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Topics (all with respect to AVQCs:)

1 CLASSICAL MESSAGE TRANSMISSION (CONTINUITY)

2 ENTANGLEMENT TRANSMISSION

3 STRONG SUBSPACE TRANSMISSION



Things you can do with a quantum channel

S Rquantum channel

Let n be a quantum channel with input system S and an
outputsystem R for some legitimate receiver.

The channel can be used to transmit particles carrying information.

Different tasks can be carried out, leading to different
mathematical criteria of ’successful transmission:

. message transmission (under average error criterion1)

. message transmission (under maximal error criterion2)

. entanglement transmission

. strong subspace transmission

. corresponding security criteria

1solved for AVCs in [CS89]
2connected to zero-error capacity [Ahl70]
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AVQC I = {n1,n2,n3}, no randomness, 10 channel uses

S R

J

n1 ⊗ n1 ⊗ n1 ⊗ n2 ⊗ n2 ⊗ n2 ⊗ n2 ⊗ n3 ⊗ n3 ⊗ n3

or

n1 ⊗ n2 ⊗ n3 ⊗ n1 ⊗ n2 ⊗ n2 ⊗ n2 ⊗ n1 ⊗ n3 ⊗ n3

it could be
n3 ⊗ n1 ⊗ n2 ⊗ n3 ⊗ n2 ⊗ n2 ⊗ n2 ⊗ n3 ⊗ n1 ⊗ n1

or something completely different?

n1 ⊗ n1 ⊗ n1 ⊗ n1 ⊗ n1 ⊗ n1 ⊗ n1 ⊗ n1 ⊗ n1 ⊗ n1
...
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AVQC I = {n1,n2,n3} with randomness, 10 channel uses

S R

J
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or
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AVQC I = {n1,n2,n3} with randomness, 10 channel uses

S R

J

(0.3 · n1 + 0.4 · n2 + 0.3 · n3)⊗10

or

(0.3 · n1 + 0.4 · n2 + 0.3 · n3)⊗10

it could be
(0.3 · n1 + 0.4 · n2 + 0.3 · n3)⊗10

or something completely different?

(n1)⊗10

...



Shared randomness: AVQC → compound channel

S R

J

All (’which’ only in case of feedback!) of the

(p(1) · n1 + p(2) · n2 + p(3) · n3)⊗10

such that p(1), p(2), p(3) ≥ 0

and p(1) + p(2) + p(3) = 1



Basics

• The quantum systems H,K under consideration are modeled on
finite dimensional Hilbert spaces labelled by the same letters H,K.

• Quantum channels from H to K are modeled by completely
positive trace preserving maps. The set of all channels from H to
K is written CPTPM(H,K).

• If the input system is a finite set X instead of a quantum system,
the channel is called a ’cq-channel’. The set of all channels with
input set X and output system H is labeled CQ(X,H).

• Throughout, I denotes a finite subset: I ⊂ CPTPM(H,K).

• Throughout, I = {ns}s∈S also denotes the arbitrarily varying
quantum channel which is generated by it: ({nsm}sm∈∈Sm)m∈N.

• For m channel uses, the possible channels are {nsm}sm∈Sm , where

Sm := S× . . .× S, nsm := ns1 ⊗ . . .⊗ nsm
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AVQC, no shared randomness, m channel uses

S

H

R

K

J

{nsm}sm∈Sm



Message transmission under channel uncertainty

• For the moment: No ’arbitrarily varying’ channel.

• Sender S has message set [M] = {1, . . . ,M}. He wants to send
them to receiver R. Transmission takes place over one of the
channels from the set {ns}s∈S ⊂ CPTPM(H,K). Neither sender
nor receiver knows the index s ∈ S.

• S uses the encoding P ∈ CQ([M],H), R tries to guess the
message - he measures the output system with a POVM D ∈MM :

MM := {(D(1), . . . ,D(M)) : D(k) ≥ 0 ∀k ,
∑

k D(k) = 1K}.
• Probability of (perhaps wrongly) guessing k when k ′ was sent over

channel ns :
tr{ D(k) · ns(P(k ′)) }.

• Measure of successful transmission:

min
s∈S

1

M

∑
k

tr{D(k)ns(P(k))} ∈ [0, 1].
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Entropic quantities

Asymptotic system performance is described by entropic quantities:

Definition (Von Neumann Entropy)

Let ρ ∈ S(H) be a state. Its von Neumann entropy is

S(ρ) := −trρ log ρ

Definition (Ensemble)

Any finite alphabet X , probability distribution p on X and set
{ρx}x∈X ⊂ S(H) defines an ensemble E := {p(x), ρx}x∈X

Definition (Holevo Quantity)

Let n be a channel and E = {p(x), ρx}x∈X an ensemble. Then

χ(E ,n) := S(n(ρ))−
∑
x

p(x)S(n(ρx)),



Definition: Message transmission capacities

• Let m ∈ N. An (m,Mm) random code for message transmission
over I is a probability distribution γm on a finite subset
{Pi}Γm

i=1 × {Dj}Γm
j=1 of CQ([Mm],H⊗m)×MMm .

• R ≥ 0 is called achievable with random codes if there exists a
sequence (γm)m∈N of random codes satisfying both

1) lim inf
m→∞

min
sm∈Sm

|Γm|∑
i ,j=1

γm(i , j)
1

Mm

Mm∑
k=1

tr{Dj(k)nsm(Pi (k))} = 1

2) lim inf
m→∞

1

m
logMm ≥ R.

• The corresponding random message transmission capacity is

C ran(I) := sup{R : R is achievable with random codes}

• The capacity without randomness is

Cdet(I) := sup

{
R :

R is achievable with random codes
such that |Γm| = 1 ∀m ∈ N

}



Old results

For every finite I = {ns}s∈S, define
conv(I) := {np =

∑
s∈S p(s)ns | p ∈ P(S)}.

A It is proven in [BN–] that •
•

•

n1

n2

n3

Theorem (Dichotomy for Message Transmission)

For every finite AVQC I we have
¶ C ran(I) = limm→∞

1
m maxE minn∈conv(I) χ(E ,n⊗m)

· Either Cdet(I) = 0 or else Cdet(I) = C ran(I).

Theorem ([ABBN13])

A finite AVQC {ns}s∈S has Cdet(I) = 0 if and only if it satisfies for
all m ∈ N: For all ρ, σ ∈ S(H⊗m) there is p, q ∈ P(Sm) such that∑

sm∈Sm

p(sm)nsm(ρ) =
∑

sm∈Sm

q(sm)nsm(σ) (∗)

(∗) An AVQC with this property is called ’m-symmetrizable’
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New result I: Randomness helps!

Theorem

¶ Let I consist of entanglement breaking channels that have the
special form ns(ρ) :=

∑
x∈X tr{ρMx}ρs,x , s ∈ S, for some finite

set S and POVM {Mi}Mi=1 on H. The following is true:

If there are probability distributions {px}x∈X ⊂ P(S) such that∑
s∈S

px ′(s)ρs,x =
∑
s∈S

px(s)ρs,x ′ ∀x , x ′ ∈ X,

then it holds Cdet(I) = 0.
· There exists an example of an AVQC satisfying the above
conditions which additionally has the property C ran(I) > 0.



New result II: Discontinuity

Capacity
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New result II: C det is discontinuous

Theorem (Discontinuity of Cdet)

The function Cdet is discontinuous on {I ⊂ C(H,K) : |I| <∞}.



New result III: The property Cdet(I) > 0 is stable

(the set where Cdet > 0 is open)

Theorem (Positivity of Cdet is stable)

Let I be a finite AVQC satisfying Cdet(I) > 0. There exists δ0 > 0
such that for all finite AVQCs I′ satisfying D♦(I, I′) ≤ δ0 it holds
Cdet(I

′) > 0.

(D♦ denotes the Hausdorff-distance induced by the diamond norm)



Randomness helps: Idea of proof

H X K

measurement

(entanglement breaking)

arbitrarily varying

classical-quantum channel

• Entanglement breaking channel ⇒ one-shot random capacity

• Entangled signal states from H → random encoding for cq part

• Message transmission capacity of an AVcqC does not benefit from
randomization at the encoder (proof: straightforward as in [AB07])

• It follows Cdet(I) = 0 (by symmetrizability of the cq-part).

• To prove that C ran(I) > 0: Take fixed product state encoding.
Use results of [AB07] again ⇒ for specific choice
ρ1,1 = |e1〉〈e1|, ρ1,2 = ρ2,1 = |e3〉〈e3|, ρ2,2 = |e2〉〈e2|,
X = S = {1, 2}, M1 = |e1〉〈e1|, M2 = |e2, 〉〈e2|:

C ran(I) ≥ min
n∈conv(I)

χ({1
2 , {|ei 〉〈ei}

2
i=1},n) ≥ 1/2



Discontinuity: Idea of proof

• Take the same channel I as before. Augment it by a tiny bit of
’identity’: Id(X ) = X embeds the matrices from C2 into those on
C3.

ns,λ := (1− λ)Id + λns , Iλ := {ns,λ}s∈S

• Obviously, limλ→1 D♦(Iλ, I) = 0

• We know that I1 = {ns,λ}s∈S satisfies Cdet(I1) = 0.

• It is easy to show that Iλ is non-symmetrizable for all λ ∈ [0, 1)

• It follows C ran(Iλ) = Cdet(Iλ) for all λ ∈ [0, 1)
(here, one uses the dichotomy-result!)

• But Cran(I1) ≥ 1/2, whence Cran(Iλ) ≥ 1/4 for λ ≈ 1

• Thus Cdet(Iλ) ≥ 1/4 for λ ≈ 1, but Cdet(I1) = 0

⇒ Cdet is discontinuous!



Stability: Idea of proof

• For every m ∈ N define, on finite sets {ni}i∈I ⊂ C(H⊗m,K⊗m) of
channels, a function Fm through

{ni}i∈I 7→ max
ρ,σ∈S(H⊗m)

min
q,p∈P(I)

‖
∑
i∈I

(p(i)ni (ρ)− q(i)ni (σ))‖1.

• It holds Cdet(I) > 0 ⇔ ∃ m ∈ N : Fm(I) > 0.
(Use the connection between symmetrizability and Cdet)

• Show that Fm(I) ≈ Fm(I′) if I ≈ I′.

• If Cdet(I) > 0 then there is m ∈ N such that Fm(I) > 0, but then
choosing I′ ≈ I ensures Fm(I′) > 0, whence Cdet(I

′) > 0.



Conclusion



Shared randomness:
Can increase the capacity and stabilize the system



Finite error, finite resources

If instead of

lim inf
m→∞

min
sm∈Sm

|Γm|∑
i ,j=1

γm(i , j)
1

Mm

Mm∑
k=1

tr{Dj(k)nsm(Pi (k))} = 1

on requires for some λ ∈ (0, 1) only

lim inf
m→∞

min
sm∈Sm

|Γm|∑
i ,j=1

γm(i , j)
1

Mm

Mm∑
k=1

tr{Dj(k)nsm(Pi (k))} ≥ 1− λ

then the corresponding capacity C ran(I, λ) can be achieved using
only a finite amount K of shared random bits, and K scales as
K ≈ 1/λ.
The number of channel uses needed to achieve an error smaller
than λ scales as log(1/λ).

See our paper for an exact statement.



Entanglement fidelity (entanglement transmission)

• Sender S has access to one part of pure entangled state
|ψ〉〈ψ| ∈ S(F ⊗ F).

• He wishes to transmit his half to receiver R by use of the channel
n ∈ CPTPM(H,K).

• S uses the encoding map P ∈ CPTPM(F ,H)

• and R the decoding map R ∈ CPTPM(K,F).

• Measure of success:

〈ψ, IdF ⊗R ◦ n ◦ P(|ψ〉〈ψ|)ψ〉 =: Fe(ρ,R ◦ n ◦ P) ∈ [0, 1],

where ρ := IdF ⊗ trF (|ψ〉〈ψ|) (the marginal state).

Remark: For arbitrary (sub) spaces F , πF denotes the state
supported only on F satisfying spec(F) = 1

dimF .



Minimum fidelity (strong subspace transmission)

• Sender S controls the system F .

• He wants to make sure that he can send arbitrary states ρ ∈ S(F)
to the receiver R by use of a channel n ∈ CPTPM(H,K).

• S uses the encoding P ∈ CPTPM(F ,H)

• and R the decoding R ∈ CPTPM(K,F).

• Measure describing how well the channel R ◦ n ◦ P preserves the
states sent by S:

min
x∈S(F)

〈x ,R ◦ n ◦ P(|x〉〈x |)x〉 =: Fmin(F ,R ◦ n ◦ P) ∈ [0, 1].

Remark: S(F) = {x ∈ F : ‖x‖ = 1} is the unit sphere on F .



Coherent information

• Measure of how much noise is induced by n: For arbitrary
ρ ∈ S(H), n ∈ CPTPM(H,K) it is given by

Ic(ρ,n) := S(n(ρ))− S(Id ⊗ n(|ψ〉〈ψ|)).

Here, and only for a brief moment, S denotes von Neumann
Entropy.



Entanglement transmission

• A (deterministic) (m, km)-code for the AVQC I = {ns}s∈S is a
triple (Fm,Pm,Rm), where

Fm − Hilbert space of dimension dimFm = km

Pm ∈ CPTPM(Fm,H⊗m) − the encoding

Rm ∈ CPTPM(K⊗m,Fm) − the decoding

• R ≥ 0 is a an achievable rate for entanglement transmission over
the AVQC I if there is a sequence of (m, km)-codes with

lim inf
m→∞

1

m
log km ≥ R,

lim
m→∞

inf
sm∈Sm

Fe(πFm ,Rm ◦ nsm ◦ Pm) = 1.

• Entanglement transmission capacity Adet(I) of I:

Adet(I) := sup

{
R :

R is achievable entanglement
transmission rate for I

}



Entanglement transmission using random codes

• A (random) (m, km)-random code for the AVQC I = {ns}s∈S is a
probability distribution µ on a finite set Γ together with a set of
triples (Fm,Pm

γ ,Rm
γ ) for each γ ∈ Γ, where

Fm − Hilbert space of dimension dimFm = km

Pm
γ ∈ CPTPM(Fm,H⊗m) − the encoding

Rm
γ ∈ CPTPM(K⊗m,Fm) − the decoding

• R ≥ 0 achievable: ∃ sequence of (m, km)-random codes with

lim inf
m→∞

1

m
log km ≥ R,

lim
m→∞

inf
sm∈Sm

∑
γ∈Γ

µ(γ)Fe(πFm ,Rm
γ ◦ nsm ◦ Pm

γ ) = 1.

• Randomness-assisted entanglement transmission capacity of I:

Arand(I) := sup

{
R :

R is achievable entanglement transm.
rate for I (with random codes)

}



Strong subspace transmission

• A (deterministic) (m, km)-code for the AVQC I = {ns}s∈S is a
triple (Fm,Pm,Rm), where

Fm − Hilbert space of dimension dimFm = km

Pm ∈ CPTPM(Fm,H⊗m) − the encoding

Rm ∈ CPTPM(K⊗m,Fm) − the decoding

• R ≥ 0 is a an achievable rate for strong subspace transmission
over the AVQC I if there is a sequence of (m, km)-codes with

lim inf
m→∞

1

m
log km ≥ R,

lim
m→∞

inf
sm∈Sm

Fmin(Fm,Rm ◦ nsm ◦ Pm) = 1.

• Strong subspace transmission capacity As,det(I) of I:

As,det(I) := sup

{
R :

R is achievable strong subspace
transmission rate for I

}



An equivalence

Theorem

For every arbitrarily varying quantum channel defined through a
subset I ⊂ CPTPM(H,K) it holds:

As,det(I) = Adet(I), As,rand(I) = Arand(I)!



Comparison to classical quantities

Strong subspace transmission is considered an analogue to the
maximal error1 criterion,

entanglement transmission as the analogue to the average error2

criterion.

For classical arbitrarily varying channels, the capacities for message
transmission under average -and maximal error probability criterion
are NOT identical!
(There, at least one has to explicitly assume that randomized encoding

schemes are used in order to get identical capacities)

1average error of a code is given by
1

M

M∑
i=1

tr{Din(ρi )},

2maximal error of a code is given by max
1≤i≤M

tr{Din(ρi )}.



Why THAT analogue?

I For every M∈ CPTPM(Fm,Fm), dim(Fm) arbitrary, it holds

1− min
ρ∈S(Fm)

Fe(ρ,M) ≤ 4
√

1− Fmin(Fm,M) ≤ 4
√
‖M− idFm‖∞

≤ 4
√
‖M− idFm‖cb ≤ 8(1− min

ρ∈S(Fm)
Fe(ρ,M))1/4

[KW04]

I For the normalized Haar measure µ on S(Fm):∫
〈x ,M(|x〉〈x |)x〉dµ(x) =

dim(Fm) · Fe(πFm ,M) + 1

dim(Fm) + 1
.

[HHH99, N02]

I And no function f : [0, 1]→ [0, 1] with limx→1 f (x) = 0 satisfies

‖M− idFm‖∞ ≤ f (Fe(πFm ,M)) ∀ M

[KW04]
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Quantum-Ahlswede dichotomy for AVQCs

Theorem (Quantum - Ahlswede3 dichotomy (proven in [ABBN13]))

For the AVQC defined by I = {ns}s∈S ⊂ CPTPM(H,K):

Arandom(I) = lim
m→∞

1

m
max

ρ∈S(H⊗m)
inf

n∈conv(I)
Ic(ρ,n⊗m)

Either Cdet(I) = 0 or Adet(I) = Arandom(I).

conv(I) =

{
nq

∣∣∣∣nq =
∑
s∈S′

q(s)ns , q ∈ P(S′), S′ ⊂ S, |S′| <∞

}
.

P(S′) - set of probability distributions on S′.

3Find its ancestor, the classical Ahlswede-Dichotomie, in [Ahl78]



Conjectures

Conjecture ([ABBN13, BN13])

First, there exist AVQVs I for which

C random(I) > Cdet(I).

Second, for every AVQC I it holds

Arandom(I) = Adet(I).

• First conjecture: Solved in [BN–]

• Second conjecture: Still open.



Conclusion

• Message transmission: Shared randomness assisted capacity is
continuous

• Message transmission: Shared randomness assisted capacity can be
strictly larger than unassisted capacity

• Message transmission: Cdet is discontinuous

• Entanglement transmission is equivalent to strong subspace
transmission

• If our conjecture turns out to be true then the unassisted
entanglement transmission capacity is continuous

THANK YOU
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