Replace the rectangular integration rule by any other integration method
gives similar operators but with other kernels.
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A conjecture for Hilbert transform approximations

Weak Divergence of Hilbert transform
Approximations

It is known that every sequence {HN}N∈N with properties (A), (B), (C) diverges
weakly on B. More precisely, the following result was proven.

Theorem (Weak Divergence)

Let {HN}N∈N be a sequence of operators with property (A), (B), and (C). Then
there exists an f∗ ∈ B such that

lim sup
N→∞

‖HNf∗‖∞ =∞ . (2)

Moreover, the set of all f∗ ∈ B for which (2) hold is a residual set in B.

Remark
The proof is based on the Theorem of Banach-Steinhaus, showing that the
operator norms ‖HN‖ are not uniformly bounded.

On the calculation of the Hilbert transform from interpolated data
H. Boche and V. Pohl

IEEE Trans. Inform. Theory, vol. 54, no. 5 (May 2008), pp. 2358–2366
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A conjecture for Hilbert transform approximations

Conjecture - Strong Divergence of all Hilbert
Transform Approximations from Sampled Data

Conjecture

Let {HN}N∈N be an arbitrary sequence of linear approximation operators with
properties (A), (B), and (C). Then there exists an f∗ ∈ B such that

lim
N→∞

∥∥HNf∗
∥∥
∞ =∞ . (∆)

Remark
We give 3 results which support this conjecture:

Strong divergence of {HN}N∈N on C(T) ⊃ B.

Strong divergence of the sampled Fejér means {HFN}N∈N.
Even a stronger divergence result than (∆).

”
Almost strong divergence“ for all approximation procedures with properties

(A), (B), and (C).
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Examples of strong divergence Strong divergence for continuous functions

Strong Divergence for Continuous Functions

Theorem (Strong divergence on C(T))

There exists a residual set D ⊂ C(T) such that for every sequence {HN}N∈N with
properties (A), (B), and (C) holds

lim
N→∞

∥∥HNf
∥∥
∞ =∞ for all f ∈ D .

Remark
The set D does not depend on the particular operator sequence {HN}N∈N but it
is universal in the sense that D is the same for all possible sequences {HN}.
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Examples of strong divergence Strong convergence of the sampled conjugate Fejér means

Sampled Conjugate Fejér Means (SCFM)

We consider the particular sequence {HFN}N∈N of the sampled conjugate Fejér
means

(
HFNf

)
(t) =

N−1∑
n=0

f
(
n 2π
N

)
F̃N
(
t− n 2π

N

)
with the conjugate Fejér kernel

F̃N (τ) =
N sin τ − sin(Nτ)

2
[
N sin(τ/2)

]2 =
1

N

(
1

tan(τ/2)
− sin(Nτ)

2N sin2(τ/2)

)
.

Recall

� Obtained from the uniformly convergent Fejér means based on frequency
samples (Fourier coefficients).

� Approximate integration by Riemann sums using a rectangular integration
rule.
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Examples of strong divergence Strong convergence of the sampled conjugate Fejér means

Strong Divergence of SCFM

Theorem

Let {HFN}N∈N be the sequence sampled conjugate Fejér means (SCFM). There
exists a function f∗ ∈ B such that

lim
N→∞

(
HFNf∗

)
(π) =∞ .

Remark

This result implies the strong divergence of {HFN}N∈N:
There exists an f∗ ∈ B such that

lim
N→∞

∥∥HFNf∗
∥∥
∞ =∞ .

But the theorem shows even the strong divergence at a fixed point π ∈ T.

Similar to investigations of Erdős on the divergence of Lagrange interpolation.

First example of pointwise strong divergence.
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Examples of strong divergence Strong convergence of the sampled conjugate Fejér means

Divergent Kernels
The divergence behavior of the approximation series is determined by the
properties of the kernel.

Corollary

Let {HN}N∈N be a sequence with properties (A), (B), and (C) of the form

(
HNf

)
(t) =

N−1∑
n=0

f
(
n 2π
N

)
K̃N
(
t− n 2π

N

)
and assume that the kernel K̃N has the following two properties

(i) K̃N (τ) ≥ 0 for all 0 < τ < π

(ii) C(N) :=

bN/2c∑
n=0

K̃N
(
π − n 2π

N

)
≥ 2

π
log(N + 1)− C0 for all N ∈ N

with a positive constant C0 independent of N .
Then {H}N∈N diverges strongly on B.
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Examples of strong divergence Strong convergence of the sampled conjugate Fejér means

Strong Divergence of SCFM - Discussion

SCFM - derived from conjugate Fejér mean due to numerical integration.

Conjugate Fejér means are uniformly convergent ⇔ SCFM strongly divergent.

We used rectangular integration rule to derive SCFM.

Other integration rules are possible (trapezoidal, Newton-Cotes, ...).

⇒ This yields approximation operators with property (A), (B), (C).
⇒ This yields other kernels.
? Do these approximation method also diverge strongly?
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Examples of strong divergence Almost strong divergence of all methods

Toward Strong Divergence
Let {HN}N∈N be a sequence with properties (A),(B) and (C). We want to
show that there exists an f∗ ∈ B such that

lim
N→∞

‖HNf∗‖∞ = +∞ . (SD)

Equivalently: To every M > 0 there exists an N (1) ∈ N such that∥∥HNf∗
∥∥
∞ > M for all N > N (1) .

⇒ Thus, ‖HNf∗‖∞ gets arbitrarily large on the infinite interval [N (1),∞).

Weaker Property –
”

Almost Strongly Divergent“

We show that for any sequence {HN}N∈Z with properties (A), (B), (C) there
exists a function f∗ ∈ B such that ‖HNf∗‖∞ gets arbitrarily large on arbitrarily
long intervals [N (1), N (2)], i.e.

‖HNf∗‖∞ > M for all N ∈ [N (1), N (2)] .
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Examples of strong divergence Almost strong divergence of all methods

Almost Strong Divergence

Theorem

Let {HN}N∈N be a sequence of linear operators with properties (A), (B), and (C).
Then there exists a function f∗ ∈ B with the following property:
To all arbitrary natural numbers M,N0 ∈ N and for every δ ∈ (0, 1) there exist
two natural numbers N (1) = N (1)(M,N0, δ) and N (2) = N (2)(M,N0, δ) with

N (2) > N (1) ≥ N0 and
N (2) −N (1)

N (2)
> 1− δ

such that ‖HNf∗‖∞ > M for all N ∈ [N (1), N (2)].

Remark

Let D(M,f∗) :=
{
N ∈ N : ‖HNf∗‖∞ > M

}
. Then the above theorem

implies

lim sup
K→∞

∣∣D(M,f∗) ∩ [1, 2, . . . ,K]
∣∣

K
= 1 .

The theorem implies not the strong divergence of all {HN}N∈N.
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Examples of strong divergence Almost strong divergence of all methods

Size of the Divergence Set – Banach-Steinhaus

Banach-Steinhaus Technique

Let {HN}N∈N be a sequence of linear operators on B such that

lim
N→∞

‖HNf −Hf‖B = 0 for all f ∈ B0

in a dense subset B0 ⊂ B, and such that

lim sup
N→∞

‖HNf∗‖∞ =∞ for some f∗ ∈ B .

Then the set
D =

{
f∗ ∈ B : lim sup

N→∞

∥∥HNf∗
∥∥
B =∞

}
is a residual set in B.

� If there exists one function f∗ such that HNf∗ diverges, then there exists a
whole residual set of functions f for which HNf diverges.
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Examples of strong divergence Almost strong divergence of all methods

The Divergence Set for Almost Strong Divergence

Theorem

Let {HN}N∈N be a sequence of linear operators with properties (A), (B), and (C),
and denote by DH the set of all f ∈ B for which the following holds:
For arbitrary numbers M ∈ N, N0 ∈ N, and δ ∈ (0, 1) there exist numbers
N (1) = N (1)(M, δ) ≥ N0 and N (2) = N (2)(M, δ) > N (1) with

N (2) −N (1)

N (2)
> 1− δ

such that
‖HNf‖∞ > M for all N ∈ [N (1), N (2)] .

Then DH is a residual set in B.

� The set DH of all functions f ∈ B for which ‖HNf‖B gets arbitrarily large on
arbitrarily long intervals is a residual set.

� So almost strong divergence occurs basically for all functions f ∈ B.
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Application: Adaptive approximation methods Adaptive methods

Strong Divergence and Adaptive Methods

General setting

Given T : B1 → B2 a bounded linear operator.
Let {TN}N∈Z a sequence with property (A), (B) and (C), such that

lim sup
N→∞

‖TNf∗‖B2 =∞ for some f∗ ∈ B1

but such that {TN}N∈Z does not diverge strongly.

� To every f ∈ B1 there exists a subsequence {Nk(f)}k∈N such that

lim sup
k→∞

‖TNk(f)f − Tf‖B2
<∞ .

� The corresponding subsequence {Nk(f)}k∈N depends always on f
⇒ {TNk(f)}k∈N is an approximation method adapted to the particular
function f ∈ B1.
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Application: Adaptive approximation methods Adaptive methods with finite search horizon

Approximations with Finite Search Horizon
Goal
Find sequence {Nk(f)}k∈N such that ‖TNk(f) − Tf‖B2

< Cu for each k ∈ N.
Problem
The distance between two good indices Nk and Nk+1 may be arbitrarily large.

Methods with finite search horizon

Let {Nk}k∈N be a given sequence of strictly monotonically increasing natural
numbers.

Given f ∈ B1 and choose

N̂k(f) = arg min
N∈(Nk,Nk+1]

∥∥TNf − Tf
∥∥
B2
, k = 1, 2, . . . .

If the intervals (Nk, Nk+1] are large enough, then we may hope to obtain a

sequence {N̂k(f)}k∈N such that

lim
k→∞

∥∥TN̂k(f)
f − Tf

∥∥
B2

= 0 .
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Application: Adaptive approximation methods Adaptive methods with finite search horizon

Existence of Methods with Finite Search Horizon

From practical point of view, adaptive methods with finite search horizon are
of importance.

This is a stronger condition than strong divergence (infinite search horizon).

Problem 1

Let {TN}N∈N be a given approximation method of T : B1 → B2.
Does there exist a strictly monotonically increasing sequence {Nk}k∈Z in N
such that for every f ∈ B1 there is a subsequence {N̂k}k∈N such that

N̂k ∈ (Nk, Nk+1] and inf
k∈N

∥∥TN̂k
f − Tf

∥∥
B2
<∞ ?
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Application: Adaptive approximation methods A problem of Ul’yanov

Ul’yanovs Problem - Original Question
Consider the Fourier series for Lebesgue integrable functions on T:

(
SNf

)
(t) =

N∑
n=−N

f̂n eint with f̂n =
1

2π

∫ π

−π
f(t) e−int dt .

Ul’yanovs Question

Does there exist a sequence {Nk}k∈N such that the Fourier series of any
f ∈ L1(T) possesses a subsequence {SN̂k(f)

f} of its partial sums such that

N̂k < Nk and lim
k→∞

(SN̂k
f)(t) = f(t) for almost all t ∈ T ?

The sequence {Nk}k∈N characterizes how fast {N̂k(f)}k∈N has to grow such
that the partial sums {SN̂k

f} converge to the desired f ∈ L1(T).

The subsequence
{
N̂k(f)

}
k∈N depends on the actual f ∈ L1(T).
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Application: Adaptive approximation methods A problem of Ul’yanov

Ul’yanovs Problem - Generalized Formulation

The question of Ul’yanov may be reformulated in our context as follows:

Ul’yanov-Type Problem

Let {TN}N∈N be a given approximation method of T : B1 → B2.
Does there exist a strictly monotonically increasing sequence {Nk}k∈Z in N,
such that for every f ∈ B1 there is a strictly monotonically increasing sequence
{N̂k}k∈Z such that

N̂k ≤ Nk and inf
k∈N

∥∥TN̂k
f − Tf

∥∥
B2
<∞ ?

So how fast do the good approximation indices {N̂k}k∈N grow?

Ul’yanov’s problem: N̂k ≤ Nk contrary Problem 1: N̂k ∈ (Nk, Nk+1]

Ul’yanov: more freedom to adapt the subsequence {N̂k(f)}k∈N
Problem 1: closer relation to practical adaptive methods.
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Application: Adaptive approximation methods A problem of Ul’yanov

Condition for the Existence of a Solution

To investigate concrete operators T : B1 → B2 and approximation sequences
{TN}N∈N the following Lemma will be useful

Lemma (Condition for Problem 1 to be solvable)

Problem 1 has no solution if and only if to every strictly monotonically increasing
sequence {Nk}k∈Z of natural numbers there exists a function f ∈ B1 such that

lim sup
k→∞

(
min

N∈(Nk,Nk+1]

∥∥TNf − Tf
∥∥
B2

)
=∞ .

There is a close relation to the Ul’yanov-Type problem:

Theorem (Relation to Ul’yanov Type problem)

Problem 1 has a solution if and only if the Ul’yanov-Type Problem possess a
solution.
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Application: Adaptive approximation methods A problem of Ul’yanov

Adaptive Methods - Size of the Divergence Sets

If Problem 1 is not solvable, then there exists one f ∈ B1 such that we can’t find
an adaptive convergent subsequence of {TN}N∈N.

? Does there exists more such functions?

? How large is he divergence set?

Definition: Divergence set

Let {T}N∈N be an approximation sequence, and let N = {Nk}k∈N be an arbitrary
strictly monotonically increasing sequence of natural numbers. Then

D1({TN},N ) := {f ∈ B1 : For every strictly monotonically increasing sequences

{N̂k}k∈N with N̂k ∈ (Nk, Nk+1], k ∈ N holds

lim sup
k→∞

∥∥TN̂k
f − Tf

∥∥
B2

=∞
}
.
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Application: Adaptive approximation methods A problem of Ul’yanov

The Divergence Sets are Residual

Theorem

If Problem 1 is not solvable for a given approximation sequence {TN}N∈N,
then the divergence set D1({TN},N ) is a residual set in B1 for any N .

If Problem 1 is not solvable for an operator sequence {TN}N∈N, then any
adaptive approximation with finite search horizon diverges for almost all
functions f ∈ B1.

A similar result holds for the Ul’yanov-Type problem.

Theorem

If the Ul’yanov-Type problem is not solvable then the corresponding divergence set
DU({TN},N ) is a residual set in B1 for any N .
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Adaptive approximations of the Hilbert transform

Problem 1 for Hilbert Transform Approximations
We consider again the concrete problem of the approximation of the Hilbert
transform H : B → B by a sequence {HN}N∈N of operators with properties (A),
(B) and (C).

Theorem

Let {HN}N∈N be a given sequence of linear operators with properties (A), (B),
and (C), and let {Nk}k∈N be an arbitrary strictly monotonically increasing
sequences of natural numbers. There exists a function f∗ ∈ B such that

lim sup
k→∞

min
N∈(Nk,Nk+1]

∥∥HNf∗
∥∥
∞ =∞ .

⇒ Problem 1 has no solution for our Hilbert transform approximations.

⇒ The Ul’yanov-Type problem has no solution .

Corollary

There exists no adaptive approximation methods with a finite search horizon for
our class of Hilbert transform approximations with properties (A), (B) and (C).
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Summary and conclusions

Summary and Conclusions

Weak divergence is related to non-adaptive approximation methods.

Strong divergence is related to the existence of adaptive approximation
methods: Strong divergence ⇒ no adaptive methods

Modern signal processing is based on sampled data.

We investigated approximation methods of the Hilbert transform from
sampled data.

Conjecture: All approximation methods of the Hilbert transform which are
based on sampled data diverge strongly.

⇒ There is no adaptive approximation method which is able to
approximate the Hilbert transform based on samples of the signal.

However, there are non-adaptive, uniformly convergent approximation
methods based on analog signal processing.

Relation to interesting and long standing questions from Fourier analysis and
approximation theory ⇒ Erdős, Ulyanov
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Thank You!

Questions?

Remarks?
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